Skip to main content

Advertisement

Log in

A Review on Caspases: Key Regulators of Biological Activities and Apoptosis

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Caspases are proteolytic enzymes that belong to the cysteine protease family and play a crucial role in homeostasis and programmed cell death. Caspases have been broadly classified by their known roles in apoptosis (caspase-3, caspase-6, caspase-7, caspase-8, and caspase-9 in mammals) and in inflammation (caspase-1, caspase-4, caspase-5, and caspase-12 in humans, and caspase-1, caspase-11, and caspase-12 in mice). Caspases involved in apoptosis have been subclassified by their mechanism of action as either initiator caspases (caspase-8 and caspase-9) or executioner caspases (caspase-3, caspase-6, and caspase-7). Caspases that participate in apoptosis are inhibited by proteins known as inhibitors of apoptosis (IAPs). In addition to apoptosis, caspases play a role in necroptosis, pyroptosis, and autophagy, which are non-apoptotic cell death processes. Dysregulation of caspases features prominently in many human diseases, including cancer, autoimmunity, and neurodegenerative disorders, and increasing evidence shows that altering caspase activity can confer therapeutic benefits. This review covers the different types of caspases, their functions, and their physiological and biological activities and roles in different organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

All data generated or analyzed during this review are included in this review article.

Abbreviations

ALPS:

Autoimmune lymphoproliferative syndrome

AD:

Alzheimer’s disease

ADP-ribose:

Adenosine diphosphate-ribose

ALS:

Amyotrophic lateral sclerosis

APP:

Amyloid beta precursor protein

ARK5:

AMPK-related kinase 5

AMPK:

AMP-Activated protein kinase

APP-C31:

Amyloid beta-protein precursor C-terminal fragments of 31

Ac-YVAD-CMK, AIM-2:

Absent in melanoma 2

AIP-1:

Actin-interacting protein-1

Akt pathway:

Protein kinase B or serine/threonine kinase1

BID:

BH3 interacting-domain death agonist

Bap31 :

B-cell receptor associated protein-31

CED:

Cell death abnormality protein

CED-3:

Cell death abnormality protein-3

CED-4:

Cell death abnormality protein-4

CED-9:

Cell death abnormality protein-9

CEDS:

Caspase eight deficiency stage

CARD:

Caspase recruitment domain

CD95:

Cluster of differentiation 95

CPP-32:

Putative cysteine protease 32

COS:

CV-1 in Origin with SV40 genes (African Green Monkey)

C-JUN-N:

C-JUN N-terminal kinase

Crm A:

Cytokine response modifier A

CNS:

Central nervous system

CCoV-II:

Canine coronavirus-II

CCoV:

Canine coronavirus

CP:

Cyclophosphamide

CASc :

Cascade complex

DNA:

Deoxyribonucleic acid

dATP:

Deoxyadenosine triphosphate

DICA:

2-(2–4-Dichlorophenoxy)-N-(2-mercapto ethyl O acetamide)

D3 :

Vitamin-D/cholecalciferol

DED:

Death effector domain

EAAT2:

Excitatory amino acid transporter-2

EGL-1:

Egg-laying defective protein-1

ER:

Endoplasmic reticulum

ERICE:

Evolutionary related interleukin-1β converting enzyme

Fas:

Fs-7-associated surface antigen

FasL:

Fas- ligand

FICA:

5-Fluro-1H-indole-2 carboxylic acid(2-mercapto-ethyl-amide)

GSDMD:

Gasdermin-D

GSDMD-NT:

Gasdermin-D-N-terminal domain

HCov-OC43:

Human coronavirus OC43

HTT:

Hereditary hemorrhagic telangiectasia

IAP:

Inhibitor of apoptosis

IL-1:

Interleukin-1

ICE:

IL-1 converting enzyme

IFI16:

Interoferon–gamma-inducible protein-1

IRE1α:

Inositol-requiring enzyme/inositol-requiring transmembrane kinase/endoribonuclease 1 alpha

JNK:

C-JUN-N–terminal kinase

JIK:

JNK-inhibitory kinase

LRRs :

Leucine-rich repeats

MC159 :

FLICE inhibitory protein (Mollusccum contagiosum virus)

MAVS:

Mitochondrial antiviral-signaling protein

MEKK1:

Mitogen-activated protein kinase kinase kinase inhibitor1

NLS:

N-terminal nuclear localization signals

NAFLD:

Non-alcoholic fatty liver disease

NUAK:

Member of AMPK (AMP-activated protein kinase)

NOD:

Nucleotide oligomerizatin domain

NLRs :

Nucleotide-binding oligomerization domain and leucine-rich repeat-containing receptors

NLRP-3:

NOD-LRR and pyrin domain containg protein-3

NAC:

N-acetyl-L-cysteine

NBA-CARD:

Nijmegan modification of Bethesda assay

NOD2:

Nucleotide-binding oligomerization domain containing protein-2

NRADD:

Neurotrophin receptor alike death domain protein

NF-kB:

Nuclear factor kappa light chain enhancer of activated b-cells

ORF-6:

Accessory protein 6/non-structural protein 6

ORF-3b:

Non-structural protein 3b/accessory protein 3b

Orf-3a:

Non-structural protein 3a/accessory protein 3a

ORF-7a:

Non-structural protein 7a/accessory protein 7a

ORF-4:

Non-structural protein 4/accessory protein 4

PRPA:

Poly-ADP ribose polymerase

PEDE:

Phosphodiesterase

PYD:

Pyrin domain

PARPs :

Poly(ADP-ribose) polymerase inhibitors

PD:

Parkinson’s disease

P21 :

Ras protein/cyclin-dependent kinase inhibitor 1

PRRs :

Pattern recognition receptors

RIG-1:

Retinoic acid-inducible gene 1

RT-PCR:

Reverse transcription polymerase chain reaction

RNA:

Ribonucleic acid

ROS:

Reactive oxygen species

siRNA:

Small interfering RNA

sf9:

Clonal isolate of Spodoptera frugiperda sf21 cells

SERPINB1:

Serpin family b member 1

ST14A:

Suppressor of tumorigenicity 14 protein homolog

SARS-CoV:

Severe acute respiratory syndrome-coronavirus

SAT:

Sulfate adenylyl transferase

SARSX4:

SARs coronavirus X4 like protein domain

SADS-CoV:

Swine acute diarrhea syndrome coronavirus

TLR-4:

Toll-like receptor-4

TLR3-TRIF:

Toll-like receptor-3-TRIF

TRIF:

TIR-domain-containing adaptor-inducing interferon-β

TRAF2:

Tumor necrosis factor receptor-associated factor-2

UPR:

Unfolded protein response

UVB:

Ultraviolet

XIAP:

X-linked inhibitor of apoptosis protein YAVD

AFC:

N-Acetyl-Tyr-Val-Ala-Asp-7-Amido-4-trifluro-methylcoumarin

References

  1. McIlwain DR, Berger T, Mak TW (2013) Caspase functions in cell death and disease. Cold Spring Harb Perspect Biol 5(4):a008656

    Article  PubMed  PubMed Central  Google Scholar 

  2. Galluzzi L, Lopez-Soto A, Kumar S, Kroemer G (2016) Caspases connect cell-death signaling to organismal homeostasis. Immunity 44(2):221–231

    Article  CAS  PubMed  Google Scholar 

  3. Cookson BT, Brennan MA (2001) Pro-inflammatory programmed cell death. Trends Microbiol 3(9):113–114

    Article  Google Scholar 

  4. Behzadi P, Ranjbar R (2015) Caspase and apoptosis. Cell 4(7):11–13

    Google Scholar 

  5. Dhani S, Zhao Y, Zhivotovsky B (2021) A long way to go: caspase inhibitors in clinical use. Cell Death Dis 12(10):949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kayagaki N, Warming S, Lamkanfi M, Walle LV, Louie S, Dong J, Newton K, Qu Y, Liu J, Heldens S, Zhang J (2011) Non-canonical inflammasome activation targets caspase-11. Nature 479(7371):117–121

    Article  CAS  PubMed  Google Scholar 

  7. Bergsbaken T, Cookson BT (2007) Macrophage activation redirects yersinia-infected host cell death from apoptosis to caspase-1-dependent pyroptosis. PLoS Pathog 3:e161

    Article  PubMed  PubMed Central  Google Scholar 

  8. Suzuki T, Franchi L, Toma C, Ashida H, Ogawa M, Yoshikawa Y, Mimuro H, Inohara N, Sasakawa C, Nunez G (2007) Differential regulation of caspase-1 activation, pyroptosis, and autophagy via Ipaf and ASC in Shigella infected macrophages. PLoS Pathog 3:e111

    Article  PubMed  PubMed Central  Google Scholar 

  9. Li H, Zhu H, Xu CJ, Yuan J (1998) Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94:491–501

    Article  CAS  PubMed  Google Scholar 

  10. Kang TB, Ben-Moshe T, Varfolomeev EE, Pewzner-Jung Y, Yogev N, Jurewicz A, Waisman A, Brenner O, Haffner R, Gustafsson E, Ramakrishnan P (2004) Caspase-8 serves both apoptotic and nonapoptotic roles. J Immunol 173(5):2976–2984

    Article  CAS  PubMed  Google Scholar 

  11. Salmena L, Lemmers B, Hakem A, Matysiak-Zablocki E, Murakami K, Au PB, Berry DM, Tamblyn L, Shehabeldin A, Migon E, Wakeham A (2003) Essential role for caspase 8 in T-cell homeostasis and T-cell-mediated immunity. Genes Dev 17(7):883–895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Salmena L, Hakem R (2005) Caspase-8 deficiency in T cells leads to a lethal lymphoinfiltrative immune disorder. J Exp Med 202(6):727–732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Okuyama R, Nguyen BC, Talora C, Ogawa E, di Vignano AT, Lioumi M, Chiorino G, Tagami H, Woo M, Dotto GP (2004) High commitment of embryonic keratinocytes to terminal differentiation through a Notch1-caspase 3 regulatory mechanism. Dev Cell 6(4):551–562

    Article  CAS  PubMed  Google Scholar 

  14. Holleman A, Boer ML, Kazemier KM, Beverloo HB, von Bergh AR, Janka-Schaub GE, Pieters R (2005) Decreased PARP and procaspase-2 protein levels are associated with cellular drug resistance in childhood acute lymphoblastic leukemia. Blood 106(5):1817–1823

    Article  CAS  PubMed  Google Scholar 

  15. Ho LH, Taylor R, Dorstyn L, Cakouros D, Bouillet P, Kumar S (2009) A tumor suppressor function for caspase-2. Proc Natl Acad Sci USA 106:5336–5341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kim MS, Chung NG, Yoo NJ, Lee SH (2011) Somatic mutation of proapoptotic caspase-2 gene is rare in acute leukemias and common solid cancers. Eur J Haematol 86:449–450

