Skip to main content
Log in

Sugarcane biotechnology: The challenges and opportunities

  • Invited Review
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

Commercial sugarcane, belonging to the genus Saccharum (Poaceae), is an important industrial crop accounting for nearly 70% of sugar produced worldwide. Compared to other major crops, efforts to improve sugarcane are limited and relatively recent, with the first introduction of interspecific hybrids about 80 yr ago. Progress in traditional breeding of sugareane, a highly polyploid and frequently aneuploid plant, is impeded by its narrow gene pool, complex genome, poor fertility, and the long breeding/selection cycle. These constraints, however, make sugarcane a good candidate for molecular breeding. In the past decade considerable progress has been made in understanding and manipulating the sugarcane genome using various biotechnological and cell biological approaches. Notable among them are the creation of transgenic plants with improved agronomic or other important traits, advances in genomics and molecular markers, and progress in understanding the molecular aspects of sucrose transport and accumulation. More recently, substantial effort has been directed towards developing sugarcane as a biofactory for high-value products. While these achievements are commendable, a greater understanding of the sugarcane genome, and cell and whole plant physiology, will accelerate the implementation of commercially significant biotechnology outcomes. We anticipate that the rapid advancements in molecular biology and emerging biotechnology innovations would play a significant role in the future sugarcane crop improvement programs and offer many new opportunities to develop it as a new-generation industrial crop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abel, P. P.; Nelson, R. S.; De, B.; Hoffmann, N.; Rogers, S. G.; Fraley, R. T. Beachy, R. N. Delay of disease development in transgenic plants that express the tobacco mosaic virus. Science 232:738–743; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Aitken, K. S.; Jackson, P. A.; McIntyre, C. L. A combination of AFLP and SSR markers provides extensive map coverage and identification of homo(eo)logous linkage groups in a sugarcane cultivar. Theor. Appl. Genet. 110:789–801; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Aitken, K. S.; Jackson, P. A.; McIntyre, C. L.; Piperidis, G. Marker assisted introgressing of high sucrose genes in sugarcane. Australasian Plant Breed. Conf. 12:120; 2002.

    Google Scholar 

  • Albert, H. H.; Schenck, S. PCR amplification from a homolog of the bE mating-type gene as a sensitive assay for the presence of Ustilago scitaminea DNA. Plant Dis. 80:452–457; 1996.

    Article  Google Scholar 

  • Alix, K.; Paulet, F.; Glaszmann, J.-C.; D'Hont, A. Inter-Alu-like species specific sequences in the Saccharum complex. Theor. Appl. Genet. 99:962–968; 1999.

    Article  CAS  Google Scholar 

  • Al-Janabi, S. M.; Honcycutt, R. J.; McClelland, M.; Sobral, B. W. S. A genetic linkage map Saccharum spontaneum L ‘SES 208’. Genetics 134:1249–1260; 1993.

    PubMed  CAS  Google Scholar 

  • Allsopp, P. G.; Manners, J. M. Novel approaches for managing pests and diseases in sugarcane. In: Keating, B. A.; Wilson, J. R., eds. Intensive sugarcane production: meeting the challenge beyond 2000. Wallingford: CAB International; 1997:173–188.

    Google Scholar 

  • Allsopp, P. G.; Nutt, K. A.; Geijskes, R. J.; Smith, G. R. Transgenic sugarcane with increased resistance to canegrubs. In: Allsopp, P. G.; Suasa-ard, W., eds. Proc. IV Int. Soc. Sugarcane Technol. Entomol. Workshop, Khon Kaen; 2000:63–67.

  • Allsopp, P. G.; Suasa-ard, W. Sugarcane pest management strategies in the new millennium. Proc. Int. Soc. Sugar Cane Technol., Sugarcane Entomol. Workshop. Khon Kaen; 2000:4.

  • Arencibia, A.; Carmona, E.; Cornide, M. T.; Castiglione, S.; O'Relly, J.; Cinea, A.; Oramas, P.; Sala, F. Somaclonal variation in insect-resistant transgenic sugarcane (Saccharum hybrid) plants produced by cell electroporation. Transgenic Res. 8:349–360; 1999.

    Article  CAS  Google Scholar 

  • Arencibia, A.; Carmona, E.; Tellez, P.; Chan, M. T.; Yu, S. M.; Trujillo, L.; Oramas, P. An efficient protocol for sugarcane (Saccharum spp.) transformation mediated by Agrobacterium tumefaciens. Transgenic Res. 7:213–222; 1998.

    Article  CAS  Google Scholar 

  • Arencibia, A.; Molina, P.; De la Riva, G.; Selman-Houssein, G., Production of transgenic sugarcane (Saccharum officinarum L.) plants by intact cell electroporation. Plant Cell Rep. 14:305–309; 1995.

    Article  CAS  Google Scholar 

  • Arencibia, A.; Molina, P.; Gutierrez, C.; Fuentes, A.; Greenidge, V.; Menendez, E.; De la Riva, G.; Selman, G. Regeneration of transgenic sugarcane (Saccharum officinarum L.) plants from intact meristematic tissues transformed by electroporation. Biotechnol. Aplicada 9:156–165; 1992.

    Google Scholar 

  • Arencibia, A.; Vazquez, R. I.; Prieto, D.; Tellez, P.; Carmona, E. R.; Coego, A.; Hernandez, L.; De la Riva, G. A.; Selman, H. G. Transgenic sugarcane plants resistant to stem borer attack. Mol. Breed. 3:247–255; 1997.

