Skip to main content
Log in

Molecular dynamics simulation of water-based nanofluids viscosity

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The shear viscosity coefficients of water and water-based nanofluids with copper particles are calculated by the molecular dynamics method. Copper nanoparticles with a diameter of 2, 4 and 10 nm were used in the simulation. The volume fraction of nanoparticles was varied from 1 to 5%. The interaction of water molecules with each other was modeled using the Lennard–Jones potential. The Rudyak–Krasnolutskii and Rudyak–Krasnolutskii–Ivanov potentials were used as nanoparticle–molecule and nanoparticles interaction potentials, respectively. The viscosity coefficient was calculated using the fluctuation–dissipation theorem by the Green–Kubo formula. It is shown that the viscosity of the nanofluid significantly exceeds the viscosity of the coarse-grained suspension and increases with a decrease in the nanoparticles size at their fixed volume fraction. The correlation functions determining the viscosity coefficient of the nanofluid were analyzed in detail. The radial distribution functions of pure water and nanofluids are also presented in the paper. It is shown that the liquid near the nanoparticle is structured much more strongly than in the bulk. This greater ordering of the nanofluid is one of the main factors determining the increase in nanofluids viscosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rudyak VY, Minakov AV. Thermophysical properties of nanofluids. Eur Phys J E. 2018;41:15.

    Article  PubMed  CAS  Google Scholar 

  2. Rudyak VY. Modern understanding of the thermophysical properties of nanofluids and features of their flows. J Nanofluids. 2019;8:1–15.

    Article  Google Scholar 

  3. Hosseini SS, Shahrjerdi A, Vazifeshenas Y. A review of relations for physical properties of nanofluids. Aust J Basic Appl Sci. 2011;10:417.

    Google Scholar 

  4. Mahbubul IM, Saidur R, Amalina MA. Latest developments on the viscosity of nanofluids. Int J Heat Mass Transf. 2012;55:874.

    Article  CAS  Google Scholar 

  5. Koca HD, Doganay S, Turgut A, Tavman IH, Saidur R, Mahbubulf IM. Effect of particle size on the viscosity of nanofluids: a review. Renew Sustain Energy Rev. 2018;82:1664.

    Article  CAS  Google Scholar 

  6. Wang XQ, Mujumdar AS. Heat transfer characteristics of nanofluids: a review. Int J Therm Sci. 2007;46:1.

    Article  Google Scholar 

  7. Yu W, France DM, Routbort JL, Choi S. Review and comparison of nanofluid thermal conductivity and heat transfer enhancements. Heat Transf Eng. 2008;29:432.

    Article  CAS  Google Scholar 

  8. Kleinstreuer K, Yu F. Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review. Nanoscale Res Lett. 2011;6:229.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Kumar PM, Kumar J, Tamilarasan R, Sendhilnathan S, Suresh S. Review on nanofluids theoretical thermal conductivity models. Eng J. 2015;1:67–83.

    Article  Google Scholar 

  10. Eapen DJ, Yip S, Li Y. Mechanism of thermal transport in dilute nanocolloids. Phys Rev Lett. 2007;98:028302.

    Article  PubMed  CAS  Google Scholar 

  11. Rudyak VY, Belkin AA. Modeling of transition coefficients of nanofluids (RU). Nanosyst Phys Chem Math. 2010;1:156.

    Google Scholar 

  12. Rudyak VY, Belkin AA, Tomilina EA. On the thermal conductivity of nanofluids. Tech Phys Lett. 2010;36:660.

    Article  CAS  Google Scholar 

  13. Kang H, Zhang Y, Yang M. Molecular dynamics simulation of thermal conductivity of Cu–Ar nanofluid using EAM potential for Cu–Cu interactions. Appl Phys. 2011;4:1001–8.

    Article  CAS  Google Scholar 

  14. Rajabpour A, Akizi FY, Heyhat MM, Gordiz K. Molecular dynamics simulation of the specific heat capacity of water–Cu nanofluids. Int Nano Lett. 2013. https://doi.org/10.1186/2228-5326-3-58.

    Article  Google Scholar 

  15. Rudyak VY, Krasnolutskii SL. Dependence of the viscosity of nanofluids on nanoparticle size and material. Phys Lett A. 2014;378:1845.

    Article  CAS  Google Scholar 

  16. Rudyak VY, Krasnolutskii SL. Simulation of the nanofluid viscosity coefficient by the molecular dynamics method. Tech Phys. 2015;60(6):798.

    Article  CAS  Google Scholar 

  17. Lou Z, Yang M. Molecular dynamics simulations on the shear viscosity of Al2O3 nanofluids. Comput Fluids. 2015;117:17–23.

    Article  CAS  Google Scholar 

  18. Bushehri M, Mohebbi A, Rafsanjani H. Prediction of thermal conductivity and viscosity of nanofluids by molecular dynamics simulation. J Eng Thermophys. 2016;25:389–400.

    Article  Google Scholar 

  19. Jabbari F, Rajabpour A, Saedodin S. Thermal conductivity and viscosity of nanofluids: a review of recent molecular dynamics studies. Chem Eng Sci. 2017;17:67–81.

    Article  CAS  Google Scholar 

  20. Clementi E, Matsuoka O, Yoshimine M. A study of the water dimer potential surface. J Chem Phys. 1976;64:1351.

    Article  Google Scholar 

  21. Stillinger FH, Rahman A. Improved simulation of liquid water by molecular dynamics. J Chem Phys. 1974;60:1545.

    Article  CAS  Google Scholar 

  22. Rahman A, Stillinger FH, Lemberg HL. Study of a central force model for liquid water by molecular dynamics. J Chem Phys. 1975;63:5223.