    Article  PubMed  Google Scholar 

  17. Xu HL, Xu WH, Cai Q, Feng M, Long J, Zheng W, Xiang YB, Shu XO (2009) Polymorphisms and haplotypes in the caspase-3, caspase-7, and caspase-8 genes and risk for endometrial cancer: a population-based, case-control study in a Chinese population. Cancer Epidemiol Biomarkers Prev 18(7):2114–2122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kim HS, Lee JW, Soung YH, Park WS, Kim SY, Lee JH, Park JY, Cho YG, Kim CJ, Jeong SW, Nam SW (2003) Inactivating mutations of caspase-8 gene in colorectal carcinomas. Gastroenterology 125(3):708–715

    Article  CAS  PubMed  Google Scholar 

  19. Krajewska M, Kim H, Shin E, Kennedy S, Duffy MJ, Wong YF, Marr D, Mikolajczyk J, Shabaik A, Meinhold-Heerlein I, Huang X (2005) Tumor-associated alterations in caspase-14 expression in epithelial malignancies. Clin Cancer Res 11(15):5462–5471

    Article  CAS  PubMed  Google Scholar 

  20. Wu M, Kodani I, Dickinson D, Huff F, Ogbureke KU, Qin H, Arun S, Dulebohn R, Al-Shabrawey M, Tawfik A, Prater S (2009) Exogenous expression of caspase-14 induces tumor suppression in human salivary cancer cells by inhibiting tumor vascularization. Anticancer Res 29(10):3811–3818

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Parsons MJ, McCormick L, Janke L, Howard A, Bouchier-Hayes L, Green DR (2013) Genetic deletion of caspase-2 accelerates MMTV/c-neu-driven mammary carcinogenesis in mice. Cell Death Differ 20:1174–1182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Stupack DG (2013) Caspase-8 as a therapeutic target in cancer. Cancer Lett 332:133–140

    Article  CAS  PubMed  Google Scholar 

  23. Jang JS, Kim KM, Choi JE, Cha SI, Kim CH, Lee WK, Kam S, Jung TH, Park JY (2008) Identification of polymorphisms in the Caspase-3 gene and their association with lung cancer risk. Mol Carcinog 47:383–390

    Article  CAS  PubMed  Google Scholar 

  24. Tiwari M, Sharma LK, Vanegas D, Callaway DA, Bai Y, Lechleiter JD, Herman B (2014) A nonapoptotic role for CASP2/caspase 2: modulation of autophagy. Autophagy 10(6):1054–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang Y, Padalecki SS, Chaudhuri AR, De Waal E, Goins BA, Grubbs B, Ikeno Y, Richardson A, Mundy GR, Herman B (2007) Caspase-2 deficiency enhances aging-related traits in mice. Mech Ageing Dev 128(2):213–221

    Article  CAS  PubMed  Google Scholar 

  26. Ellis HM, Horvitz HR (1986) Genetic control of programmed cell death in the nematode C. elegans. Cell 44(6):817–829

    Article  CAS  PubMed  Google Scholar 

  27. Shaham S (1998) Identification of multiple Caenorhabditis elegans caspases and their potential roles in proteolytic cascades. J Biol Chem 273:35109–35117

    Article  CAS  PubMed  Google Scholar 

  28. Li J, Yuan J (2008) Caspases in apoptosis and beyond. Oncogene 27(48):6194–6206

    Article  CAS  PubMed  Google Scholar 

  29. Yuan J, Shaham S, Ledoux S, Ellis HM, Horvitz HR (1993) The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell 75:641–652

    Article  CAS  PubMed  Google Scholar 

  30. Chinnaiyan AM, O’Rourke K, Lane BR, Dixit VM (1997) Interaction of CED-4 with CED-3 and CED-9: a molecular framework for cell death. Science 275:1122–1126

    Article  CAS  PubMed  Google Scholar 

  31. Parrish AB, Freel CD, Kornbluth S (2013) Cellular mechanisms controlling caspase activation and function. Cold Spring Harb Perspect Biol 5(6):a008672

    Article  PubMed  PubMed Central  Google Scholar 

  32. Shi L, Chen G, MacDonald G, Bergeron L, Li H, Miura M, Rotello RJ, Miller DK, Li P, Seshadri T, Yuan J (1996) Activation of an interleukin 1 converting enzyme-dependent apoptosis pathway by granzyme B. Proc Natl Acad Sci 93:11002–11007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kolodgie FD, Narula J, Burke AP, Haider N, Farb A, Hui-Liang Y, Smialek J, Virmani R (2000) Localization of apoptotic macrophages at the site of plaque rupture in sudden coronary death. Am J Pathol 157:1259–1268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Frantz S, Ducharme A, Sawyer D, Rohde LE, Kobzik L, Fukazawa R, Tracey D, Allen H, Lee RT, Kelly RA (2003) Targeted deletion of caspase-1 reduces early mortality and left ventricular dilatation following myocardial infarction. J Mol Cell Cardiol 35:685–694

    Article  CAS  PubMed  Google Scholar 

  35. Liu XH, Kwon D, Schielke GP, Yang GY, Silverstein FS, Barks JD (1999) Mice deficient in interleukin-1 converting enzyme are resistant to neonatal hypoxic-ischemic brain damage. J Cereb Blood Flow Metab 19:1099–1108

    Article  CAS  PubMed  Google Scholar 

  36. Yang GY, Schielke GP, Gong C, Mao Y, Ge HL, Liu XH, Betz AL (1999) Expression of tumor necrosis factor-a and intercellular adhesion molecule-1 after focal cerebral ischemia in interleukin-1b converting enzyme deficient mice. J Cereb Blood Flow Metab 19:1109–1117

    Article  CAS  PubMed  Google Scholar 

  37. Zhang WH, Wang X, Narayanan M, Zhang Y, Huo C, Reed JC, Friedlander RM (2003) Fundamental role of the Rip2/caspase-1 pathway in hypoxia and ischemia induced neuronal cell death. Proc Natl Acad Sci 100:16012–16017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Soung YH, Lee JW, Kim SY, Park WS, Nam SW, Lee JY, Yoo NJ, Lee SH (2004) Somatic mutations of CASP3 gene in human cancers. Hum Genet 115:112–115

    Article  CAS  PubMed  Google Scholar 

  39. Hosgood HD 3rd, Baris D, Zhang Y, Zhu Y, Zheng T, Yeager M, Welch R, Zahm S, Chanock S, Rothman N, Lan Q (2008) Caspase polymorphisms and genetic susceptibility to multiplemyeloma. Hematol Oncol 26:148–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lan Q, Zheng T, Chanock S, Zhang Y, Shen M, Wang SS, Berndt SI, Zahm SH, Holford TR, Leaderer B, Yeager M (2007) Genetic variants in caspase genes and susceptibility to non-Hodgkin lymphoma. Carcinogenesis 28:823–827

    Article  CAS  PubMed  Google Scholar 

  41. Lee JW, Kim MR, Soung YH, Nam SW, Kim SH, Lee JY, Yoo NJ, Lee SH (2006) Mutational analysis of the CASP6 gene in colorectal and gastric carcinomas. APMIS 114:646–650

    Article  CAS  PubMed  Google Scholar 

  42. Yoo NJ, Lee JW, Kim YJ, Soung YH, Kim SY, Nam SW, Park WS, Lee JY, Lee SH (2004) Loss of caspase-2, -6 and -7 expression in gastric cancers. APMIS 112:330–335

    Article  CAS  PubMed  Google Scholar 

  43. Soung YH, Lee JW, Kim HS, Park WS, Kim SY, Lee JH, Park JY, Cho YG, Kim CJ, Park YG, Nam SW (2003) Inactivating mutations of CASPASE-7 gene in human cancers. Oncogene 22:8048–8052

    Article  PubMed  Google Scholar 

  44. Lee WK, Kim JS, Kang HG, Cha SI, Kim DS, Hyun DS, Kam S, Kim CH, Jung TH, Park JY (2009) Polymorphisms in the Caspase7 gene and the risk of lung cancer. Lung Cancer 65:19–24

    Article  PubMed  Google Scholar 

  45. Varfolomeev EE, Schuchmann M, Luria V, Chiannilkulchai N, Beckmann JS, Mett IL, Rebrikov D, Brodianski VM, Kemper OC, Kollet O, Lapidot T (1998) Targeted disruption of the mouse Caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apo1, and DR3 and is lethal prenatally. Immunity 9:267–276

    Article  CAS  PubMed  Google Scholar 

  46. Yeh WC, Pompa JL, McCurrach ME, Shu HB, Elia AJ, Shahinian A, Ng M, Wakeham A, Khoo W, Mitchell K, El-Deiry WS (1998) FADD: Essential for embryo development and signaling from some, but not all, inducers of apoptosis. Science 279:1954–1958

    Article  CAS  PubMed  Google Scholar 

  47. Beisner DR, Ch’en IL, Kolla RV, Hoffmann A, Hedrick SM (2005) Cutting edge: Innate immunity conferred by B cells is regulated by caspase-8. J Immunol 175:3469–3473

    Article  CAS  PubMed  Google Scholar 

  48. Kovalenko A, Kim JC, Kang TB, Rajput A, Bogdanov K, Dittrich-Breiholz O, Kracht M, Brenner O, Wallach D (2009) Caspase-8 deficiency in epidermal keratinocytes triggers an inflammatory skin disease. J Exp Med 206:2161–2177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lee P, Lee DJ, Chan C, Chen SW, Ch’en I, Jamora C (2009) Dynamic expression of epidermal caspase 8 simulates a wound healing response. Nature 458:519–523

    Article  CAS  PubMed  Google Scholar 

  50. Li C, Lasse S, Lee P, Nakasaki M, Chen SW, Yamasaki K, Gallo RL, Jamora C (2010) Development of atopic dermatitis like skin disease from the chronic loss of epidermal caspase-8. Proc Natl Acad Sci 107:22249–22254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kaiser WJ, Upton JW, Long AB, Livingston-Rosanoff D, Daley-Bauer LP, Hakem R, Caspary T, Mocarski ES (2011) RIP3 mediates the embryonic lethality of caspase-8-deficient mice. Nature 471:368–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Oberst A, Dillon CP, Weinlich R, McCormick LL, Fitzgerald P, Pop C, Hakem R, Salvesen GS, Green DR (2011) Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis. Nature 471:363–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang H, Zhou X, McQuade T, Li J, Chan FK, Zhang J (2011) Functional complementation between FADD and RIP1 in embryos and lymphocytes. Nature 471:373–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kelly JL, Novak AJ, Fredericksen ZS, Liebow M, Ansell SM, Dogan A, Wang AH, Witzig TE, Call TG, Kay NE, Habermann TM (2010) Germline variation in apoptosis pathway genes and risk of non-Hodgkin’s lymphoma. Cancer Epidemiol Biomarkers Prev 19:2847–2858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lan Q, Morton LM, Armstrong B, Hartge P, Menashe I, Zheng T, Purdue MP, Cerhan JR, Zhang Y, Grulich A, Cozen W (2009) Genetic variation in caspase genes and risk of non-Hodgkin lymphoma: a pooled analysis of 3 population based case-control studies. Blood 114:264–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Park JY, Park JM, Jang JS, Choi JE, Kim KM, Cha SI, Kim CH, Kang YM, Lee WK, Kam S, Park RW, Kim IS, Lee JT, Jung TH (2006) Caspase 9 promoter polymorphisms and risk of primary lung cancer. Hum Mol Genet 15(12):1963–1971

