Skip to main content
Log in

Death of ouabain-treated renal epithelial cells: evidence for p38 MAPK-mediated Na +i /K +i -independent signaling

  • original paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Recent studies demonstrate that cytotoxic actions of ouabain and other cardiotonic steroids (CTS) on renal epithelial cells (REC) are triggered by their interaction with the Na+,K+-ATPase α-subunit but not the result of inhibition of Na+,K+-ATPase-mediated ion fluxes and inversion of the [Na+]i/[K+]i ratio. This study examined the role of mitogen-activated protein kinases (MAPK) in the death of ouabain-treated REC. Exposure of C7-MDCK cells that resembled principal cells from canine kidney to 3 μM ouabain led to phosphorylation of p38 without significant impact on phosphorylation of ERK and JNK MAPK. Maximal increment of p38 phosphorylation was observed at 4 h followed by cell death at 12 h of ouabain addition. In contrast to ouabain, neither cell death nor p38 MAPK phosphorylation were affected by elevation of the [Na+]i/[K+]i ratio triggered by Na+,K+-ATPase inhibition in K+-free medium. p38 phosphorylation was noted in all other cell types exhibiting death in the presence of ouabain, such as intercalated cells from canine kidney and human colon rectal carcinoma cells. We did not observe any action of ouabain on p38 phosphorylation in ouabain-resistant smooth muscle cells from rat aorta and endothelial cells from human umbilical vein. Both p38 phosphorylation and death of ouabain-treated C7-MDCK cells were suppressed by p38 inhibitor SB 202190 but were resistant to its inactive analogue SB 202474. Our results demonstrate that death of CTS-treated REC is triggered by Na +i ,K +i —independent activation of p38 MAPK.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Scheiner-Bobis G (2002) The sodium pump. Its molecular properties and mechanisc of ion transport. Eur J Biochem 269:2424–2433

    Article  PubMed  CAS  Google Scholar 

  2. Contreras RG, Lazaro A, Mujica A, Gonzalez-Mariscal L, Valdes J, Garcia-Villegas MR, Cereijido M (1995) Ouabain resistance of the epithelial cell line (Ma104) is not due to lack of affinity of its pumps for the drug. J Membr Biol 145:295–300

    PubMed  CAS  Google Scholar 

  3. Contreras RG, Shoshani L, Flores-Maldonado C, Lazaro A, Cereijido M (1999) Relationship between Na+, K+-ATPase and cell attachment. J Cell Sci 112:4223–4232

    PubMed  CAS  Google Scholar 

  4. Falciola J, Volet B, Anner RM, Moosmayer M, Lacotte D, Anner BM (1994) Role of cell membrane Na, K-ATPase for survival of human lymphocytes in vivo. Biosci Rep 14:189–204

    Article  PubMed  CAS  Google Scholar 

  5. Orlov SN, Thorin-Trescases N, Kotelevtsev SV, Tremblay J, Hamet P (1999) Inversion of the intracellular Na+/K+ ratio blocks apoptosis in vascular smooth muscle at a site upstream of caspase-3. J Biol Chem 274:16545–16552

    Article  PubMed  CAS  Google Scholar 

  6. Orlov SN, Taurin S, Tremblay J, Hamet P (2001) Inhibition of Na+, K+ pump affects nucleic acid synthesis and smooth muscle cell proliferation via elevation of the [Na+]i/[K+]i ratio: possible implication in vascular remodeling. J Hypertens 19:1559–1565

    Article  PubMed  CAS  Google Scholar 

  7. Akimova OA, Mongin AA, Hamet P, Orlov SN (2006) The rapid decline of MTT reduction is not a marker of death signaling in ouabain-treated cells. Cell Mol Biol 52(8):71–77

    PubMed  CAS  Google Scholar 

  8. Ledbetter ML, Young GJ, Wright ER (1986) Cooperation between epithelial cells demonstrated by potassium transfer. Am J Physiol 250:C306–C313

    PubMed  CAS  Google Scholar 

  9. Bolivar JJ, Lazaro A, Fernandez S, Stefani E, Pena-Cruz V, Lechene C, Cereijido M (1987) Rescue of a wild-type MDCK cell by a ouabain-resistant mutant. Am J Physiol 253:C151–C161