    Article  CAS  Google Scholar 

  23. Berendsen HJC, et al. Interaction models for water in relation to protein hydration. In: Pullman B, editor. Intermolecular forced, vol. 77. Dordrecht: Reidel; 1981. p. 331–42.

    Chapter  Google Scholar 

  24. Jorgensen WL, Chandrasekhar J, Madura JD. Comparison of simple potential functions for simulating liquid water. J Chem Phys. 1983;79:926.

    Article  CAS  Google Scholar 

  25. Jorgensen WL. Revised TIPS for simulations of liquid water and aqueous solutions. J Chem Phys. 1982;77:4156.

    Article  CAS  Google Scholar 

  26. Silverstein KAT, Haymet ADJ, Dill KA. A simple model of water and the hydrophobic effect. J Am Chem Soc. 1998;120:3166.

    Article  CAS  Google Scholar 

  27. Berendsen HJC, Grigera JR, Straatsma TP. The missing term in effective pair potentials. J Phys Chem. 1987. https://doi.org/10.1021/j100308a038.

    Article  Google Scholar 

  28. Gonzalez MA, Abascal JLF. The shear viscosity of rigid water models. Chem Phys. 2010;132:096101.

    Google Scholar 

  29. Medina JS, et al. Molecular dynamics simulations of rigid and flexible water models: temperature dependence of viscosity. Chem Phys. 2011;388:9–18.

    Article  CAS  Google Scholar 

  30. Mao Y, Zhang Y. Thermal conductivity, shear viscosity and specific heat of rigid water models. Chem Phys Lett. 2012;542:37–41.

    Article  CAS  Google Scholar 

  31. Tazi S, Boţan A, Salanne M, Marry V, Turq P, Rotenberg B. Diffusion coefficient and shear viscosity of rigid water models. J Phys: Condens Matter. 2012. https://doi.org/10.1088/0953-8984/24/28/284117.

    Article  Google Scholar 

  32. Zhang Y, Otani A, Maginn EJ. Reliable viscosity calculation from equilibrium molecular dynamics simulations: a time decomposition method. J Chem Theory Comput. 2015;11:3537–46.

    Article  CAS  PubMed  Google Scholar 

  33. Rapaport DC. The art of molecular dynamics simulation. Cambridge: Cambridge University Press; 1995.

    Google Scholar 

  34. Rudyak VY, Krasnolutskii SL, Ivanov DA. Molecular dynamics simulation of nanoparticle diffusion in dense fluids. Microfluidics Nanofluidics. 2011;4:501–6.

    Article  CAS  Google Scholar 

  35. Rudyak VY, Krasnolutskii SL. The interaction potential of dispersed particles with carrier gas molecules. In: Proceedings of 21st international symposium on rarefied gas dynamics, vol 1. Toulouse: Gépadués-Éditions; 1999. p 263–70.

  36. Rudyak VY, Krasnolutsky SL. Diffusion of nanoparticles in a rarefied gas. Tech Phys. 2002;47:807–13.

    Article  CAS  Google Scholar 

  37. Rudyak VY, Krasnolutskii SL, Ivanov DA. The interaction potential of nanoparticles. Dokl Phys. 2012;57:33–5.

    Article  CAS  Google Scholar 

  38. Rudyak VY. Statistical aerohydromechanics of homogeneous and heterogeneous media. Hydromechanics, vol. 2. Novosibirsk: NSUACE; 2005.

    Google Scholar 

  39. Norman GE, Stegailov VV. Stochastic theory of the classical molecular dynamics method. Math Models Comput Simul. 2013;5:305.

    Article  Google Scholar 

  40. Zubarev D. Nonequilibrium statistical thermodynamics. New York: Consultants Bureau; 1974.

    Google Scholar 

  41. Allen MP, Tildesley DJ. Computer simulation of liquids. Oxford: University Press; 1987.

    Google Scholar 

  42. Rudyak VY, Belkin AA, Ivanov DA, Egorov VV. The simulation of transport processes using the method of molecular dynamics. Self-diffusion coefficient. High Temp. 2008;46:30–9.

    Article  CAS  Google Scholar 

  43. Lide DR, editor. CRC handbook of chemistry and physics. 90th ed. Boca Raton: CRC; 2010.

    Google Scholar 

  44. Batchelor GK. The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J Fluid Mech. 1977;83:97–117.

    Article  Google Scholar 

  45. Rudyak VY. Viscosity of nanofluids. Why it is not described by the classical theories. Adv Nanopart. 2013. https://doi.org/10.4236/anp.2013.23037.

    Article  Google Scholar 

  46. Rudyak VY, Belkin AA. On the effect of nanoparticles on fluid structure. Colloid J. 2019;81:487.

    Article  CAS  Google Scholar 

  47. Lou Z, Yang M. Molecular dynamics simulations on the shear viscosity of Al2O3 nanofluids. Comput Fluids. 2015. https://doi.org/10.1016/j.compfluid.2015.05.006.

    Article  Google Scholar 

  48. Loya A, Ren G. Molecular dynamics simulation study of rheological properties of CuO–water nanofluid. J Mater Sci. 2015;50:4075.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported partially by the Russian Science Foundation (Projects No. 20-19-00043).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Rudyak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rudyak, V., Krasnolutskii, S., Belkin, A. et al. Molecular dynamics simulation of water-based nanofluids viscosity. J Therm Anal Calorim 145, 2983–2990 (2021). https://doi.org/10.1007/s10973-020-09873-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09873-8

Keywords

Navigation