    Article  CAS  PubMed  Google Scholar 

  57. Shin MS, Kim HS, Kang CS, Park WS, Kim SY, Lee SN, Lee JH, Park JY, Jang JJ, Kim CW, Kim SH (2002) Inactivating mutations of CASP10 gene in non-Hodgkin lymphomas. Blood 99:4094–4099

    Article  CAS  PubMed  Google Scholar 

  58. Kim MS, Oh JE, Min CK, Lee S, Chung NG, Yoo NJ, Lee SH (2009) Mutational analysis of CASP10 gene in acute leukaemias and multiplemyelomas. Pathology 41:484–487

    Article  CAS  PubMed  Google Scholar 

  59. Oh JE, Kim MS, Ahn CH, Kim SS, Han JY, Lee SH, Yoo NJ (2010) Mutational analysis of CASP10 gene in colon, breast, lung and hepatocellular carcinomas. Pathology 42:73–76

    Article  CAS  PubMed  Google Scholar 

  60. Park WS, Lee JH, Shin MS, Park JY, Kim HS, Kim YS, Lee SN, XiaoW PCH, Lee SH (2002) Inactivating mutations of the caspase-10 gene in gastric cancer. Oncogene 21:2919–2925

    Article  CAS  PubMed  Google Scholar 

  61. Li J, Brieher WM, Scimone ML, Kang SJ, Zhu H, Yin H, von Andrian UH, Mitchison T, Yuan J (2007) Caspase-11 regulates cell migration by promoting Aip1-Cofilin-mediated actin depolymerization. Nat Cell Biol 9:276–286

    Article  CAS  PubMed  Google Scholar 

  62. Wang S, Miura M, Jung YK, Zhu H, Li E, Yuan J (1998) Murine caspase-11, an ICE-interacting protease, is essential for the activation of ICE. Cell 92:501–509

    Article  CAS  PubMed  Google Scholar 

  63. Scott AM, Saleh M (2007) The inflammatory caspases: guardians against infections and sepsis. Cell Death Differ 14:23–31

    Article  CAS  PubMed  Google Scholar 

  64. Saleh M, Vaillancourt JP, Graham RK, Huyck M, Srinivasula SM, Alnemri ES, Steinberg MH, Nolan V, Baldwin CT, Hotchkiss RS, Buchman TG (2004) Differential modulation of endotoxin responsiveness by human caspase-12 polymorphisms. Nature 429:75–79

    Article  CAS  PubMed  Google Scholar 

  65. Denecker G, Ovaere P, Vandenabeele P, Declercq W (2008) Caspase-14 reveals its secrets. J Cell Biol 180:451–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Denecker G, Hoste E, Gilbert B, Hochepied T, Ovaere P, Lippens S, Van den Broecke C, Van Damme P, D’Herde K, Hachem JP, Borgonie G (2007) Caspase-14 protects against epidermal UVB photodamage and water loss. Nat Cell Biol 9:666–674

    Article  CAS  PubMed  Google Scholar 

  67. Salvesen GS, Dixit VM (1999) Caspase activation: the induced-proximity model. PNAS USA 96(20):10964–10967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Harvey NL, Kumar S (1998) Role of caspase in apoptosis. Adv Biochem Eng Biotechnol 62:107–128

    CAS  PubMed  Google Scholar 

  69. Troy CM, Jean YY (2013) Caspase-2, structural chemistry. In: Rawlings ND, Salvesen G (eds) Handbook of proteolytic enzymes, 3rd edn. Chapter 506, pp 2243–2247

  70. Guo Y, Srinivasula SM, Druilhe A, Fernandes-Alnemri T, Alnemri ES (2002) Caspase-2 induces apoptosis by releasing proapoptotic proteins from mitochondria. J Biol Chem 277(16):13430–13437

    Article  CAS  PubMed  Google Scholar 

  71. Bonzon C, Bouchier-Hayes L, Pagliari LJ, Green DR, Newmeyer DD (2006) Caspase-2–induced apoptosis requires bid cleavage: a physiological role for bid in heat shock–induced death. Mol Biol Cell 17(5):2150–2157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bouchier-Hayes L, Oberst A, McStay GP, Connell S, Tait SW, Dillon CP, Flanagan JM, Beere HM, Green DR (2009) Characterization of cytoplasmic caspase-2 activation by induced proximity. Mol Cell 35(6):830–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Tu S, McStay GP, Boucher LM, Mak T, Beere HM, Green DR (2006) In situ trapping of activated initiator caspases reveals a role for caspase-2 in heat shock-induced apoptosis. Nat Cell Biol 8(1):72–77

    Article  CAS  PubMed  Google Scholar 

  74. Machado MV, Michelotti GA, Jewell ML, Pereira TA, Xie G, Premont RT, Diehl AM (2016) Caspase-2 promotes obesity, the metabolic syndrome and nonalcoholic fatty liver disease. Cell Death Dis 7(2):e2096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Johnson ES, Lindblom KR, Robeson A, Stevens RD, Ilkayeva OR, Newgard CB, Kornbluth S, Andersen JL (2013) Metabolomic profiling reveals a role for caspase-2 in lipoapoptosis. J Biol Chem 288(20):14463–14475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bouchier-Hayes L (2010) The role of caspase-2 in stress-induced apoptosis. J Cell Mol Med 14(6A):1212–1224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Boatright KM, Salvesen GS (2003) Mechanisms of caspase activation. Curr Opin Cell Biol 15(6):725–731

    Article  CAS  PubMed  Google Scholar 

  78. Beaudouin J, Liesche C, Aschenbrenner S, Hörner M, Eils R (2013) Caspase-8 cleaves its substrates from the plasma membrane upon CD95-induced apoptosis. Cell Death Differ 20(4):599–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Chun HJ, Zheng L, Ahmad M, Wang J, Speirs CK, Siegel RM, Dale JK, Puck J, Davis J, Hall CG, Skoda-Smith S, Atkinson TP, Straus SE, Lenardo MJ (2002) Pleiotropic defects in lymphocyte activation caused by caspase-8 mutations lead to human immunodeficiency. Nature 419(6905):395–399

    Article  CAS  PubMed  Google Scholar 

  80. Frisch SM (2008) Caspase-8: fly or die. Cancer Res 68(12):4491–4493

    Article  CAS  PubMed  Google Scholar 

  81. Zhivotovsky B, Samali A, Gahm A, Orrenius S (1999) Caspases: their intracellular localization and translocation during apoptosis. Cell Death Differ 6:644–651

    Article  CAS  PubMed  Google Scholar 

  82. Kuida K (2000) Caspase-9. Int J Biochem Cell Biol 32(2):121–124

    Article  CAS  PubMed  Google Scholar 

  83. Hakem R, Hakem A, Duncan GS, Henderson JT, Woo M, Soengas MS, Elia A, de la Pompa JL, Kagi D, Khoo W, Potter J, Yoshida R, Kaufman SA, Lowe SW, Penninger JM, Mak TW (1998) Differential requirement for caspase 9 in apoptotic pathways in vivo. Cell 94(3):339–352

    Article  CAS  PubMed  Google Scholar 

  84. Kuwahara D, Tsutsumi K, Oyake D, Ohta T, Nishikawa H, Koizuka I (2003) Inhibition of caspase-9 activity and Apaf-1 expression in cisplatin-resistant head and neck squamous cell carcinoma cells. Auris Nasus Larynx 30:85S-88S

    Article  Google Scholar 

  85. Mueller T, Voigt W, Simon H, Fruehauf A, Bulankin A, Grothey A, Schmoll HJ (2003) Failure of activation of caspase-9 induces a higher threshold for apoptosis and cisplatin resistance in testicular cancer. Cancer Res 63:513–521

    CAS  PubMed  Google Scholar 

  86. Chee JL, Saidin S, Lane DP, Leong SM, Noll JE, Neilsen PM, Phua YT, Gabra H, Lim TM (2013) Wild-type and mutant p53 mediate cisplatin resistance through interaction and inhibition of active caspase-9. Cell Cycle 12:278–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tamaki H, Harashima N, Hiraki M, Arichi N, Nishimura N, Shiina H, Naora K, Harada M (2014) Bcl-2 family inhibition sensitizes human prostate cancer cells to docetaxel and promotes unexpected apoptosis under caspase-9 inhibition. Oncotarget 5:11399–11412

    Article  PubMed  PubMed Central  Google Scholar 

  88. Rohn TT, Rissman RA, Davis MC, Kim YE, Cotman CW, Head E (2002) Caspase-9 activation and caspase cleavage of tau in the Alzheimer’s disease brain. Neurobiol Dis 11(2):341–354

    Article  CAS  PubMed  Google Scholar 

  89. Fernandes-Alnemri T, Armstrong RC, Krebs J, Srinivasula SM, Wang L, Bullrich F, Fritz LC, Trapani JA, Tomaselli KJ, Litwack G, Alnemri ES (1996) In vitro activation of CPP32 and Mch3 by Mch4, a novel human apoptotic cysteine protease containing two FADD-like domains. PNAS USA 93(15):7464–7469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wachmann K, Pop C, van Raam BJ, Drag M, Mace PD, Snipas SJ, Zmasek C, Schwarzenbacher R, Salvesen GS, Riedl SJ (2010) Activation and specificity of human caspase-10. Biochemistry 49(38):8307–8315

    Article  CAS  PubMed  Google Scholar 

  91. Wang J, Chun HJ, Wong W, Spencer DM, Lenardo MJ (2001) Caspase-10 is an initiator caspase in death receptor signaling. PNAS USA 98(24):13884–13888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Nicholson DW, Thornberry NA (1997) Caspases: killer proteases. Trends Biochem Sci 22:299–306

    Article  CAS  PubMed  Google Scholar 

  93. Benchoua A, Guégan C, Couriaud C, Hosseini H, Sampaı̈o N, Morin D, Onténiente B (2001) Specific caspase pathways are activated in the two stages of cerebral infarction. J Neurosci 21(18):7127–7134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. O’Donovan N, Crown J, Stunell H, Hill AD, McDermott E, O’Higgins N, Duffy MJ (2003) Caspase 3 in breast cancer. Clin Cancer Res 9(2):738–742

    CAS  PubMed  Google Scholar 

  95. Khan S, Ahmed K, Alshammari EMA, Adnan M, Baig MH, Lohani M, Haque S (2015) Implication of caspase- 3 as a common therapeutic target for multi neurodegenerative disorders and its inhibition using nonpeptidyl natural compounds. Biomed Res Int 2015:1–9

    Google Scholar 

  96. Kanazawa I (2001) How do neurons die in neurodegenerative diseases? Trends Mol Med 7(8):339–344

    Article  CAS  PubMed  Google Scholar 

  97. Li M, Ona VO, Guégan C, Chen M, Jackson-Lewis V, Andrews LJ, Olszewski AJ, Stieg PE, Lee JP, Przedborski S, Friedlander RM (2000) Functional role of caspase-1 and caspase-3 in an ALS transgenic mouse model. Science 288(5464):335–339