    PubMed  CAS  Google Scholar 

  10. Pchejetski D, Taurin S, der Sarkissian S, Lopina OD, Pshezhetsky AV, Tremblay J, DeBlois D, Hamet P, Orlov SN (2003) Inhibition of Na+, K+-ATPase by ouabain triggers epithelial cell death independently of inversion of the [Na+]i/[K+]i ratio. Biochem Biophys Res Commun 301:735–744

    Article  PubMed  CAS  Google Scholar 

  11. Contreras RG, Flores-Maldonado C, Lazaro A, Shoshani L, Flores-Benitez D, Larre I, Cereijido M (2004) Ouabain binding to Na +, K+-ATPase relaxes cell attachment and sends a specific signal (NACos) to the nucleus. J Membr Biol 198:147–158

    Article  PubMed  CAS  Google Scholar 

  12. Akimova OA, Bagrov AY, Lopina OD, Kamernitsky AV, Tremblay J, Hamet P, Orlov SN (2005) Cardiotonic steroids differentially affect intracellular Na+ and [Na+]i/[K+]i-independent signaling in C7-MDCK cells. J Biol Chem 280:832–839

    PubMed  CAS  Google Scholar 

  13. Orlov SN, Akimova OA, Hamet P (2005) Cardiotonic steroids: novel mechanisms of Na +i -mediated and -independent signaling involved in the regulation of gene expression, proliferation and cell death. Curr Hypertens Rev 1(3):243–257

    Article  CAS  Google Scholar 

  14. Schoner W (2002) Endogenous cardiac glycosides, a new class of steroid hormones. Eur J Biochem 269:2440–2448

    Article  PubMed  CAS  Google Scholar 

  15. Xie Z (2003) Molecular mechanisms of Na/K-ATPase-mediated signal transduction. Ann N Y Acad Sci 986:497–503

    Article  PubMed  CAS  Google Scholar 

  16. Akimova OA, Lopina OD, Hamet P, Orlov SN (2005) Search for intermediates of Na+, K+-ATPase-mediated [Na+]i/[K+]i-independent death signaling triggered by cardiotonic steroids. Pathophysiology 12:125–135

    Article  PubMed  CAS  Google Scholar 

  17. Villunger A, O’Reilly LA, Holler N, Adams J, Strasser A (2000) Fas-ligand, Bcl-2, granulocyte colony-stimulating factor, and p38 mitogen-activated protein kinase: regulators of distinct cell death and survival pathways in granulocytes. J Exp Med 192:647–658

    Article  PubMed  CAS  Google Scholar 

  18. Thornton TM, Rincon M (2009) Non-classical p38 MAP kinase functions: cell cycle checkpoints and survival. Int J Biol Sci 5:44–51

    PubMed  CAS  Google Scholar 

  19. Rodrigues-Mascarenhas S, Silva Da, de Olivera A, Amoedo ND, Affonso-Mitidieri OR, Rumjamek FD, Rumjanek VM (2009) Modulation of the immune system by ouabain. Ann NY Acad Sci 1153:153–163

    Article  PubMed  CAS  Google Scholar 

  20. Gekle M, Wunsch S, Oberleithner H, Silbernagl S (1994) Characterization of two MDCK-cell subtypes as a model system to study principal cell and intercalated cell properties. Pflugers Archiv 428:157–162

    Article  PubMed  CAS  Google Scholar 

  21. Haloui M, Taurin S, Akimova OA, Guo D-F, Tremblay J, Dulin NO, Hamet P, Orlov SN (2007) Na +i -induced c-Fos expression is not mediated by activation of the 5′-promoter containing known transcriptional elements. FEBS J 274:3257–3267

    Article  Google Scholar 

  22. Hartee EI (1972) Determination of protein content: a modification of the Lowry methods that gives a linear photometric response. Anal Biochem 48:422–427

    Article  Google Scholar 

  23. Orlov SN, Thorin-Trescases N, Dulin NO, Dam T-V, Fortuno MA, Tremblay J, Hamet P (1999) Activation of cAMP signaling transiently inhibits apoptosis in vascular smooth muscle cells in a site upstream of caspase 3. Cell Death Differ 6:661–672

    Article  PubMed  CAS  Google Scholar 

  24. Dmitrieva RI, Doris PA (2004) Ouabain is a potent promoter of growth and activator of ERK1/2 in ouabain-resistant rat renal epithelial cells. J Biol Chem 278:28160–28166

