Skip to main content
Log in

Characteristics of chloride memristors based on nanothick metal films

  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

Memristors based on films of Cu and Cr, as well as their chlorides, which provide better characteristics of electronic components compared to the commonly used ones, are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim, K.-H. et al., A functional hybrid memristor crossbar-array/CMOS system for data storage and neuromorphic applications, Nano Lett., 2012, vol. 12, pp. 389–395.

    Article  Google Scholar 

  2. Lee, M.-J. et al., A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5–x /TaO2–x bilayer structures, Nature Mater., 2011, vol. 10, pp. 625–630.

    Article  Google Scholar 

  3. Strukov, D.B. and Likharev, K.K., CMOL FPGA: a reconfigurable architecture for hybrid digital circuits with two-terminal nanodevices, Nanotechnology, 2005, vol. 16, p. 888.

    Article  Google Scholar 

  4. Ohno, T. et al., Short-term plasticity and long-term potentiation mimicked in single inorganic synapses, Nature Mater., 2011, vol. 10, pp. 591–595.

    Article  Google Scholar 

  5. Likharev, K., Mayr, A., Muckra, I., and Türel, Ö., CrossNets: high-performance neuromorphic architectures for CMOL circuits, Ann. N.Y. Acad. Sci., 2003, vol. 1006, pp. 146–163.

    Article  Google Scholar 

  6. Sakamoto, T. et al., Electronic transport in Ta2O5 resistive switch, Appl. Phys. Lett., 2007, vol. 91, p. 092110.

    Article  Google Scholar 

  7. Kever, T., Bottger, U., Schindler, C., and Waser, R., On the origin of bistable resistive switching in metal organic charge transfer complex memory cells, Appl. Phys. Lett., 2007, vol. 91, p. 083506.

    Article  Google Scholar 

  8. Russo, U., Kamalanathan, D., Ielmini, D., Lacaita, A.L., and Kozicki, M.N., Study of multilevel programming in programmable metallization cell (PMC) memory, IEEE Trans. Electron Dev., 2009, vol. 56, pp. 1040–1047.

    Article  Google Scholar 

  9. Banno, N., Sakamoto, T., Hasegawa, T., Terabe, K., and Aono, M., Effect of ion diffusion on switching voltage of solid-electrolyte nanometer switch, Jpn. J. Appl. Phys., 2006, vol. 45, pp. 3666–3668.

    Article  Google Scholar 

  10. Wang, Z. et al., Resistive switching mechanism in ZnxCd1–xS nonvolatile memory devices, IEEE Electron Dev. Lett., 2007, vol. 28, pp. 14–16.

    Article  Google Scholar 

  11. Mitkova, M. and Kozicki, M.N., Mass transport in chalcogenide electrolyte films-materials and applications, J. Non-Cryst. Solids, 2006, vol. 352, pp. 567–577.

    Article  Google Scholar 

  12. Rabinovich, V.A. and Khavin, Z.Ya., Kratkii khimicheskii spravochnik (Short Chemical Manual), Leningrad: Khimiya, 1991, p. 24.

    Google Scholar 

  13. Yoon, In-Sung et al., Memristor behaviors of highly oriented anatase TiO2 film sandwiched between top Pt and bottom SrRuO3 electrodes, Appl. Phys. Express, 2011, vol. 4, no. 4, pp. 041101–041101-3.

    Article  Google Scholar 

  14. Jeong, D.S., Schroeder, H., and Waser, R., Coexistence of bipolar and unipolar resistive switching behaviors in a Pt/TiO2/Pt stack, Electrochem. Solid-State Lett., 2007, vol. 10, no. 8, pp. G51–G53.

    Google Scholar 

  15. Yang, J.J. et al., The mechanism of electroforming of metal oxide memristive switches, Nanotechnology, 2009, vol. 20, no. 21, pp. 215201–215209.

    Article  Google Scholar 

  16. Berzina, T.S., Gorshkov, K.V., Erokhin, V.V., Nevolin, V.K., and Chaplygin, Yu.A., Investigation of electrical properties of organic memristors based on thin polyaniline–graphene films, Russ. Microelectron., 2013, vol. 42, no. 1, pp. 27–32.