    Article  CAS  PubMed  Google Scholar 

  98. Martin LJ, Price AC, Kaiser A, Shaikh AY, Liu Z (2000) Mechanisms for neuronal degeneration in amyotrophic lateral sclerosis and in models of motor neuron death (review). Int J Mol Med 5(1):3–13

    CAS  PubMed  Google Scholar 

  99. Boston-Howes W, Gibb SL, Williams EO, Pasinelli P, Brown RH, Trotti D (2006) Caspase-3 cleaves and inactivates the glutamate transporter EAAT2. J Biol Chem 281(20):14076–14084

    Article  CAS  PubMed  Google Scholar 

  100. Hartmann A, Hunot S, Michel PP, Muriel MP, Vyas S, Faucheux BA, Mouatt-Prigent A, Turmel H, Srinivasan A, Ruberg M, Evan GI (2000) Caspase-3: a vulnerability factor and final effector in apoptotic death of dopaminergic neurons in Parkinson’s disease. Proc Natl Acad Sci 97(6):2875–2880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Tiso N, Pallavicini A, Muraro T, Zimbello R, Apolloni E, Valle G, Lanfranchi G, Danieli GA (1996) Chromosomal localization of the human genes, CPP32, Mch2, Mch3, and Ich-1, involved in cellular apoptosis. Biochem Biophys Res Commun 225(3):983–989

    Article  CAS  PubMed  Google Scholar 

  102. Wang XJ, CaO Q, Liu X, Wang KT, Mi W, Zhang Y, Li LF, LeBlanc AC, Su XD (2010) Crystal structures of human caspase6 reveal a new mechanism for intramolecular cleavage self-activation. EMBO Rep 11(11):841–847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Graham RK, Ehrnhoefer DE, Hayden MR (2011) Caspase-6 and neurodegeneration. Trends Neurosci 34(12):646–656

    Article  CAS  PubMed  Google Scholar 

  104. Bagbay KB, Hardy JA (2017) Multiple proteolytic events in caspase-6 self- activation impact conformations of discreate structural regions. PANS 114(38):E7977–E7986

    Google Scholar 

  105. Velazquez-Delgado EM, Hardy JA (2012) Phosphorylation regulates assembly of the caspase-6 substrate-binding groove. Structure 20(4):742–751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Suzuki A, Kusakai GI, Kishimoto A, Shimojo Y, Miyamoto S, Ogura T, Ochiai A, Esumi H (2004) Regulation of caspase-6 and FLIP by the AMPK family member ARK5. Oncogene 23(42):7067–7075

    Article  CAS  PubMed  Google Scholar 

  107. Wang XJ, Cao Q, Zhang Y, Su XD (2015) Activation and regulation caspase-6 and its role in neurodegenerative disease. Annu Rev pharmacol Toxicol 55:553–572

    Article  CAS  PubMed  Google Scholar 

  108. Novak MJ, Tabrizi SJ (2010) Huntington’s disease. BMJ 340:c3109

    Article  PubMed  Google Scholar 

  109. The Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72:971–983

    Article  Google Scholar 

  110. Graham RK, Deng Y, Slow EJ, Haigh B, Bissada N, Lu G, Pearson J, Shehadeh J, Bertram L, Murphy Z, Warby SC (2006) Cleavage at the caspase-6 site is required for neuronal dysfunction and degeneration due to mutant huntingtin. Cell 125(6):1179–1191

    Article  CAS  PubMed  Google Scholar 

  111. Wellington CL, Ellerby L, Savill J, Roy S, Leavitt B, Cattaneo E, Hackam A, Sharp A, Thornberry N, Nicholson DW, Bredesen DE (2000) Inhibiting caspase cleavage of huntingtin reduces toxicity and aggregate formation in neuronal and nonneuronal cells. J Biol Chem 275(26):19831–19838

    Article  CAS  PubMed  Google Scholar 

  112. Mangiarini L, Sathasivam K, Seller M, Cozens B, Harper A, Hetherington C, Lawton M, Trottier Y, Lehrach H, Davies SW, Bates GP (1996) Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87(3):493–506

    Article  CAS  PubMed  Google Scholar 

  113. Hackam AS, Singaraja R, Wellington CL, Metzler M, McCutcheon K, Zhang T, Kalchman M, Hayden MR (1998) The influence of huntingtin protein size on nuclear localization and cellular toxicity. J Cell Biol 141(5):1097–1105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Wellington CL, Ellerby LM, Gutekunst CA, Rogers D, Warby S, Graham RK, Loubser O, van Raamsdonk J, Yang YZ, Gafni J, Bredesen D (2002) Caspase cleavage of mutant huntingtin precedes neurodegeneration in Huntington’s disease. J Neurosci 22(18):7862–7872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Graham RK, Deng Y, Carroll J, Vaid K, Cowan C, Pouladi MA, Metzler M, Bissada N, Wang L, Faull RL, Gray M (2010) Cleavage at the 586 amino acid caspase-6 site in mutant huntingtin influences caspase-6 activation in vivo. J Neurosci 30(45):15019–15029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Tanzi RE, Bertram L (2005) Twenty years of the Alzheimer’s disease amyloid hypothesis: a genetic perspective. Cell 120:545–555

    Article  CAS  PubMed  Google Scholar 

  117. Goedert M, Spillantini MG (2006) A century of Alzheimer’s disease. Science 314:777–781

    Article  CAS  PubMed  Google Scholar 

  118. Guo H, Albrecht S, Bourdeau M, Petzke T, Bergeron C, LeBlanc AC (2004) Active caspase-6 and caspase-6-cleaved tau in neuropil threads, neuritic plaques, and neurofibrillary tangles of Alzheimer’s disease. Am J Pathol 165:523–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Albrecht S, Bourdeau M, Bennett D, Mufson EJ, Bhattacharjee M, LeBlanc AC (2007) Activation of caspase-6 in aging and mild cognitive impairment. Am J Pathol 170:1200–1209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kitamura Y, Shimohama S, Kamoshima W, Matsuoka Y, Nomura Y, Taniguchi T (1997) Changes of p53 in the brains of patients with Alzheimer’s disease. Biochem Biophys Res Commun 232:418–421

    Article  CAS  PubMed  Google Scholar 

  121. MacLachlan TK, El-Deiry WS (2002) Apoptotic threshold is lowered by p53 transactivation of caspase-6. Proc Natl Acad Sci USA 99:9492–9497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Pompl PN, Yemul S, Xiang Z, Ho L, Haroutunian V, Purohit D, Mohs R, Pasinetti GM (2003) Caspase gene expression in the brain as a function of the clinical progression of Alzheimer disease. Arch Neurol 60(3):369–376

    Article  PubMed  Google Scholar 

  123. Albrecht S, Bogdanovic N, Ghetti B, Winblad B, LeBlanc AC (2009) Caspase-6 activation in familial Alzheimer disease brains carrying amyloid precursor protein or presenilin I or presenilin II mutations. J Neuropathol Exp Neurol 68:1282–1293

    Article  CAS  PubMed  Google Scholar 

  124. Brentnall M, Rodriguez-Menocal L, De Guevara RL, Cepero E, Boise LH (2013) Caspase-9, caspase-3 and caspase-7 have distinct roles during intrinsic apoptosis. BMC Cell Biol 14(1):1–9

    Article  Google Scholar 

  125. Hardy JA, Wells JA (2009) “Dissecting an allosteric switch in caspase-7 using chemical and mutational probes. J Biol Chem 284(38):26063–26069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Wei X, Xie F, Zhou X, Wu Y, Yan H, Liu T, Huang J, Wang F et al (2022) Role of pyroptosis in inflammation and cancer. Cell Mol Immunol 19(9):971–992. https://doi.org/10.1038/s41423-022-00905-x

  127. Jorgensen I, Miao EA (2015) Pyroptotic Cell death defends against intracellular pathogens. Immunol Rev 265(1):130–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Dagenais M, Skeldon A, Saleh M (2012) The inflammasome: in memory of Dr. Jurg Tschopp Cell death Differ 19(1):5–12

    Article  CAS  Google Scholar 

  129. Schroder K, Tschopp J (2010) The inflammasome. Cell 140(60):821–832

    Article  CAS  PubMed  Google Scholar 

  130. Clark AC (2016) Caspase allostery and conformational selection. Chem Rev 116(11):6666–6706

    Article  CAS  PubMed  Google Scholar 

  131. Mariathasan S, Newton K, Monack DM, Vucic D, French DM, Lee WP, Roose- Grima M, Erickson S, Dixit VM (2004) Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf“. Nature 430(6996):213–218

    Article  CAS  PubMed  Google Scholar 

  132. Kumaresan V, Ravichandran G, Nizam F, Dhayanithi NB, Arasu MV, Al-Dhabi NA, Harikrishnan R, Arockiaraj J (2016) Multifuctional murrel caspase-1, 2, 3, 8 and 9: conservation, uniqueness and their pathogen- induced expression pattern. Fish Shellfish Immun 49:493–504

    Article  CAS  Google Scholar 

  133. Sollberger G, Strittmatter GE, Garstkiewicz M, Sand J, Beer HD (2014) Caspase-1: the inflammasome and beyond. Innate immune 20(2):115–125

    Article  Google Scholar 

  134. Wilson KP, Black JA, Thomson JA, Kim EE, Griffith JP, Navia MA, Murcko MA, Chambers SP, Aldape RA, Raybuck SA (1994) Structure and mechanism of interleukin-1 beta converting enzyme. Nature 370(6487):270–275

    Article  CAS  PubMed  Google Scholar 

  135. Romanowski MJ, Scheer JM, O’Brien T, McDowell RS (2004) Crystal structures of a ligand-free and malonate-bound human caspase-1: implications for the mechanism of substrate binding. Structure 12(8):1361–1371

    Article  CAS  PubMed  Google Scholar 

  136. Compan V, Martín-Sánchez F, Baroja-Mazo A, López-Castejón G, Gomez AI, Verkhratsky A, Brough D, Pelegrín P (2015) Apoptosis-associated speck-like protein containing a CARD forms specks but does not activate caspase-1 in the absence of NLRP3 during macrophage swelling. J Immunol 194(3):1261–1273

    Article  CAS  PubMed  Google Scholar 

  137. Lu A, Li Y, Schmidt FI, Yin Q, Chen S, Fu TM, Tong AB, Ploegh HL, Mao Y, Wu H (2016) Molecular basis of a new capping mechanism. Nat Struct Mol Biol 23(5):416–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Eldridge MJ, Shenoy AR (2015) Antimicrobial inflammasomes: unified signalling against diverse bacterial pathogens. Curr Opin Microbiol 23:32–41

    Article  CAS  PubMed  Google Scholar 

  139. Mathiak G, Grass G, Herzmann T, Luebke T, Zetina CC, Boehm SA, Bohlen H, Neville LF, Hoelscher AH (2000) Caspase-1-inhibitor ac-YVAD-cmk reduces LPS-lethality in rats without affecting haematology or cytokine responses. Br J Pharmacol 131(3):383–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Friedlander RM (2000) Role of caspase 1 in neurologic disease. Arch Neurol 57(9):1273–1276

