Skip to main content
Log in

Capacitive Effects of Memristive Structure Composed of Multi-walled CNT and Sodium Alginate Under DC Offset

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This study focuses on the utilization of composite material for the active layer of memristors, which are used in memory devices and resistive switching applications. In this context, composite ink was produced using multi-walled carbon nanotubes (CNTs) and sodium alginate. The electrical characterization of the fabricated memristor indicates the presence of the capacitive effect. Experimental results show that the DC offset voltage improves the memristive property related to the bow-tie hysteresis. Notably, the capacitance value decreased with increasing DC offset amplitudes. In addition, durability and retention tests have been carried out to assess the reliability of the memristors. Also, scanning electron microscopy (SEM) was used to examine the surface morphology of the composite ink, and Raman spectroscopy was used to investigate its chemical structure and molecular interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C.J. Xue, Y. Zhang, Y. Chen, G. Sun, J.J. Yang, and H.Li, Emerging Non-volatile memories : opportunities and challenges, in Proceedings of the Seventh IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis (2011), p. 325.

  2. J.S. Meena, S.M. Sze, U. Chand, and T.Y. Tseng, Overview of emerging nonvolatile memory technologies. Nanoscale Res. Lett. 9, 1 (2014).

    Article  Google Scholar 

  3. H.K. Liu, D. Chen, H. Jin, X.F. Liao, B. He, K. Hu, and Y. Zhang, A survey of non-volatile main memory technologies: state-of-the-arts, practices, and future directions. J. Comput. Sci. Technol. 36, 4 (2021).

    Article  Google Scholar 

  4. D. Gokcen, Memristor based multi-state shift register architecture. Hittite J. Sci. Eng. 6, 185 (2019).

    Article  Google Scholar 

  5. I. Vourkas and G.C. Sirakoulis, Emerging memristor-based logic circuit design approaches: a review. IEEE Circuit Syst. Mag. 16, 15 (2016).

    Article  Google Scholar 

  6. M. Khalid, Review on various memristor models, characteristics, potential applications, and future works. Trans. Electr. Electron. Mater. 20, 289 (2019).

    Article  Google Scholar 

  7. L. Chua, Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18, 507 (1971).

    Article  Google Scholar 

  8. D.B. Strukov, G.S. Snider, D.R. Stewart, and R.S. Williams, The missing memristor found. Nature 453, 80 (2008).

    Article  CAS  Google Scholar 

  9. D. Gokcen, O. Şentürk, E. Karaca, N.Ö. Pekmez, and K. Pekmez, Memristive behavior of TiOx obtained via Pb(II)-assisted anodic oxidation process. J. Mater. Sci. Mater. Electron. 30, 5733 (2019).

    Article  CAS  Google Scholar 

  10. E. Gul and D. Gokcen, Active memristive layer deposition via Mn(II)-assisted anodic oxidation of titanium. ECS J. Solid State Sci. Technol. 9, 054004 (2020).

    Article  CAS  Google Scholar 

  11. K. Saka Yıldırım, Y. Ince Keser, and D. Gokcen, Integration of lift-off based lithography process for memristor fabrication, in 2020 International Conference on Electrical, Communication and Computer Engineering, ICECCE 2020 (2020), p. 12.

  12. J. Domaradzki, D. Wojcieszak, T. Kotwica, and E. Mańkowska, Memristors: a short review on fundamentals, structures, materials and applications. Int. J. Electron. Telecommun. 66, 373 (2020).

    Google Scholar 

  13. H. Liu, M. Wei, and Y. Chen, Optimization of non-linear conductance modulation based on metal oxide memristors. Nanotechnol. Rev. 7, 443 (2018).

    Article  Google Scholar 

  14. Y. İnce Keser, K. Saka Yıldırım, and D. Gokcen, Patterning titanium dioxide based memristors using electron beam lithography, in 2020 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA) (2020), p. 1

  15. K. Liao, P. Lei, M. Tu, S. Luo, T. Jiang, W. Jie, and J. Hao, Memristor based on inorganic and organic two-dimensional materials: mechanisms, performance, and synaptic applications. ACS Appl. Mater. Interface 13, 32606 (2021).

    Article  CAS  Google Scholar 

  16. X. Xiao, J. Hu, S. Tang, K. Yan, B. Gao, H. Chen, and D. Zou, Recent advances in halide perovskite memristors: materials, structures, mechanisms, and applications. Adv. Mater. Technol. 5, 1900914 (2020).

    Article  CAS  Google Scholar 

  17. Q. Zhao, Z. Xie, Y.P. Peng, K. Wang, H. Wang, X. Li, H. Wang, J. Chen, H. Zhang, and X. Yan, Current status and prospects of memristors based on novel 2D materials. Mater. Horiz. 7, 1495 (2020).

    Article  CAS  Google Scholar 

  18. T.H. Kim, E.Y. Jang, N.J. Lee, D.J. Choi, K.J. Lee, J.T. Jang, J.S. Choi, S.H. Moon, and J. Cheon, Nanoparticle assemblies as memristors. Nano Lett. 9, 2229 (2009).

