Skip to main content
Log in

Identification of proteins whose interaction with Na+,K+-ATPase is triggered by ouabain

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Prolonged exposure of different epithelial cells (canine renal epithelial cells (MDCK), vascular endothelial cells from porcine aorta (PAEC), human umbilical vein endothelial cells (HUVEC), cervical adenocarcinoma (HeLa), as well as epithelial cells from colon carcinoma (Caco-2)) with ouabain or with other cardiotonic steroids was shown earlier to result in the death of these cells. Intermediates in the cell death signal cascade remain unknown. In the present study, we used proteomics methods for identification of proteins whose interaction with Na+,K+-ATPase is triggered by ouabain. After exposure of Caco-2 human colorectal adenocarcinoma cells with 3 μM of ouabain for 3 h, the protein interacting in complex with Na+,K+-ATPase was coimmunoprecipitated using antibodies against the enzyme α1-subunit. Proteins of coimmunoprecipitates were separated by 2D electrophoresis in polyacrylamide gel. A number of proteins in the coimmunoprecipitates with molecular masses of 71-74, 46, 40-43, 38, and 33-35 kDa was revealed whose binding to Na+,K+-ATPase was activated by ouabain. Analyses conducted by mass spectroscopy allowed us to identify some of them, including seven signal proteins from superfamilies of glucocorticoid receptors, serine/threonine protein kinases, and protein phosphatases 2C, Src-, and Rho-GTPases. The possible participation of these proteins in activation of cell signaling terminated by cell death is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AKT:

protein kinase B

CAMTA1:

calmodulinbinding transcription activator 1

CG-1:

DNA-binding domain

CTS:

cardiotonic steroids

Erk:

extracellular signalregulated protein kinase

IP3R:

inositol-1,4,5-trisphosphate receptor

IQ:

calmodulin-binding motif

Jnk:

c-Jun kinase (stress-activated protein kinase)

MAPK:

mitogen-activated protein kinase

MEK:

protein kinase MAPK/Erk

pHi :

intracellular pH

PI3K:

inositol-3-phosphate kinase

Raf:

serine/threonine protein kinase

Rac and Rho:

small GTPbinding proteins

RIPA:

buffer for radioimmunoprecipitation

SGK2:

serum/glucocorticoid-regulated kinase 2

TIG:

transcription factor immunoglobulin/DNA-binding domain

References

  1. Schoner, W., and Scheiner-Bobis, G. (2008) Role of endogenous cardiotonic steroids in sodium homeostasis, Nephrol. Dial. Transpl., 23, 2723–2729.

    Article  CAS  Google Scholar 

  2. Orlov, S. N., Akimova, O. A., and Hamet, P. (2005) Cardiotonic steroids: novel mechanisms of [Na+]i-mediated and -independent signaling involved in the regulation of gene expression, proliferation and cell death, Curr. Hypertens. Rev., 1, 243–257.

    Article  CAS  Google Scholar 

  3. Bagrov, A. Y., Shapiro, J. I., and Fedorova, O. V. (2009) Endogenous cardiotonic steroids: physiology, pharmacology, and novel therapeutic targets, Pharmacol. Rev., 61, 9–38.

    CAS  PubMed  Google Scholar 

  4. Tian, J., and Xie, Z. (2008) The Na-K-ATPase and calcium-signaling microdomains, Physiology, 23, 205–211.

    Article  CAS  PubMed  Google Scholar 

  5. Aperia, A. (2007) New roles for an old Na,K-ATPase emerges as an interesting drug target, J. Intern. Med., 261, 44–52.

    Article  CAS  PubMed  Google Scholar 

  6. Orlov, S. N., and Hamet, P. (2015) Salt and gene expression: evidence for [Na+]i,[K+]i-mediated signaling pathways, Pfluger’s Arch., 467, 489–498.

    Article  CAS  Google Scholar 

  7. Pchejetski, D., Taurin, S., Der Sarkissian, S., Lopina, O. D., Pshezhetsky, A. V., Tremblay, J., De Blois, D., Hamet, P., and Orlov, S. N. (2003) Inhibition of Na+,K+-ATPase by ouabain triggers epithelial cell death independently of inversion of the [Na+]i/[K+]i ratio, Biochem. Biophys. Res. Commun., 301, 735–744.