    Article  CAS  PubMed  Google Scholar 

  141. Kamens J, Paskind M, Hugunin M, Talanian RV, Allen H, Banach D, Bump N, Hackett M, Johnston CG, Li P, Mankovich JA (1995) Identification and characterization of ICH-2, a novel member of the interleukin-1β-converting enzyme family of cysteine proteases (∗). J Biol Chem 270(25):15250–15256

    Article  CAS  PubMed  Google Scholar 

  142. Munday NA, Vaillancourt JP, Ali A, Casano FJ, Miller DK, Molineaux SM, Yamin TT, Violeta LY, Nicholson DW (1995) Molecular cloning and pro-apoptotic activity of ICErelII and ICErelIII, members of the ICE/CED-3 family of cysteine proteases (∗). J Biol Chem 270(26):15870–15876

    Article  CAS  PubMed  Google Scholar 

  143. Kamada S, Washida M, Hasegawa JI, Kusano H, Funahashi Y, Tsujimoto Y (1997) Involvement of caspase-4 (-like) protease in Fas-mediated apoptotic pathway. Oncogene 15(3):285–290

    Article  CAS  PubMed  Google Scholar 

  144. Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA, Yuan J (2000) Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-β. Nature 403(6765):98–103

    Article  CAS  PubMed  Google Scholar 

  145. Hitomi J, Katayama T, Eguchi Y, Kudo T, Taniguchi M, Koyama Y, Manabe T, Yamagishi S, Bando Y, Imaizumi K, Tsujimoto Y (2004) Involvement of caspase-4 in endoplasmic reticulum stress-induced apoptosis and Aβ-induced cell death. J Cell Biol 165(3):347–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Boyce M, Yuan J (2006) Cellular response to endoplasmic reticulum stress: a matter of life or death. Cell Death Differ 13(3):363–373

    Article  CAS  PubMed  Google Scholar 

  147. Nawrocki ST, Carew JS, Maclean KH, Courage JF, Huang P, Houghton JA, Cleveland JL, Giles FJ, McConkey DJ (2008) Myc regulates aggresome formation, the induction of Noxa, and apoptosis in response to the combination of bortezomib and SAHA. Blood 112(7):2917–2926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Jiang CC, Chen LH, Gillespie S, Wang YF, Kiejda KA, Zhang XD, Hersey P (2007) Inhibition of MEK sensitizes human melanoma cells to endoplasmic reticulum stress-induced apoptosis. Cancer Res 67(20):9750–9761

    Article  CAS  PubMed  Google Scholar 

  149. Pyrko P, Kardosh A, Wang W, Xiong W, Schönthal AH, Chen TC (2007) HIV-1 protease inhibitors nelfinavir and atazanavir induce malignant glioma death by triggering endoplasmic reticulum stress. Cancer Res 67(22):10920–10928

    Article  CAS  PubMed  Google Scholar 

  150. Rahmani M, Davis EM, Crabtree TR, Habibi JR, Nguyen TK, Dent P, Grant S (2007) The kinase inhibitor sorafenib induces cell death through a process involving induction of endoplasmic reticulum stress. Mol Cell Biol 27(15):5499–5513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Obeng EA, Boise LH (2005) Caspase-12 and caspase-4 are not required for caspase-dependent endoplasmic reticulum stress-induced apoptosis. J Biol Chem 280(33):29578–29587

    Article  CAS  PubMed  Google Scholar 

  152. Mao ZG, Jiang CC, Yang F, Thorne RF, Hersey P, Zhang XD (2010) TRAIL-induced apoptosis of human melanoma cells involves activation of caspase-4. Apoptosis 15(10):1211–1222

    Article  CAS  PubMed  Google Scholar 

  153. Lakshmanan U, Porter AG (2007) Caspase-4 interacts with TNF receptor-associated factor 6 and mediates lipopolysaccharide-induced NF-κB-dependent production of IL-8 and CC chemokine ligand 4 (macrophage-inflammatory protein-1β). J Immunol 179(12):8480–8490

    Article  CAS  PubMed  Google Scholar 

  154. Faucheu C, Blanchet AM, Collard-Dutilleul V, Lalanne JL, Diu-Hercend A (1996) Identification of a cysteine protease closely related to interleukin-1β-converting enzyme. Eur J Biochem 236(1):207–213

    Article  CAS  PubMed  Google Scholar 

  155. Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol cell 10(2):417–426

    Article  CAS  PubMed  Google Scholar 

  156. Martinon F, Mayor A, Tschopp J (2009) The inflammasomes: guardians of the body. Annu Rev Immunol 27:229–265

    Article  CAS  PubMed  Google Scholar 

  157. Martinon F, Tschopp J (2007) Inflammatory caspases and inflammasomes: master switches of inflammation. Cell Death Differ 14(1):10–22

    Article  CAS  PubMed  Google Scholar 

  158. Latz E (2010) The inflammasomes: mechanisms of activation and function. Curr Opin Immunol 22(1):28–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Lin XY, Choi MS, Porter AG (2000) Expression analysis of the human caspase-1 subfamily reveals specific regulation of the CASP5 gene by lipopolysaccharide and interferon-γ. J Biol Chem 275(51):39920–39926

    Article  CAS  PubMed  Google Scholar 

  160. Sutterwala FS, Ogura Y, Flavell RA (2007) The inflammasome in pathogen recognition and inflammation. J Leukoc Biol 82(2):259–264

    Article  CAS  PubMed  Google Scholar 

  161. Kumar S, White DL, Takai S, Turczynowicz S, Juttner CA, Hughes TP (1995) Apoptosis regulatory gene NEDD2 maps to human chromosome segment 7q34-35, a region frequently affected in haematological neoplasms. Hum Genet 95:641–644

    Article  CAS  PubMed  Google Scholar 

  162. Van Opdenbosch N, Lamkanfi M (2019) Caspases in cell death, inflammation, and disease. Immunity 50(6):1352–1364

    Article  PubMed  PubMed Central  Google Scholar 

  163. Berkun Y, Karban A, Padeh S, Pras E, Shinar Y, Lidar M, Livneh A, Bujanover Y (2012) NOD2/CARD15 gene mutations in patients with familial Mediterranean fever In Seminars in arthritis and rheumatism. WB Saunders 42(1):84–88

    CAS  Google Scholar 

  164. Junjun G, James AW (2013) Caspase-4 and caspase-5. In: Rawlings ND, Salvesen G (eds) Handbook of proteolytic enzymes, 3rd edn, pp 3265–3270

  165. Rathinam VA, Vanaja SK, Waggoner L, Sokolovska A, Becker C, Stuart LM, Leong JM, Fitzgerald KA (2012) TRIF licenses caspase-11-dependent NLRP3 inflammasome activation by gram-negative bacteria. Cell 150(3):606–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Broz P, Monack DM (2013) Noncanonical inflammasomes; caspase-11 activation and effector Mechanism. PLoS Pathog 9(2):e1003144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Kayagaki N, Wong MT, Stowe IB, Ramani SR, Gonzalez LC, Akashi-Takamura S, Miyake K, Zhang J, Lee WP, Muszyński A, Forsberg LS (2013) Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science 341(6151):1246–1249

    Article  CAS  PubMed  Google Scholar 

  168. Shi J, Zhao Y, Wang Y, Gao W, Ding J, Li P, Hu L, Shao F (2014) Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 7521:187–192

    Article  Google Scholar 

  169. Crowley SM, Vallance BA, Knodler LA (2017) Noncanonical inflammasomes: antimicrobial defense that does not play by the rules. Cell Microbiol 19(4):1–9

    Article  Google Scholar 

  170. Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, Zhuang Y, Cai T, Wang F, Shao F (2015) Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526(7575):660–665

    Article  CAS  PubMed  Google Scholar 

  171. Aglietti RA, Estevez A, Gupta A, Ramirez MG, Liu PS, Kayagaki N, Ciferri C, Dixit VM, Dueber EC (2016) GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes. Proc Natl Acad Sci 113(28):7858–7863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Lee BL, Stowe IB, Gupta A, Kornfeld OS, Roose-Girma M, Anderson K, Warming S, Zhang J, Lee WP, Kayagaki N (2018) Caspase-11 auto-proteolysis is crucial for noncanonical inflammasome activation. J Exp Med 215(9):2279–2288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Ikawa K, Sugimura K (2018) AIP1 and cofilin ensure a resistance to tissue tension and promote directional cell rearrangement. Nat commun 9(1):1–4

    Article  CAS  Google Scholar 

  174. Fischer H, Koenig U, Eckhart L, Tschachler E (2002) Human caspase 12 has acquired deleterious mutations. Biochem Biophys Res Commun 293(2):722–726

    Article  CAS  PubMed  Google Scholar 

  175. Roy S, Sharom JR, Houde C, Loisel TP, Vaillancourt JP, Shao W, Saleh M, Nicholson DW (2008) Confinement of caspase-12 proteolytic activity to autoprocessing. PNAS 105(11):4133–4138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Kalai M, Lamkanfi M, Denecker G, Boogmans M, Lippens S, Meeus A, Declercq W, Vandenabeele P (2003) Regulation of the expression and processing of caspase. J Cell Biol 62(3):457–467

    Article  Google Scholar 

  177. Yoneda T, Imaizumi K, Oono K, Yui D, Gomi F, Katayama T, Tohyama M (2001) Activation of caspase-12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress. J Biol Chem 276(17):13935–13940

    Article  CAS  PubMed  Google Scholar 

  178. Kaufman RJ (1999) Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev 13:1211–1233

    Article  CAS  PubMed  Google Scholar 

  179. Tirasophon W, Welihinda AA, Kaufman RJ (1998) A stress response pathway from the endoplasmic reticulum to the nucleus requires a novel bifunctional protein kinase/endoribonuclease (Ire1p) in mammalian cells. Genes Dev 12:1812–1824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Wang XZ, Harding HP, Zhang Y, Jolicoeur EM, Kuroda M, Ron D (1998) Cloning of mammalian Ire1 reveals diversity in the ER stress responses. EMBO J 17:5708–5717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Urano F, Wang X, Bertolotti A, Zhang Y, Chung P, Harding HP, Ron D (2000) Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287:664–666

    Article  CAS  PubMed  Google Scholar 

  182. Westwick JK, Weitzel C, Minden A, Karin M, Brenner DA (1994) Tumor necrosis factor alpha stimulates AP-1 activity through prolonged activation of the c-Jun kinase. J Biol Chem 269(42):26396–26401

    Article  CAS  PubMed  Google Scholar 

  183. Latinis KM, Koretzky GA (1996) Fas ligation induces apoptosis and Jun kinase activation independently of CD45 and Lck in human T cells. Blood 87:871–875

    Article  CAS  PubMed  Google Scholar 

  184. Gupta S, Campbell D, Derijard B, Davis RJ (1995) Transcription factor ATF2 regulation by the JNK signal transduction pathway. Science 267(5196):389–393

    Article  CAS  PubMed  Google Scholar 

  185. Yarza R, Vela S, Solas M, Ramirez MJ (2016) c-Jun N-terminal kinase (JNK) signaling as a therapeutic target for Alzheimer’s disease. Front Pharmacol 6:321