    Article  CAS  Google Scholar 

  19. L. Yuan, S. Liu, W. Chen, F. Fan, and G. Liu, Organic memory and memristors: from mechanisms, materials to devices. Adv. Electron. Mater. 7, 2100432 (2021).

    Article  CAS  Google Scholar 

  20. T.J. Raeber, Z.C. Zhao, B.J. Murdoch, D.R. McKenzie, D.G. McCulloch, and J.G. Partridge, Resistive switching and transport characteristics of an all-carbon memristor. Carbon 136, 280 (2018).

    Article  CAS  Google Scholar 

  21. O.A. Ageev, Y.F. Blinov, O.I. Il’in, A.S. Kolomiitsev, B.G. Konoplev, M.V. Rubashkina, V.A. Smirnov, and A.A. Fedotov, Memristor effect on bundles of vertically aligned carbon nanotubes tested by scanning tunnel microscopy. Tech. Phys. 58, 1831 (2013).

    Article  CAS  Google Scholar 

  22. M.V. Ilina, O.I. Il’in, N.N. Rudyk, A.A. Konshin, and O.A. Ageev, The memristive behavior of non-uniform strained carbon nanotubes. Haнocиcтeмы Физикa, Xимия Maтeмaтикa 9, 76 (2018).

    CAS  Google Scholar 

  23. D.V. Gorodetskiy, A.V. Gusel'nikov, S.N. Shevchenko, M.A. Kanygin, A.V. Okotrub, and Y.V. Pershin, Memristive model of hysteretic field emission from carbon nanotube arrays. J. Nanophotonics 10, 012524 (2016).

    Article  Google Scholar 

  24. J.G. Min and W.J. Cho, Chitosan-based flexible memristors with embedded carbon nanotubes for neuromorphic electronics. Micromachines 12, 1259 (2021).

    Article  Google Scholar 

  25. Q. Lu, F. Sun, L. Liu, L. Li, M. Hao, Z. Wang, and T. Zhang, Bio-inspired flexible artificial synapses for pain perception and nerve injuries. Npj Flex. Electron. 4, 1 (2020).

    Article  Google Scholar 

  26. A. Radoi, M. Dragoman, and D. Dragoman, Memristor device based on carbon nanotubes decorated with gold nanoislands. Appl. Phys. Lett. 99, 093102 (2011).

    Article  Google Scholar 

  27. H. Suzuki, M. Kishibuchi, K. Shimogami, M. Maetani, K. Nasu, T. Nakagawa, Y. Tanaka, H. Inoue, and Y. Hayashi, Memristive behavior in one-dimensional hexagonal boron nitride/carbon nanotube heterostructure assemblies. ACS Appl. Electron. Mater. 3, 3555 (2021).

    Article  CAS  Google Scholar 

  28. M.V. Il’ina, O.I. Il’in, O.I. Osotova, S.A. Khubezhov, and O.A. Ageev, Memristive effect in nitrogen-doped carbon nanotubes. Nanobiotechnol. Rep. 16, 821 (2021).

    Article  Google Scholar 

  29. L. Wang, J. Yang, Y. Zhang, and D. Wen, Dual-tunable memristor based on carbon nanotubes and graphene quantum dots. Nanomaterials 11, 2043 (2021).

    Article  CAS  Google Scholar 

  30. S.Y. Min and W.J. Cho, Resistive switching characteristic improvement in a single-walled carbon nanotube random network embedded hydrogen Silsesquioxane thin films for flexible memristors. Int. J. Mol. Sci. 22, 3390 (2021).

    Article  CAS  Google Scholar 

  31. X. Zhao, J. Xu, D. Xie, Z. Whang, H. Xu, Y. Lin, J. Hu, and Y. Liu, Natural acidic polysaccharide-based memristors for transient electronics: highly controllable quantized conductance for integrated memory and nonvolatile logic applications. Adv. Mater. 33, 2104023 (2021).

    Article  CAS  Google Scholar 

  32. B. Sun, Y. Chen, M. Xiao, G. Zhou, S. Ranjan, W. Hou, X. Zhu, Y. Zhao, S.A.T. Redfern, and Y. Norman Zhou, A unified capacitive-coupled memristive model for the nonpinched current-voltage hysteresis loop. Nano Lett. 19, 6461 (2019).

    Article  CAS  Google Scholar 

  33. M. Solazzo, K. Krukiewicz, A. Zhussupbekova, K. Fleischer, M.J. Biggs, and M.G. Monaghan, PEDOT: PSS interfaces stabilised using a PEGylated crosslinker yield improved conductivity and biocompatibility. J. Mater. Chem. B 7, 4811 (2019).

    Article  CAS  Google Scholar 

  34. Y.S. Zhang, N.E. Courtier, Z. Zhang, K. Liu, J.J. Bailey, A.M. Boyce, G. Richardson, P.R. Shearing, E. Kendrick, and D.J.L. Brett, A review of lithium-ion battery electrode drying: mechanisms and metrology. Adv. Energy Mater. 12, 2102233 (2022).

    Article  CAS  Google Scholar 

  35. F.N.A.M. Sabri, M.R. Zakaria, and H.M. Akil, Dispersion and stability of multiwalled carbon nanotubes (MWCNTs) in different solvents. AIP Conf. Proc. 2267, 020043 (2020).