    Article  CAS  PubMed  Google Scholar 

  8. Akimova, O. A., Bagrov, A. Y., Lopina, O. D., Kamernitsky, A. V., Tremblay, J., Hamet, P., and Orlov, S. N. (2005) Cardiotonic steroids differentially affect intracellular Na+ and [Na+]i/[K+]i-independent signaling in C7-MDCK cells, J. Biol. Chem., 280, 832–839.

    Article  CAS  PubMed  Google Scholar 

  9. Boehning, D., Patterson, R. L., Sedaghat, L., Glebova, N. O., Kurosaki, T., and Snyder, S. H. (2003) Cytochrome c binds to inositol(1,4,5)triphosphate receptors, amplifying calcium-dependent apoptosis, Nature Cell Biol., 5, 10511061.

    Google Scholar 

  10. Akimova, O. A., Tverskoi, A. M., Smolyaninova, L. V., Mongin, A. A., Lopina, O. D., La, J., Dulin, N. O., and Orlov, S. N. (2015) Critical role of the a1-Na+,K+-ATPase subunit in insensitivity of rodent cells to cytotoxic action of ouabain, Apoptosis, 20, 1200–1210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Akimova, O. A., Lopina, O. D., Hamet, P., and Orlov, S. N. (2005) Search for intermediates of Na+,K+-ATPase-mediated [Na+]i/[K+]i-independent death signaling triggered by cardiotonic steroids, Pathophysiology, 12, 125–135.

    Article  CAS  PubMed  Google Scholar 

  12. Akimova, O. A., Hamet, P., and Orlov, S. N. (2008) [Na+]i/[K+]i-independent death of ouabain-treated renal epithelial cells is not mediated by Na+,K+-ATPase internalization and de novo gene expression, Pfluger’s Arch., 455, 711–719.

    Article  CAS  Google Scholar 

  13. Akimova, O. A., Lopina, O. D., Rubtsov, A. M., Gekle, M., Tremblay, J., Hamet, P., and Orlov, S. N. (2009) Death of ouabain-treated renal epithelial cells: evidence for p38 MAPK-mediated [Na+]i/[K+]i-independent signaling, Apoptosis, 14, 1266–1273.

    Article  CAS  PubMed  Google Scholar 

  14. Akimova, O. A., Pchejetski, D., Hamet, P., and Orlov, S. N. (2006) Modest intracellular acidification suppresses death signaling in ouabain-treated cells, Pfluger’s Arch., 451, 569578.

    Google Scholar 

  15. Koob, R., Kraemer, D., Trippe, G., Aebi, U., and Drenckhahn, D. (1990) Association of kidney and parotid Na+,K+-ATPase with actin and analogs of spectrin and ankyrin, Eur. J. Cell Biol., 53, 93–100.

    CAS  PubMed  Google Scholar 

  16. Morrow, J. S., Cianci, C. D., Ardito, T., Mann, A. S., and Kashgarin, M. (1989) Ankyrin links fodrin to the a-subunit of Na,K-ATPase in Madin–Darby canine kidney cells and in intact renal tubule cells, J. Cell Biol., 108, 455–465.

    Article  CAS  PubMed  Google Scholar 

  17. Haas, M., Wang, H., Tian, J., and Xie, Z. (2002) Src-mediated inter-receptor cross-talk between the Na+,K+-ATPase and epidermal growth factor receptor relays the signal from ouabain to mitogen-activated protein kinases, J. Biol. Chem., 277, 18694–18702.

    Article  CAS  PubMed  Google Scholar 

  18. Liu, J., Kesiry, R., Periyasamy, S. M., Malhotra, D., Xie, Z., and Shapiro, J. I. (2004) Ouabain-induced endocytosis of plasmalemmal Na/K-ATPase in LLC-PK1 cells by clathrin-dependent mechanism, Kidney Int., 66, 227–241.

    Article  CAS  PubMed  Google Scholar 

  19. Wang, H., Haas, M., Liang, M., Cai, T., Tian, J., Li, S., and Xie, Z. (2004) Ouabain assembles signaling cascade through the caveolar Na+,K+-ATPase, J. Biol. Chem., 279, 17250–17259.

    Article  CAS  PubMed  Google Scholar 

  20. Miakawa-Naito, A., Uhlen, P., Lal, M., Aizman, O., Mikoshiba, K., Brismar, H., Zelenin, S., and Aperia, A. (2003) Cell signaling microdomain with Na,K-ATPase and inositol-1,4,5-triphosphate receptor generates calcium oscillations, J. Biol. Chem., 278, 50355–50361.