    Article  PubMed  PubMed Central  Google Scholar 

  186. Xie P (2013) TRAF molecules in cell signaling and in human diseases. J Mol Signal 8(1):1–31

    Google Scholar 

  187. Lamkanfi M, Kalai M, Vandenabeele P (2004) Cell death and differentiation. Cell Death Differ 2:365–368

    Article  Google Scholar 

  188. Shalini S, Dorstyn L, Dawar S, Kumar S (2015) Old, new and emerging functions of caspases. Cell Death Differ 22(4):526–539

    Article  CAS  PubMed  Google Scholar 

  189. Bian ZM, Elner SG, Elner VM (2008) Regulated expression of caspase-12 gene in human retinal pigment epithelial cells suggests its immunomodulating role. Invest Ophthalmol Vis Sci 49(12):5593–5601

    Article  PubMed  Google Scholar 

  190. Koenig U, Eckhart L, Tschachler E (2001) Evidence that caspase-13 is not a human but a bovine gene. Biochem Bioph Res Co 285(5):1150–1154

    Article  CAS  Google Scholar 

  191. Humke EW, Ni J, Dixit VM (1998) ERICA, a novel FLICE-activatable caspase. J Boil Chem 273(25):15702–15707

    Article  CAS  Google Scholar 

  192. Hu S, Snipas SJ, Vincenz C, Salvesen G, Dixit VM (1998) Caspase-14 is a novel developmentally regulated protease. J Biol Chem 273(45):29648–29653

    Article  CAS  PubMed  Google Scholar 

  193. Lamkanfi M, Declercq W, Kalai M, Saelens X, Vandenabeele P (2002) Alice in caspase land. A phylogenetic analysis of caspases from worm to man. Cell Death Differ 9:358–361

    Article  CAS  PubMed  Google Scholar 

  194. Van de Craen M, Van Loo G, Pype S, Van Criekinge W, Molemans F, Fiers W, Declercq W, Vandenabeele P (1998) Identification of a new caspase homologue: caspase-14. Cell Death Diff 5(10):838–846

    Article  Google Scholar 

  195. Eckhart L, Declercq W, Ban J, Rendl M, Lengauer B, Mayer C, Lippens S, Vandenabeele P, Tschachler E (2000) Terminal differentiation of human keratinocytes and stratum corneum formation is associated with caspase-14 activation. J Invest Dermatol 115:1148–1151

    Article  CAS  PubMed  Google Scholar 

  196. Lippens S, Kockx M, Knaapen M, Mortier L, Polakowska R, Verheyen A, Garmyn M, Zwijsen A, Formstecher P, Huylebroeck D, Vandenabeele P (2000) Epidermal differentiation does not involve the pro-apoptotic executioner caspases, but is associated with caspase-14 induction and processing. Cell Death Differ 7(12):1218–1224

    Article  CAS  PubMed  Google Scholar 

  197. Lippens S, Kockx M, Denecker G, Knaapen M, Verheyen A, Christiaen R, Tschachler E, Vandenabeele P, Declercq W (2004) Vitamin D3 induces caspase-14 expression in psoriatic lesions and enhances caspase-14 processing in organotypic skin cultures. Am J Pathol 165(3):833–841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Rendl M, Ban J, Mrass P, Mayer C, Lengauer B, Eckhart L, Declerq W, Tschachler E (2002) Caspase-14 expression by epidermal keratinocytes is regulated by retinoids in a differentiation-associated manner. J Invest Dermatol 119:1150–1155

    Article  CAS  PubMed  Google Scholar 

  199. Alibardi L, Tschachler E, Eckhart L (2005) Distribution of caspase-14 in epidermis and hair follicles is evolutionarily conserved among mammals. Anat Rec A Discov Mol Cell Evol Biol 286:962–973

    Article  PubMed  Google Scholar 

  200. Alibardi L, Dockal M, Reinisch C, Tschachler E, Eckhart L (2004) Ultrastructural localization of caspase-14 in human epidermis. J Histochem Cytochem 52:1561–1574

    Article  CAS  PubMed  Google Scholar 

  201. Lippens S, VandenBroecke C, Van Damme E, Tschachler E, Vandenabeele P, Declercq W (2003) Caspase-14 is expressed in the epidermis, the choroid plexus, the retinal pigment epithelium and thymic Hassall’s bodies. Cell Death Differ 10:257–259

    Article  CAS  PubMed  Google Scholar 

  202. Krajewska M, Rosenthal RE, Mikolajczyk J, Stennicke HR, Wiesenthal T, Mai J, Naito M, Salvesen GS, Reed JC, Fiskum G, Krajewski S (2004) Early processing of Bid and caspase-6, -8, -10, -14 in the canine brain during cardiac arrest and resuscitation. Exp Neurol 189:261–279

    Article  CAS  PubMed  Google Scholar 

  203. Kam DW, Charles AK, Dharmarajan AM (2005) Caspase-14 expression in the human placenta. Reprod Biomed Online 11:236–243

    Article  CAS  PubMed  Google Scholar 

  204. Seidelin JB, Nielsen OH (2006) Expression profiling of apoptosis-related genes in enterocytes isolated from patients with ulcerative colitis. APMIS 114:508–517

    Article  CAS  PubMed  Google Scholar 

  205. Selicharova I, Smutna K, Sanda M, Ubik K, Matouskova E, Bursikova E, Brozova M, Vydra J, Jiracek J (2007) 2-DE analysis of a new human cell line EM-G3 derived from breast cancer progenitor cells and comparison with normal mammary epithelial cells. Proteomics 7:1549–1559

    Article  CAS  PubMed  Google Scholar 

  206. Eckhart L, Ban J, Fischer H, Tschachler E (2000) Caspase-14: analysis of gene structure and mRNA expression during keratinocyte differentiation. Biochem Biophys Res Commun 277:655–659

    Article  CAS  PubMed  Google Scholar 

  207. Pistritto G, Jost M, Srinivasula SM, Baffa R, Poyet JL, Kari C, Lazebnik Y, Rodeck U, Alnemri ES (2002) Expression and transcriptional regulation of caspase-14 in simple and complex epithelia. Cell Death Differ 9:995–1006

    Article  CAS  PubMed  Google Scholar 

  208. Kuechle MK, Predd HM, Fleckman P, Dale BA, Presland RB (2001) Caspase-14, a keratinocyte specific caspase: mRNA splice variants and expression pattern in embryonic and adult mouse. Cell Death Differ 8:868–870

    Article  CAS  PubMed  Google Scholar 

  209. Yamamoto M, Miyai M, Matsumoto Y, Tsuboi R, Hibino T (2012) Kallikrein-related peptidase-7 regulates caspase-14 maturation during keratinocyte terminal differentiation by generating an intermediate form. J Biol Chem 287(39):32825–32834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. McGrath JA, Eady RA, Pope FM (2004) Anatomy and organization of human skin. In: Burns T, Breathnach S, Cox N, Griffiths C (eds) Rook’s textbook of dermatology. Blackwell Science Ltd, Oxford, pp 3.1–3.84

  211. Koenig U, Sommergruber W, Lippens S (2005) Aberrant expression of caspase-14 in epithelial tumors. Biochem Biophys Res Commun 335:309–313

    Article  CAS  PubMed  Google Scholar 

  212. Rundhaug JE, Hawkins KA, Pavone A, Gaddis S, Kil H, Klein RD, Berton TR, McCauley E, Johnson DG, Lubet RA, Fischer SM (2005) SAGE profiling of UV-induced mouse skin squamous cell carcinomas, comparison with acute UV irradiation effects. Mol Carcinog 42(1):40–52

    Article  CAS  PubMed  Google Scholar 

  213. Yoo NJ, Soung YH, Lee SH, Jeong EG, Lee SH (2007) Mutational analysis of caspase-14 gene in common carcinomas. Pathology 39:330–333

    CAS  PubMed  Google Scholar 

  214. Raymond AA, Mechin MC, Nachat R, Toulza E, Tazi-Ahnini R, Serre G, Simon M (2007) Nine procaspases are expressed in normal human epidermis, but only caspase-14 is fully processed. Br J Dermatol 156(3):420–427

    Article  CAS  PubMed  Google Scholar 

  215. Walsh DS, Borke JL, Singh BB, Do NN, Hsu SD, Balagon MV, Abalos RM (2005) Psoriasis is characterized by altered epidermal expression of caspase 14, a novel regulator of keratinocyte terminal differentiation and barrier formation. J Dermatol Sci 37:61–63

    Article  CAS  PubMed  Google Scholar 

  216. Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G (2010) Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol 11:700–714

    Article  CAS  PubMed  Google Scholar 

  217. Vanlangenakker N, Vanden Berghe T, Vandenabeele P (2012) Many stimuli pull the necrotic trigger, an overview. Cell Death Differ 19:75–86

    Article  CAS  PubMed  Google Scholar 

  218. Vanden Berghe T, Linkermann A, Jouan-Lanhouet S, Walczak H, Vandenabeele P (2014) Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol 15:135–147

    Article  CAS  PubMed  Google Scholar 

  219. Tenev T, Bianchi K, Darding M, Broemer M, Langlais C, Wallberg F, Zachariou A, Lopez J, MacFarlane M, Cain K, Meier P (2011) The ripoptosome, a signaling platform that assembles in response to genotoxic stress and loss of IAPs. Mol Cell 43:432–448

    Article  CAS  PubMed  Google Scholar 

  220. Ofengeim D, Yuan J (2013) Regulation of RIP1 kinase signalling at the crossroads of inflammation and cell death. Nat Rev Mol Cell Biol 14:727–736

    Article  CAS  PubMed  Google Scholar 

  221. Rickard JA, O’Donnell JA, Evans JM, Lalaoui N, Poh AR, Rogers T, Vince JE, Lawlor KE, Ninnis RL, Anderton H, Hall C (2014) RIPK1 regulates RIPK3-MLKL-driven systemic inflammation and emergency hematopoiesis. Cell 157:1175–1188

    Article  CAS  PubMed  Google Scholar 

  222. Degterev A, Hitomi J, Germscheid M, Ch’en IL, Korkina O, Teng X, Abbott D, Cuny GD, Yuan C, Wagner G, Hedrick SM (2008) Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol 4:313–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Takahashi N, Vereecke L, Bertrand MJ, Duprez L, Berger SB, Divert T, Gonçalves A, Sze M, Gilbert B, Kourula S, Goossens V (2014) RIPK1 ensures intestinal homeostasis by protecting the epithelium against apoptosis. Nature 513:95–99

    Article  CAS  PubMed  Google Scholar 

  224. Dannappel M, Vlantis K, Kumari S, Polykratis A, Kim C, Wachsmuth L, Eftychi C, Lin J, Corona T, Hermance N, Zelic M (2014) RIPK1 maintains epithelial homeostasis by inhibiting apoptosis and necroptosis. Nature 513:90–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Monack DM, Raupach B, Hromockyj AE, Falkow S (1996) Salmonella typhimurium invasion induces apoptosis in infected macrophages. Proc Natl Acad Sci USA 93:9833–9838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Zychlinsky A, Prevost MC, Sansonetti PJ (1992) Shigella flexneri induces apoptosis in infected macrophages. Nature 358:167–169