    Article  Google Scholar 

  17. Ageev, O.A., Alyab’eva, N.I., Konoplev, B.G., Polyakov, V.V., and Smirnov, V.A., Photoactivation of nanostructure formation processes by local anodic oxidation of titanium film, Izv. Vyssh. Uchebn. Zaved., Elektron., 2010, no. 2 (82), pp. 23–31.

    Google Scholar 

  18. Prodromakis, Th., Toumazou, Ch., and Chua, L., Two centuries of memristors, Nature Mater., 2012, vol. 11, no. 6, pp. 478–481.

    Article  Google Scholar 

  19. Yang, J.Y. et al., Memristive switching mechanism for metal/oxide/metal nanodevices, Nature Nanotechnol., 2008, vol. 3, no. 7, pp. 429–433.

    Article  Google Scholar 

  20. Jeong, D.S., Schroeder, H., Breuer, U., and Waser, R., Characteristic electroforming behavior in Pt/TiO2/Pt resistive switching cells depending on atmosphere, J. Appl. Phys., 2008, vol. 104, no. 12, pp. 123716–123716-8.

    Article  Google Scholar 

  21. Kim, K.M. et al., Electrically configurable electroforming and bipolar resistive switching in Pt/TiO2/Pt structures, Nanotechnology, 2010, vol. 21, no. 30, pp. 305203–305210.

    Article  Google Scholar 

  22. Tanimizu, M., Takahashi, Yo., and Nomura, M., Spectroscopic study on the anion exchange behavior of Cu chloro-complexes in HCl solutions and its implication to Cu isotopic fractionation, Geochem. J., 2007, vol. 41, no. 4, pp. 291–295.

    Article  Google Scholar 

  23. Irwin, J.C., Chrzanowski, J., Wei, T., Lockwood, D.J., and Wold, A., Raman scattering from single crystals of cupric oxide, Physica C, 1990, vol. 166, nos. 5–6, pp. 456–464.

    Article  Google Scholar 

  24. Sopotrajanov, B., Stefov, V., Zugic, M., and Petrusevski, V.M., Fourier transform infrared and Raman spectra of the green chromium(III) chloride hexahydrate, J. Mol. Struct., 1999, vols. 482–483, pp. 109–113.

    Article  Google Scholar 

  25. Liao et al., Evolution of resistive switching over bias duration of single Ag2S nanowires, Appl. Phys. Lett., 2010, vol. 96, no. 20, pp. 203109–2031090-3.

    Article  Google Scholar 

  26. Hashema, N. and Das, Sh., Switching-time analysis of binary-oxide memristors via a nonlinear model, Appl. Phys. Lett., 2012, vol. 100, no. 26, pp. 262106–262106-3.

    Article  Google Scholar 

  27. Khrapovitskaya, Yu.V., Maslova, N.E., Zanaveskin, M.L., and Marchenkov, A.N., Modeling of frequency and power characteristics of a memristor based on titanium oxide, Nauka Obrazov., 2012, no. 5, pp. 290–305.

    Google Scholar 

  28. Lu, Y.M. et al., Thermographic analysis of localized conductive channels in bipolar resistive switching devices, J. Phys. D: Appl. Phys., 2011, vol. 44, p. 185103.

    Article  Google Scholar 

  29. Kyriakides, E. et al., Low-cost, CMOS compatible, Ta2O5-based hemi-memristor for neuromorphic circuits, Electron. Lett., 2012, vol. 48, no. 23, pp. 1451–1452.

    Article  Google Scholar 

  30. Zhu, Yo. and Li, M., Bipolar resistive switching characteristic of epitaxial NiO thin film on Nb-doped SrTiO3 substrate, Adv. Condens. Matter Phys., 2012, vol. 2012, pp. 1–8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Kondrashov.

Additional information

Original Russian Text © R.Yu. Rozanov, V.A. Kondrashov, V.K. Nevolin, Yu.A. Chaplygin, 2016, published in Mikroelektronika, 2016, Vol. 45, No. 1, pp. 29–35.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rozanov, R.Y., Kondrashov, V.A., Nevolin, V.K. et al. Characteristics of chloride memristors based on nanothick metal films. Russ Microelectron 45, 26–32 (2016). https://doi.org/10.1134/S1063739716010091

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739716010091

Keywords

Navigation