    Article  Google Scholar 

  21. Chibalin, A. V., Zierath, J. R., Katz, A. I., Berggren, P. O., and Bertorello, A. M. (1998) Phosphatidylinositol 3-kinasemediated endocytosis of renal Na+,K+-ATPase a-subunit in response to dopamine, Mol. Biol. Cell, 9, 1209–1220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Klimanova, E. A., Petrushenko, I. Y., Mitkevich, V. A., Anashkina, A. A., Orlov, S. N., Makarov, A. A., and Lopina, O. D. (2015) Binding of ouabain and marinobufagenin leads to different structural changes in Na,K-ATPase and depends on the enzyme conformation, FEBS Lett., 589, 2668–2674.

    Article  CAS  PubMed  Google Scholar 

  23. Shevchenko, A., Wilm, M., Vorm, O., and Mann, M. (1996) Mass spectrometric sequencing of proteins silverstained polyacrylamide gels, Anal. Chem., 68, 850–858.

    Article  CAS  PubMed  Google Scholar 

  24. Wilm, M., Shevchenko, A., Houthaeve, T., Breit, S., Schweigerer, L., Fotsis, T., and Mann, M. (1996) Femtomole sequencing of proteins from polyacrylamide gels by nano-electrospray mass spectrometry, Nature, 379, 466–469.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang, Z., Devarajan, P., Dorfman, A. L., and Morrow, J. S. (1998) Structure of the ankyrin-binding domain of aNa-K-ATPase, J. Biol. Chem., 273, 18681–18684.

    Article  CAS  PubMed  Google Scholar 

  26. Devarajan, P., Scaramuzzino, D. A., and Morrow, J. S. (1994) Ankyrin binds to two distinct cytoplasmic domains of Na,K-ATPase a-subunit, Proc. Natl. Acad. Sci. USA, 91, 2965–2969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu, X., Spicarova, X., Rydholm, S., Li, J., Brismar, H., and Aperia, A. (2008) Ankyrin B modulates the function of Na,K-ATPase/inositol-1,4,5-triphosphate receptor signaling microdomain, J. Biol. Chem., 283, 11461–11468.

    Article  CAS  PubMed  Google Scholar 

  28. Muller, C. W., Rey, F. A., Sodeoka, M., Verdine, G. L., and Harrison, S. C. (1995) Structure of the NF-?B p50 homodimer bound to DNA, Nature, 373, 311–317.

    Article  CAS  PubMed  Google Scholar 

  29. Hagman, J., Gutch, M. J., Lin, H., and Grosschedl, R. (1995) FBF contains a novel zinc coordination motif and multiple dimerization and transcriptional activation domains, EMBO J., 14, 2907–2916.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Bork, P., Doerks, T., Springer, T. A., and Snel, B. (1999) Domains in plexins: links to integrins and transcription factors, Trends Biochem. Sci., 24, 261–263.

    Article  CAS  PubMed  Google Scholar 

  31. Bouche, N., Scharlat, A., Snedded, W., Bouchez, D., and Fromm, H. (2002) A novel family of calmodulin-binding transcription activators in multicellular organisms, J. Biol. Chem., 277, 21851–21861.

    Article  CAS  PubMed  Google Scholar 

  32. Koltsova, S. V., Trushina, Y., Haloui, M., Akimova, O. A., Tremblay, J., Hamet, P., and Orlov, S. N. (2012) Ubiquitous [Na+]i/[K+]i-sensitive transcriptome in mammalian cells: evidence for [Ca2+]i-independent excitation–transcription coupling, PLoS One, 7, e38032.

    Article  Google Scholar 

  33. Tian, J., Cai, T., Yuan, Z., Wang, H., Liu, L., Haas, M., Maksimova, E., Huang, X.-Y., and Xie, Z.-J. (2006) Binding of Src to Na+,K+-ATPase forms a functional signaling complex, Mol. Biol. Cell, 17, 317–326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yuan, Z., Cai, T., Tian, J., Ivanov, A. V., Giovannucci, D. R., and Xie, Z. (2005) Na/K-ATPase tethers phospholipase C and IP3 receptor into a calcium-regulatory complex, Mol. Biol. Cell, 16, 4034–4045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ayoub, E., Hall, A., Scott, A. M., Chagnon, M. J., Miquel, G., Halle, M., Noda, M., Bikfalvi, A., and Tremblay, M. L. (2013) Regulation of the Src kinase-associated phosphoprotein 55 homologue by the protein tyrosine phosphatase PTR-PEST in the control cell motility, J. Biol. Chem., 288, 25739–25748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Akimova, O. A., Lopina, O. D., Tremblay, J., Hamet, P., and Orlov, S. N. (2008) Altered phosphorylation of RRXS*/T* motif in ouabain-treated renal epithelial cells is not mediated by inversion of the [Na+]i/[K+]i ratio, Cell. Physiol. Biochem., 21, 315–324.