    Article  CAS  PubMed  Google Scholar 

  227. Cookson BT, Brennan MA (2001) Pro-inflammatory programmed cell death. Trends Microbiol 9:113–114

    Article  CAS  PubMed  Google Scholar 

  228. Brennan MA, Cookson BT (2000) Salmonella induces macrophage death by caspase-1-dependent necrosis. Mol Microbiol 38:31–40

    Article  CAS  PubMed  Google Scholar 

  229. Miao EA, Rajan JV, Aderem A (2011) Caspase-1-induced pyroptotic cell death. Immunol Rev 243:206–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Bergsbaken T, Fink SL, Cookson BT (2009) Pyroptosis: host cell death and inflammation. Nat Rev Microbiol 7:99–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Miao EA, Leaf IA, Treuting PM, Mao DP, Dors M, Sarkar A, Warren SE, Wewers MD, Aderem A (2010) Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nat Immunol 11:1136–1142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Maiuri MC, Zalckvar E, Kimchi A, Kroemer G (2007) Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 8:741–752

    Article  CAS  PubMed  Google Scholar 

  233. Denton D, Nicolson S, Kumar S (2012) Cell death by autophagy: facts and apparent artefacts. Cell Death Differ 19:87–95

    Article  CAS  PubMed  Google Scholar 

  234. Cho DH, Jo YK, Hwang JJ, Lee YM, Roh SA, Kim JC (2009) Caspase-mediated cleavage of ATG6/Beclin-1 links apoptosis to autophagy in HeLa cells. Cancer Lett 274:95–100

    Article  CAS  PubMed  Google Scholar 

  235. Zhu Y, Zhao L, Liu L, Gao P, Tian W, Wang X, Jin H, Xu H, Chen Q (2010) Beclin 1 cleavage by caspase-3 inactivates autophagy and promotes apoptosis. Protein Cell 1:468–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Norman JM, Cohen GM, Bampton ET (2010) The in vitro cleavage of the hAtg proteins by cell death proteases. Autophagy 6:1042–1056

    Article  CAS  PubMed  Google Scholar 

  237. Oral O, Oz-Arslan D, Itah Z, Naghavi A, Deveci R, Karacali S, Gozuacik D (2012) Cleavage of Atg3 protein by caspase-8 regulates autophagy during receptor-activated cell death. Apoptosis 17:810–820

    Article  CAS  PubMed  Google Scholar 

  238. DeVorkin L, Gorski SM (2014) A mitochondrial-associated link between an effector caspase and autophagic flux. Autophagy 10:1866–1867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Tiwari M, Sharma LK, Vanegas D, Callaway DA, Bai Y, Lechleiter JD, Herman B (2014) A nonapoptotic role for CASP2/caspase 2: modulation of autophagy. Autophagy 10:1054–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Pagliarini V, Wirawan E, Romagnoli A, Ciccosanti F, Lisi G, Lippens S, Cecconi F, Fimia GM, Vandenabeele P, Corazzari M, Piacentini M (2012) Proteolysis of Ambra1 during apoptosis has a role in the inhibition of the autophagic pro-survival response. Cell Death Differ 19:1495–1504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Betin VM, Lane JD (2009) Atg4D at the interface between autophagy and apoptosis. Autophagy 5:1057–1059

    Article  CAS  PubMed  Google Scholar 

  242. Juo P, Kuo CJ, Yuan J, Blenis J (1998) Essential requirement for caspase-8/FLICE in the initiation of the Fas-induced apoptotic cascade. Curr Biol 8:1001–1008

    Article  CAS  PubMed  Google Scholar 

  243. Chen NJ, Chio II, Lin WJ, Duncan G, Chau H, Katz D, Huang HL, Pike KA, Hao Z, Su YW, Yamamoto K (2008) Beyond tumor necrosis factor receptor: TRADD signaling in tolllike receptors. Proc Natl Acad Sci 105:12429–12434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Samraj AK, Keil E, Ueffing N, Schulze-Osthoff K, Schmitz I (2006) Loss of caspase-9 provides genetic evidence for the type I/II concept of CD95-mediated apoptosis. J Biol Chem 281:29652–29659

    Article  CAS  PubMed  Google Scholar 

  245. Jost PJ, Grabow S, Gray D, McKenzie MD, Nachbur U, Huang DC, Bouillet P, Thomas HE, Borner C, Silke J, Strasser A (2009) XIAP discriminates between type I and type II FAS-induced apoptosis. Nature 460:1035–1039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Spencer SL, Gaudet S, Albeck JG, Burke JM, Sorger PK (2009) Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis. Nature 459:428–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Brenner D, Mak TW (2009) Mitochondrial cell death effectors. Curr Opin Cell Biol 21:871–877

    Article  CAS  PubMed  Google Scholar 

  248. Shiozaki EN, Chai J, Shi Y (2002) Oligomerization and activation of caspase-9, induced by Apaf-1 CARD. Proc Natl Acad Sci 99:4197–4202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Acehan D, Jiang X, Morgan DG, Heuser JE, Wang X, Akey CW (2002) Three-dimensional structure of the apoptosome: Implications for assembly, procaspase-9 binding, and activation. Mol Cell 9:423–432

    Article  CAS  PubMed  Google Scholar 

  250. Cain K, Bratton SB, Cohen GM (2002) The Apaf-1 apoptosome: a large caspase-activating complex. Biochimie 84:203–214

    Article  CAS  PubMed  Google Scholar 

  251. Yeh WC, Itie A, Elia AJ, Ng M, Shu HB, Wakeham A, Mirtsos C, Suzuki N, Bonnard M, Goeddel DV, Mak TW (2000) Requirement for Casper (c-FLIP) in regulation of death receptor-induced apoptosis and embryonic development. Immunity 12:633–642

    Article  CAS  PubMed  Google Scholar 

  252. Hao Z, Duncan GS, Chang CC, Elia A, Fang M, Wakeham A, Okada H, Calzascia T, Jang Y, You-Ten A, Yeh WC (2005) Specific ablation of the apoptotic functions of cytochrome c reveals a differential requirement for cytochrome c and Apaf-1 in apoptosis. Cell 121:579–591

    Article  CAS  PubMed  Google Scholar 

  253. Madden SD, Cotter TG (2008) Cell death in brain development and degeneration: Control of caspase expression may be key! Mol Neurobiol 37:1–6

    Article  CAS  PubMed  Google Scholar 

  254. Kuida K, Haydar TF, Kuan CY, Gu Y, Taya C, Karasuyama H, Su MS, Rakic P, Flavell RA (1998) Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9. Cell 94:325–337

    Article  CAS  PubMed  Google Scholar 

  255. Kuida K, Zheng TS, Na S, Kuan C, Yang D, Karasuyama H, Rakic P, Flavell RA (1996) Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 384:368–372

    Article  CAS  PubMed  Google Scholar 

  256. Woo M, Hakem R, Soengas MS, Duncan GS, Shahinian A, Kagi D, Hakem A, McCurrachM KhooW, Kaufman SA, Senaldi G (1998) Essential contribution of caspase 3/CPP32 to apoptosis and its associated nuclear changes. Genes Dev 12:806–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Yoshida H, Kong YY, Yoshida R, Elia AJ, Hakem A, Hakem R, Penninger JM, Mak TW (1998) Apaf1 is required for mitochondrial pathways of apoptosis and brain development. Cell 94:739–750

    Article  CAS  PubMed  Google Scholar 

  258. Cecconi F, Alvarez-Bolado G, Meyer BI, Roth KA, Gruss P (1998) Apaf1 (CED-4 homolog) regulates programmed cell death in mammalian development. Cell 94:727–737

    Article  CAS  PubMed  Google Scholar 

  259. Namura S, Zhu J, Fink K, Endres M, Srinivasan A, Tomaselli KJ, Yuan J, Moskowitz MA (1998) Activation and cleavage of caspase-3 in apoptosis induced by experimental cerebral ischemia. J Neurosci 18:3659–3668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Kuida K, Lippke JA, Ku G, HardingMW LDJ, Su MS, Flavell RA (1995) Altered cytokine export and apoptosis in mice deficient in interleukin-1 beta converting enzyme. Science 267:2000–2003

    Article  CAS  PubMed  Google Scholar 

  261. Bergeron L, Perez GI, Macdonald G, Shi L, Sun Y, Jurisicova A, Varmuza S, Latham KE, Flaws JA, Salter JC, Hara H (1998) Defects in regulation of apoptosis in caspase-2-deficient mice. Genes Dev 12:1304–1314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Zheng TS, Hunot S, Kuida K, Momoi T, Srinivasan A, Nicholson DW, Lazebnik Y, Flavell RA (2000) Deficiency in caspase-9 or caspase-3 induces compensatory caspase activation. Nat Med 6:1241–1247

    Article  CAS  PubMed  Google Scholar 

  263. Troy CM, Rabacchi SA, Hohl JB, Angelastro JM, Greene LA, Shelanski ML (2001) Death in the balance: alternative participation of the caspase-2 and -9 pathways in neuronal death induced by nerve growth factor deprivation. J Neurosci 21:5007–5016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Liu F, McCullough LD (2011) Middle cerebral artery occlusion model in rodents: methods and potential pitfalls. J Biomed Biotechnol 2011:464701

    Article  PubMed  PubMed Central  Google Scholar 

  265. Akpan N, Serrano-Saiz E, Zacharia BE, Otten ML, Ducruet AF, Snipas SJ, Liu W, Velloza J, Cohen G, Sosunov SA, Frey WH (2011) Intranasal delivery of caspase-9 inhibitor reduces caspase-6-dependent axon/neuron loss and improves neurological function after stroke. J Neuroscience 31:8894–8904

    Article  CAS  PubMed  Google Scholar 

  266. Shi Y (2002) Mechanisms of caspase activation and inhibition during apoptosis. Mol Cell 9(3):459–470

    Article  CAS  PubMed  Google Scholar 

  267. Wang J, Zheng L, Lobito A, Chan FK, Dale J, Sneller M, Yao X, Puck JM, Straus SE, Lenardo MJ (1999) Inherited human Caspase 10 mutations underlie defective lymphocyte and dendritic cell apoptosis in autoimmune lymphoproliferative syndrome type II. Cell 98(1):47–58

    Article  CAS  PubMed  Google Scholar 

  268. Earnshaw WC, Martins LM, Kaufmann SH (1999) Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem 68(1):383–424

    Article  CAS  PubMed  Google Scholar 

  269. Chai J, Wu Q, Shiozaki E, Srinivasula SM, Alnemri ES, Shi Y (2001) Crystal structure of a procaspase-7 zymogen: mechanisms of activation and substrate binding. Cell 107(3):399–407

    Article  CAS  PubMed  Google Scholar 

  270. Riedl SJ, Fuentes-Prior P, Renatus M, Kairies N, Krapp S, Huber R, Savesen GS, Bode W (2001) Structural basis for the activation of human procaspase-7. Proc Natl Acad Sci USA 98:14790–14795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Srinivasula SM, Ahmad M, MacFarlane M, Luo Z, Huang Z, Fernandes-Alnemri T, Alnemri ES (1998) Generation of constitutively active recombinant caspase-3 and -6 by rearrangement of their subunits. J Biol Chem 273:10107–10111