    Article  Google Scholar 

  25. Aydemir-Koksoy A, Abramowitz J, Allen JC (2001) Ouabain-induced signaling and vascular smooth muscle cell proliferation. J Biol Chem 276:46605–46611

    Article  PubMed  CAS  Google Scholar 

  26. Chueh S-C, Guh J-H, Chen J, Lai M–K, Teng C-M (2001) Dual effect of ouabain on the regulation of proliferation and apoptosis in human prostatic smooth muscle cells. J Urol 166:347–353

    Article  PubMed  CAS  Google Scholar 

  27. Kometiani P, Li J, Gnudi L, Kahn BB, Askari A, Xie Z (1998) Multiple signal transduction pathways link Na+/K+-ATPase to growth-related genes in cardiac myocytes: the roles of ras and mitogen-activated protein kinases. J Biol Chem 273:15249–15256

    Article  PubMed  CAS  Google Scholar 

  28. Davies SP, Reddy H, Caivano M, Cohen P (2000) Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J 351:95–105

    Article  PubMed  CAS  Google Scholar 

  29. Kanhaanranta H, De Souza PM, Barnes PJ, Salmon M, Giembycz MA, Lindsay MA (1999) SB 203580, an inhibitor of p38 mitogen-activated protein kinase, enhances constitutive apoptosis of cytokine-deproved human eosinophils. J Pharmacol Exp Ther 290:621–628

    Google Scholar 

  30. Nemoto S, Xiang J, Huang S, Lin A (1998) Induction of apoptosis by SB 202190 through inhibition of p38beta mitogen-activated protein kinase. J Biol Chem 273:16415–16420

    Article  PubMed  CAS  Google Scholar 

  31. Zechner D, Craig R, Hanford DS, McDonough PM, Sabbandini RA, Glembotski CC (1998) MKK6 activates myocardial cell NF-kappaB and inhibits apoptosis in p38 mitogen-activated protein kinase-dependent manner. J Biol Chem 273:8232–8239

    Article  PubMed  CAS  Google Scholar 

  32. Alvardo-Kristensson M, Melander F, Leadersson K, Ronnstrand L, Wernstedt C, Andersson T (2004) p38-MAPK signals survival by phosphorylation of caspase-8 and caspase-3 in human neutrophils. J Exp Med 199:449–458

    Article  Google Scholar 

  33. Valente RC, Nascimento CR, Araujo EG, Rumjanek VM (2009) mCD14 expresion in human monocytes is downregulated by ouabain via transactivation of epithelial growth factor receptor and activation of p38 mitogen-activated protein kinase. Neuroimmunomodulation 16:228–236

    Article  PubMed  CAS  Google Scholar 

  34. Ichijo H, Nishida E, Irie K, ten Dijke P, Saitoh M, Moriguchi T, Takagi M, Matsumoto K, Miyazono K, Gotoh Y (1997) Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science 275:90–94

    Article  PubMed  CAS  Google Scholar 

  35. Noguchi T, Ishii K, Fukutomi H, Naguro I, Matsuzawa A, Takeda K, Ichijo H (2008) Requirement of reactive oxygen species-dependent activation of ASK1–p38 MAPK pathway for extracellular ATP-induced apoptosis in macrophage. J Biol Chem 283:7657–7665

    Article  PubMed  CAS  Google Scholar 

  36. Kyriakis JM, Avruch J (2001) Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev 81:807–869

    PubMed  CAS  Google Scholar 

  37. Pearson G, Robinson F, Beers GT, Xu BE, Karandikar M, Berman K, Cobb MH (2001) Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocrin Rev 22:153–183

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Canadian Institutes of Health Research (MOP-81392) and the Heart and Stroke Foundation of Canada. Olga Akimova is a recipient of a fellowship from the Kidney Foundation of Canada. The editorial help of Robert R. Gorman is appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga A. Akimova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akimova, O.A., Lopina, O.D., Rubtsov, A.M. et al. Death of ouabain-treated renal epithelial cells: evidence for p38 MAPK-mediated Na +i /K +i -independent signaling. Apoptosis 14, 1266–1273 (2009). https://doi.org/10.1007/s10495-009-0404-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-009-0404-0

Keywords

Navigation