    Article  CAS  PubMed  Google Scholar 

  37. Peterson, R. T., and Schreiber, S. L. (1999) Kinase phosphorylation: keeping it all in the family, Curr. Biol., 9, R521–R524.

    Article  CAS  PubMed  Google Scholar 

  38. Lang, F., and Cohen, P. (2001) Regulation and physiological roles of serumand glucocorticoid-induced protein kinases isoforms, Sci. STKE, 18, RE17.

    Google Scholar 

  39. Vyas, S., Rodrigues, A. J., Silva, J. M., Tronche, F., Almeida, O. F., Sousa, N., and Sotiropoulos, I. (2016) Chronic stress and glucocorticoids: from neuronal plasticity to neurodegeneration, Neural Plast., 2016, 6391686.

    Google Scholar 

  40. Matthews, L., Berry, A., Ohanian, V., Ohanian, J., Garside, H., and Ray, D. (2008) Caveolin mediates rapid glucocorticoid effects and couples glucocorticoid action to the antiproliferative program, Mol. Endocrinol., 22, 1320–1330.

    Article  CAS  PubMed  Google Scholar 

  41. Groeneweg, F. L., Karst, H., De Kloet, E. R., and Joels, M. (2012) Mineralocorticoid and glucocorticoid receptors at the neuronal membrane, regulators of nongenomic corticosteroid signaling, Mol. Cell. Endocrinol., 350, 299–309.

    Article  CAS  PubMed  Google Scholar 

  42. Samarasinghe, R. A., Witchell, S. F., and DeFranco, D. B. (2012) Cooperativity and complementarity: synergies in non-classic glucocorticoid signaling, Cell Cycle, 11, 28192827.

    Article  Google Scholar 

  43. Strehl, C., Gaber, T., Lowenberg, M., Hommes, D. W., Verhaar, A. P., Schellmann, S., Hahne, M., Fangradt, M., Wagegg, M., Hoff, P., Scheffold, A., Spies, C. M., Burmester, G. R., and Buttgereit, F. (2011) Origin and functional activity of the membrane-bound glucocorticoid receptor, Arthritis Rheum., 63, 3779–3788.

    Article  CAS  PubMed  Google Scholar 

  44. Lifschitz-Mercer, B., Sheinin, Y., Ben-Meir, D., BramanteSchreiber, L., Leider-Trejo, L., Karby, S., Smorodinsky, N. I., and Lavi, S. (2001) Protein phosphatase 2Ca expression in normal human tissues: an immunohistochemical study, Histochem. Cell Biol., 116, 31–39.

    CAS  PubMed  Google Scholar 

  45. Lammers, T., and Lavi, S. (2007) Role of type 2C protein phosphatases in growth regulation and in cellular stress signaling, Crit. Rev. Biochem. Mol. Biol., 42, 437–461.

    Article  CAS  PubMed  Google Scholar 

  46. Takekawa, M., Maeda, T., and Saito, H. (1998) Protein phosphatase 2Ca inhibits the human stress-responsive p38 and JNK MAPK pathways, EMBO J., 17, 4744–4752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Alves, D. S., Farr, G. A., Seo-Mayer, P., and Caplan, M. J. (2010) AS160 associates with the Na+,K+-ATPase and mediates the adenosine monophosphate-stimulated protein kinase-dependent regulation of sodium pump surface expression, Mol. Biol. Cell, 21, 4400–4408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Citi, S., Guerrera, D., Spadaro, D., and Shah, J. (2014) Epithelial junctions and Rho family GTPases: the zonular signalosome, Small GTPases, 5, 1–15.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Russian in Biokhimiya, 2016, Vol. 81, No. 9, pp. 1269-1279.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM16-094, August 15, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akimova, O.A., Kapilevich, L.V., Orlov, S.N. et al. Identification of proteins whose interaction with Na+,K+-ATPase is triggered by ouabain. Biochemistry Moscow 81, 1013–1022 (2016). https://doi.org/10.1134/S0006297916090108

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297916090108

Keywords

Navigation