    Article  CAS  PubMed  Google Scholar 

  272. Stennicke HR, Deveraux QL, Humke EW, Reed JC, Dixit VM, Salvesen GS (1999) Caspase-9 can be activated without proteolytic processing. J Biol Chem 274:8359–8362

    Article  CAS  PubMed  Google Scholar 

  273. Huang HK, Joazeiro CAP, Bonfoco E, Kamada S, Leverson JD, Hunter T (2000) The inhibitor of apoptosis, cIAP2, functions as a ubiquitin-protein ligase and promotes in vitro monoubiquitination of caspase 3 and 7. J Biol Chem 275:26661–26664

    Article  CAS  PubMed  Google Scholar 

  274. Suzuki Y, Nakabayashi Y, Takahashi R (2001) Ubiquitin- protein ligase activity of X-linked inhibitor of apoptosis protein promotes proteasomal degradation of caspase-3 and enhances its anti- apoptotic effect in Fas-induced cell death. Proc Natl Acad Sci USA 98:8662–8667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Deveraux QL, Reed JC (1999) IAP family proteins- suppressors of apoptosis. Genes Dev 13:239–252

    Article  CAS  PubMed  Google Scholar 

  276. Hay BA (2000) Understanding IAP function and regulation: a view from Drosophila. Cell Death Differ 7:1045–1056

    Article  CAS  PubMed  Google Scholar 

  277. Ashhab Y, Alian A, Polliack A, Panet A, Yehuda DB (2001) Two splicing variants of a new inhibitor of apoptosis gene with different biological properties and tissue distribution pattern. FEBS Lett 495:56–60

    Article  CAS  PubMed  Google Scholar 

  278. Kasof GM, Gomes BC (2001) Livin, a novel inhibitor of apoptosis protein family member. J Biol Chem 276:3238–3246

    Article  CAS  PubMed  Google Scholar 

  279. Vucic D, Stennicke HR, Pisabarro MT, Salvesen GS, Dixit VM (2000) ML-IAP, a novel inhibitor of apoptosis that is preferenintially expressed in human melanomas. Curr Biol 10:1359–1366

    Article  CAS  PubMed  Google Scholar 

  280. Fesik SW, Shi Y (2001) Controlling caspases. Science 294:1477–1478

    Article  CAS  PubMed  Google Scholar 

  281. Shi Y (2001) A structural view of mitochondria-mediated apoptosis. Nat Struct Biol 8:394–401

    Article  CAS  PubMed  Google Scholar 

  282. Sun C, Cai M, Gunasekera AH, Meadows RP, Wang H, Chen J, Zhang H, Wu W, Xu N, Ng SC, Fesik SW (1999) NMR structure and mutagenesis of the inhibitor-of-apoptosis protein XIAP. Nature 401:818–822

    Article  CAS  PubMed  Google Scholar 

  283. Li F, Ambrosini G, Chu EY, Plescia J, Tognin S, Marchisio PC, Altieri DC (1998) Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396:580–584

    Article  CAS  PubMed  Google Scholar 

  284. Altieri DC (2001) Cytokenesis, apoptosis and survivin: three for tango? Cell Death Differ 8:4–5

    Article  CAS  PubMed  Google Scholar 

  285. Huang Y, Park YC, Rich RL, Segal D, Myszka DG, Wu H (2001) Structural basis of caspase inhibition by XIAP: differential roles of the Linker versus the BIR domain. Cell 104:781–790

    CAS  PubMed  Google Scholar 

  286. Miller LK (1999) An exegesis of IAPs: salvation and surprises from BIR motifs. Trends Cell Biol 9:323–328

    Article  CAS  PubMed  Google Scholar 

  287. Bump NJ, Hackett M, Hugunin M, Seshagiri S, Brady K, Chen P, Ferenz C, Franklin S, Ghayur T, Li P (1995) Inhibition of ICE family proteases by baculovirus antiapoptotic protein p35. Science 269:1885–1888

    Article  CAS  PubMed  Google Scholar 

  288. Zhou Q, Krebs JF, Snipas SJ, Price A, Alnemri ES, Tomaselli KJ, Salvesen GS (1998) Interaction of the baculovirus anti-apoptotic protein p35 with caspases. Specificity, kinetics, and characterization of the caspase/p35 complex. Biochem 37:10757–10765

    Article  CAS  Google Scholar 

  289. Xu G, Cirilli M, Huang Y, Rich RL, Myszka DG, Wu H (2001) Covalent inhibition revealed by the crystal structure of the caspase-8/p35 complex. Nature 410:494–497

    Article  CAS  PubMed  Google Scholar 

  290. Du C, Fang M, Li Y, Wang X (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation during apoptosis. Cell 102:33–42

    Article  CAS  PubMed  Google Scholar 

  291. Verhagen AM, Ekert PG, Pakusch M, Silke J, Connolly LM, Reid GE, Moritz RL, Simpson RJ, Vaux DL (2000) Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102:43–53

    Article  CAS  PubMed  Google Scholar 

  292. Chai J, Du C, Wu JW, Kyin S, Wang X, Shi Y (2000) Structural and biochemical basis of apoptotic activation by Smac/DIABLO. Nature 406:855–862

    Article  CAS  PubMed  Google Scholar 

  293. Srinivasula SM, Datta P, Fan XJ, Fernandes-Alnemri T, Huang Z, Alnemri ES (2000) Molecular determinants of the caspase- promoting activity of Smac/DIABLO and its role in the death receptor pathway. J Biol Chem 275:36152–36157

    Article  CAS  PubMed  Google Scholar 

  294. Wu G, Chai J, Suber TL, Wu JW, Du C, Wang X, Shi Y (2000) Structural basis of IAP recognition by Smac/DIABLO. Nature 408:1008–1012

    Article  CAS  PubMed  Google Scholar 

  295. Liu Z, Sun C, Olejniczak ET, Meadows RP, Betz SF, Oost T, Herrmann J, Wu JC, Fesik SW (2000) Structural basis for binding of Smac/DIABLO to the XIAP BIR3 domain. Nature 408:1004–1008

    Article  CAS  PubMed  Google Scholar 

  296. Christich A, Kauppila S, Chen P, Sogame N, Abrams JM (2002) The damage responsive Drosophila gene Sickle encodes a novel IAP binding protein similar to but distinct from Reaper, Grim and Hid. Curr Biol 12:137–140

    Article  CAS  PubMed  Google Scholar 

  297. Srinivasula SM, Datta P, Kobayashi M, Fujioka M, Wu JW, Hedge R, Zhang Z, Mukattash R, Fernandes-Alnemri T, Shi Y, Jaynes JB (2002) Sickle, a novel Drosophila death gene in the reaper/ hid/grim region encodes an IAP-inhibitory protein. Curr Biol 12:125–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Wing JP, Karres J, Ogdahl JL, Zhou L, Schwartz LM, Nambu JR (2002) Drosophila sickle is a novel grim-reaper cell death activator. Curr Biol 12:131–135

    Article  CAS  PubMed  Google Scholar 

  299. Wu JW, Cocina AE, Chai J, Hay BA, Shi Y (2001) Structural analysis of a functional DIAP1 fragment bound to Grim and Hid peptides. Mol Cell 8:95–104

    Article  CAS  PubMed  Google Scholar 

  300. Hedge R, Srinivasula SM, Wassell R, Mukattash R, Cilenti L, Zhang Z, DuBois G, Lazebnik Y, Zervos AS, Fernandes-Alnemri T, Alnemri ES (2002) Identification of Omi/HtrA2 as a mitochondrial apoptotic serine protease that disrupts IAP-caspase interaction. J Biol Chem 277:432–438

    Article  Google Scholar 

  301. Martin LM, Iaccarino I, Tenev T, Gschmeissner S, Totty NF, Lemoine NR, Savopoulos J, Gray CW, Creasy CL, Dingwall C, Downward J (2002) The serine protease Omi/HtrA2 regulates apoptosis by binding XIAP through a Reaper-like motif. J Biol Chem 277:439–444

    Article  Google Scholar 

  302. Suzuki Y, Imai Y, Nakayama H, Takahashi K, Takio K, Takahashi R (2001) A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol Cell 8:613–621

    Article  CAS  PubMed  Google Scholar 

  303. van Loo G, van Gurp M, Depuydt B, Srinivasula SM, Rodriguez I, Alnemri ES, Gevaert K, Vandekerckhove J, Declercq W, Vandenabeele P (2002) The serine protease Omi/HtrA2 is released from mitochondria during apoptosis. Omi interacts with caspase inhibitor XIAP and induces enhanced caspase activity. Cell Death Differ 9:20–26

    Article  PubMed  Google Scholar 

  304. Verhagen AM, Silke J, Ekert PG, Pakusch M, Kaufmann H, Connolly LM, Day CL, Tikoo A, Burke R, Wrobel C, Moritz RL (2002) HtrA2 promotes cell death through its serine protease activity and its ability to antagonize inhibitor of apoptosis proteins. J Biol Chem 277:445–454

    Article  CAS  PubMed  Google Scholar 

  305. Gray CW, Ward RV, Karran E, Turconi S, Rowles A, Viglienghi D, Southan C, Barton A, Fantom KG, West A, Savopoulos J (2000) Characterization of human HtrA2, a novel serine protease involved in the mammalian cellular stress response. Eur J Biochem 267:5699–5710

    Article  CAS  PubMed  Google Scholar 

  306. Harris BZ, Lim WA (2001) Mechanism and role of PDZ domains in signaling complex assembly. J Cell Sci 114:3219–3231

    Article  CAS  PubMed  Google Scholar 

  307. Srinivasula SM, Saleh A, Hedge R, Datta P, Shiozaki E, Chai J, Robbins PD, Fernandes-Alnemri T, Shi Y, Alnemri ES (2001) A conserved XIAP-interaction motif in caspase-9 and Smac/ DIABLO mediates opposing effects on caspase activity and apoptosis. Nature 409:112–116

    Article  Google Scholar 

  308. Chai J, Shiozaki E, Srinivasula SM, Wu Q, Datta P, Alnemri ES, Shi Y (2001) Structural basis of caspase-7 inhibiton by XIAP. Cell 104:769–780

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors showed thanks to respective institutes that support this review article

Author information

Authors and Affiliations

Authors

Contributions

MKM conceived the original idea and designed the outlines of the study. GS and MKM wrote the draft of the manuscript and prepared the figures for the manuscript. GS, DS, PK, and MKM revised and improved the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Meesala Krishna Murthy.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Research Involving Human Participants and/or Animals

Not applicable.

Informed Consent

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, G., Samal, D., Khandayataray, P. et al. A Review on Caspases: Key Regulators of Biological Activities and Apoptosis. Mol Neurobiol 60, 5805–5837 (2023). https://doi.org/10.1007/s12035-023-03433-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03433-5

Keywords

Navigation