    Article  Google Scholar 

  36. B. Kılıçarslan, I. Bozyel, D. Gokcen, and C. Bayram, Sustainable macromolecular materials in flexible electronics. Macromol. Mater. Eng. 307, 2100978 (2022).

    Article  Google Scholar 

  37. H. Abunahla, Y. Halawani, A. Alazzam, and B. Mohammad, NeuroMem: analog graphene-based resistive memory for artificial neural networks. Sci. Rep. 10, 1 (2020).

    Article  Google Scholar 

  38. J. Hansson, A. Nylander, M. Flygare, K. Svensson, L. Ye, T. Nilsson, Y. Fu, and J. Liu, Effects of high temperature treatment of carbon nanotube arrays on graphite: increased crystallinity anchoring and inter-tube bonding. Nanotechnology 31, 455708 (2020).

    Article  CAS  Google Scholar 

  39. Q. Yang, L. Ma, S. Xiao, D. Zhang, A. Djoulde, M. Ye, Y. Lin, S. Geng, X. Li, T. Chen, and L. Sun, Electrical conductivity of multiwall carbon nanotube bundles contacting with metal electrodes by nano manipulators inside SEM. Nanomaterials 11, 1290 (2021).

    Article  CAS  Google Scholar 

  40. A.G.S. Filho, A. Jorio, G.G. Samsonidze, G. Dresselhaus, R. Saito, and M.S. Dresselhaus, Raman spectroscopy for probing chemically/physically induced phenomena in carbon nanotubes. Nanotechnology 14, 1130 (2003).

    Article  Google Scholar 

  41. M.S. Dresselhaus, G. Dresselhaus, A. Jorio, A.G.S. Filho, M.A. Pimenta, and R. Saito, Single nanotube Raman spectroscopy. Acc. Chem. Res. 35, 1070 (2002).

    Article  CAS  Google Scholar 

  42. G. Wu, H. Zheng, Y. Xing, C. Wang, X. Yuan, and X. Zhu, A Sensitive Electrochemical sensor for environmental toxicity monitoring based on tungsten disulfide nanosheets/hydroxylated carbon nanotubes nanocomposite. Chemosphere 286, 131602 (2022).

    Article  CAS  Google Scholar 

  43. S. Osswald, M. Havel, and Y. Gogotsi, Monitoring oxidation of multiwalled carbon nanotubes by Raman spectroscopy. J. Raman Spectrosc. 38, 728 (2007).

    Article  CAS  Google Scholar 

  44. T.Y. Chen, T.L. Lin, C.C. Chen, C.M. Chen, and C.F. Chen, Improved catalytic performance of Pt supported on multi-wall carbon nanotubes as cathode for direct methanol fuel cell applications prepared by dual-stepped surface thiolation processes. J. Chin. Chem. Soc. 56, 1236 (2009).

    Article  CAS  Google Scholar 

  45. R. Afrin, N.A. Shah, M. Abbas, M. Amin, and A.S. Bhatti, Design and analysis of functional multiwalled carbon nanotubes for infrared sensors. Sens. Actuator A Phys. 203, 142 (2013).

    Article  CAS  Google Scholar 

  46. T.D. Dongale, K.P. Patil, P.K. Gaikwad, and R.K. Kamat, Investigating conduction mechanism and frequency dependency of nanostructured memristor device. Mater. Sci. Semicond. Process. 38, 228 (2015).

    Article  CAS  Google Scholar 

  47. X. Liu, J.L. Spencer, A.B. Kaiser, and W.M. Arnold, Electric-field oriented carbon nanotubes in different dielectric solvents. Curr. Appl. Phys. 4, 125 (2004).

    Article  Google Scholar 

  48. M. Monti, M. Natali, L. Torre, and J.M. Kenny, The alignment of single walled carbon nanotubes in an epoxy resin by applying a DC electric field. Carbon 50, 2453 (2012).

    Article  CAS  Google Scholar 

  49. K. Bubke, H. Gnewuch, M. Hempstead, J. Hammer, and M.L.H. Green, Optical anisotropy of dispersed carbon nanotubes induced by an electric field. Appl. Phys. Lett. 71, 1906 (1997).

    Article  CAS  Google Scholar 

  50. C.A. Martin, J.K.W. Sandler, A.H. Windle, M.K. Schwarz, W. Bauhofer, K. Schulte, and M.S.P. Shaffer, Electric field-induced aligned multi-wall carbon nanotube networks in epoxy composites. Polymer 46, 877 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge National Nanotechnology Research Center (UNAM) at Bilkent University for SEM images and Raman spectroscopy. This study is a part of Yasemen Ince Keser's doctoral thesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dincer Gokcen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ince Keser, Y., Sekertekin, Y. & Gokcen, D. Capacitive Effects of Memristive Structure Composed of Multi-walled CNT and Sodium Alginate Under DC Offset. J. Electron. Mater. 52, 2012–2019 (2023). https://doi.org/10.1007/s11664-022-10165-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-10165-0

Keywords

Navigation