Skip to main content
Log in

Practical method to make a discrete memristor based on the aqueous solution of copper sulfate

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A new method to realize a discrete memristor is proposed. The device under study consists of a tube filled of aqueous saturated solution of copper sulfate which can be electrolyzed by using two asymmetric copper electrodes, one of which has a considerably smaller cross-sectional area than to the other one. It is shown both theoretically and experimentally that this device has exactly the properties of a memristor if it is designed such that the electrical field and the current density on the thinner electrode when it acts as anode are sufficiently large. Different aspects of the proposed discrete memristor, including pinched hysteresis loop, on-off resistance ratio and memory volatilization, are studied and experimental results are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. Note that by applying a sufficiently small positive voltage to the proposed memristor, the resulted electric field will not be strong enough to effectively form new CuO molecules on anode, and consequently, the memristance will not be increased during measurement. But a very accurate tool is needed for measurement of the resulted small electric current in this case.

References

  1. L.O. Chua, The fourth element. Proc. IEEE 100, 1920–1927 (2012)

    Article  Google Scholar 

  2. L.O. Chua, Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18, 507–519 (1971)

    Article  Google Scholar 

  3. D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature 453, 80–83 (2008)

    Article  ADS  Google Scholar 

  4. R. Williams, How we found the missing memristor. IEEE Spectr. 45, 28–35 (2008)

    Article  Google Scholar 

  5. G. Gandhi, V. Aggarwal, L.O. Chua, The first radios were made using memristors!. IEEE Circuits Syst. Mag. 13, 8–16 (2013)

    Article  Google Scholar 

  6. Y. Pershin, M. Di Ventra, Practical approach to programmable analog circuit with memristors. IEEE Trans. Circuits Syst. I 57, 1857–1864 (2009)

    Article  Google Scholar 

  7. Y. Pershin, M. Di Ventra, Experimental demonstration of associative memory with memristive neural networks. Neural Netw. 23, 881–886 (2010)

    Article  Google Scholar 

  8. F. Merrikh-Bayat, S.B. Shouraki, F. Merrikh-Bayat, Memristive fuzzy edge detector. J. Real Time Image Process. 9, 479–489 (2014)

    Article  Google Scholar 

  9. S.N. Mirebrahimi, F. Merrikh-Bayat, Programmable discrete-time type I and type II FIR filter design on the memristor crossbar structure. Analog Integr. Circuits Signal 79, 529–541 (2014)

    Article  Google Scholar 

  10. F. Merrikh-Bayat, F. Merrikh-Bayat, S.B. Shouraki, The neuro-fuzzy computing system with the capacity of implementation on a memristor crossbar and optimization-free hardware training. IEEE Trans. Fuzzy Syst. 22, 1272–1287 (2014)

    Article  Google Scholar 

  11. M.D. Pickett, D.B. Strukov, J.L. Borghetti, J. Joshua Yang, G.S. Snider, D.R. Stewart, R. Stanley Williams, Switching dynamics in titanium dioxide memristive devices. J. Appl. Phys. 106, 074508 (2009)

    Article  ADS  Google Scholar 

  12. T. Chang, S.-H. Jo, K.-H. Kim, P. Sheridan, S. Gaba, W. Lu, Synaptic behaviors and modeling of a metal oxide memristive device. Appl. Phys. A Mater. 102, 857–863 (2011)

    Article  ADS  Google Scholar 

  13. Z.J. Chew, L. Li, A discrete memristor made of ZnO nanowires synthesized on printed circuit board. Mater. Lett. 91, 298–300 (2013)

    Article  Google Scholar 

  14. J.J. Yang, M.X. Zhang, J.P. Strachan, F. Miao, M.D. Pickett, R.D. Kelley, G. Medeiros-Ribeiro, R.S. Williams, High switching endurance in TaOx memristive devices. Appl. Phys. Lett. 97, 232102 (2010)

    Article  ADS  Google Scholar 

  15. P.R. Mickel, A.J. Lohn, B.J. Choi, J.J. Yang, M.-X. Zhang, M.J. Marinella, C.D. James, R.S. Williams, A physical model of switching dynamics in tantalum oxide memristive devices. Appl. Phys. Lett. 102, 223502 (2013)

    Article  ADS  Google Scholar 

  16. E. Gale, A. Adamatzky, B. de Lacy Costello, On the memristive properties of slime mould. Adv. Phys. Mach. 21, 75–90 (2016)

    Google Scholar 

  17. H.-J. Koo, J.-H. So, M.D. Dickey, O.D. Velev, Towards all-soft matter circuits: prototypes of quasi-liquid devices with memristor characteristics. Adv. Mater. 23, 3559–3564 (2011)

    Article  Google Scholar 

  18. Y.-C. Chen, H.-C. Yu, C.-Y. Huang, W.-L. Chung, S.-L. Wu, Y.-K. Su, Nonvolatile bio-memristor fabricated with egg albumen film. Sci. Rep. 5, Article number: 10022 (2015)

  19. M.D. Reyes Tolosa, J. Orozco-Messana, A.N.C. Lima, R. Camaratta, M. Pascual, M.A. Hernandez-Fenollosa, Electrochemical deposition mechanism for ZnO nanorods: diffusion coefficient and growth models. J. Electrochem. Soc 158(11), E107–E110 (2011)

    Article  Google Scholar 

  20. D. Grujicic, B. Pesic, Electrodeposition of copper: the nucleation mechanisms. Electrochim. Acta 47, 2901–2912 (2002)

    Article  Google Scholar 

  21. G. Hinds, The Electrochemistry of Corrosion (Corrosion Doctors Publications, 1996), pp. 4–5

  22. C. Kok Yew, Express Chemistry Form 4, Pelangi ePublishing Sdn Bhd, Mehr 10, 1391 AP-Education (2012)

  23. A. Rahnama, M. Gharagozlou, Preparation and properties of semiconductor CuO nanoparticles via a simple precipitation method at different reaction temperatures. Opt. Quant. Electron 44, 313–322 (2012)

    Article  Google Scholar 

  24. S. Prasad Adhikari, MPd Sah, H. Kim, L.O. Chua, Three fingerprints of memristor. IEEE T. Circuits I 60, 3008–3021 (2013)

    MathSciNet  Google Scholar 

  25. D. Biolek, Z. Biolek, V. Biolkova, Pinched hysteresis loops of ideal memristors, memcapacitors and meminductors must be self-crossing. Electron. Lett. 47, 1385–1387 (2011)

    Article  Google Scholar 

  26. J. Eskhult, Electrochemical Deposition of Nanostructured Metal/Metal Oxide Coatings, Doctoral Dissertation, Acta Universitatis Upsaliensis Uppsala (2007)

  27. H.B. Hassan, Z. Abdel, Hamid, Electrodeposited Cu–CuO composite films for electrochemical detection of glucose. Int. J. Electrochem. Sci. 6, 5741–5758 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farshad Merrikh-Bayat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merrikh-Bayat, F., Parvizi, M. Practical method to make a discrete memristor based on the aqueous solution of copper sulfate. Appl. Phys. A 122, 602 (2016). https://doi.org/10.1007/s00339-016-0132-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0132-6

Keywords

Navigation