    Article  Google Scholar 

  • Atkinson, A. H.; Heath, R. L.; Simpson, R. J.; Clarke, A. E.; Anderson, M. A. Proteinase inhibitors in Nicotiana alata stigmas are derived from a precursor protein which is processed into five homologous inhibitors. Plant Cell 5:203–211; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Bajaj, Y. P. S.; Jain, L. C. Cryopreservation of germplasm of sugarcane (Saccharum species). In: Bajaj, Y. P. S., ed. Biotechnology in agriculture and forestry, vol. 32. Cryopreservation of plant germplasm 1. Berlin: Springer-Verlag; 1995:256–266.

    Google Scholar 

  • Bakker, H. Sugar cane cultivation and management. New York: Kluwer Academic/Plenum Publishers; 1999.

    Google Scholar 

  • Barba, R.; Nickell, L. G. Nutrition and organ differentiation in tissue culture of sugarcane—a monocotyledon. Planta 89:299–302; 1969.

    Article  Google Scholar 

  • Beetham, P. R.; Kipp, P. B.; Sawycky, X. L.; Arnzen, C. J.; May, G. D. A tool for functional plant genomics: chimeric RNA/DNA oligonucleotides cause in vivo gene-specific mutations. Proc. Natl Acad. Sci. USA 96:8774–8778; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Bent, A. F.; Yu, I. C. Applications of molecular biology to plant disease and insect resistance. Adv. Agron. 66:251–298; 1999.

    Article  CAS  Google Scholar 

  • Berding, N.; Moore, P. H.; Smith, G. R. Advances in breeding technology for sugarcane. In: Keating, B. A.; Wilson, J. R. eds. Intensive sugarcane production: meeting the challenge beyond 2000. Wallingford: CAB International; 1997:189–220.

    Google Scholar 

  • Birch, R. G. Transgenic sugarcane: opportunities and limitations. In: Keating, B. A.; Wilson, J. R., eds. Intensive sugarcane production: meeting the challenge beyond 2000. Wallingford: CAB International; 1997:125–140.

    Google Scholar 

  • Birch, R. G.; Bower, R.; Elliot, A.; Potier, B.; Franks, T.; Cordeiro, G. Expression of foreign genes in sugarcane. In: Cock, J. H.; Brekelbaum, T., eds. Int. Soc. Sugar Cane Technol., Cartagena, Columbia; 22:368–373; 1995.

  • Birch, R. G.; Maretzki, A. Transformation of sugarcane. In: Bajaj, Y. P. S., ed. Plant protoplasts and genetic engineering IV. Biotechnology in agriculture and forestry, vol. 23. Heidelberg: Springer-Verlag; 1993:348–360.

    Google Scholar 

  • Birch, R. G.; Patil, S. S. Correlation between albicidin production and chlorosis induction by Xanthomonas albilineans, the sugarcane leaf scald pathogen. Physiol. Mol. Plant Pathol. 30:199–206; 1987a.

    Article  CAS  Google Scholar 

  • Birch, R. G.; Patil, S. S. Evidence that an albicidin-like phytotoxin induces chlorosis in sugarcane leaf scald disease by blocking plastid DNA replication. Physiol. Mol. Plant Pathol. 30:207–214; 1987b.

    Article  CAS  Google Scholar 

  • Bohmert, K.; Balbo, I.; Kopka, J.; Mittendorf, V.; Nawrath, C.; Poirier, Y.; Tishcendorf, G.; Trethewey, R. N.; Willmitzer, L. Transgenic Arabidopsis plants can accumulate polyhydroxybutyrate to up to 4% of their fresh weight. Planta 211:841–845; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Bosch, S.; Grof, C. P. L.; Botha, F. C., Expression of neutral invertase in sugarcane. Plant Sci. 166:1125–1133; 2004.

    Article  CAS  Google Scholar 

  • Botha, F. C.; Sawyer, B. J. B.; Birch, R. G. Sucrose metabolism in the culm of transgenic sugarcane with reduced soluble acid invertase activity. In: Hogarth, D. M., ed. Proc. Int. Soc. Sugar Cane Technol., Brisbane 24:588–591; 2001.

  • Botha, F. C.; Vorster, D. J. Analysis of carbon partitioning to identify metabolic steps limiting sucrose accumulation. In: Singh, V.; Kumar, V., eds. Proc. Int. Soc. Sugar Cane Technol., New Delhi 23:259–272; 1999.

  • Bouhida, M.; Lockhart, B. E. L.; Olszewski, N. N. An analysis of the complete sequence of a sugarcane bacilliform virus genome infectious to banana and rice. J Gene Virol. 74:1–8; 1993.

    Article  Google Scholar 

  • Bower, R.; Birch, R. G. Transgenic sugarcane plants via microprojectile bombardment. Plant J. 2:409–416; 1992.

    Article  CAS  Google Scholar 

  • Bower, R.; Elliott, A. R.; Potier, B. A. M.; Birch, R. G. High-efficiency, microprojectile-mediated cotransformation of sugarcane, using visible or selectable markers. Mol. Breed. 2:239–249; 1996.

    Article  CAS  Google Scholar 

  • Braithwaite, K. S.; Egeskov, N. M.; Smith, G. R. Detection of sugarcane bacilliform virus using the polymerase chain reaction. Plant Dis. 79:792–796; 1995.

    Article  CAS  Google Scholar 

  • Braithwaite, K. S.; Geijskes, R. J.; Smith, G. R. A variable region of the SCBV genome can be used to generate a range of promoters for transgene expression in sugarcane. Plant Cell Rep. 23:319–326; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Braithwaite, K. S.; Smith, G. R. Molecular-based diagnosis of sugarcane virus diseaseas. In: Rao, G. P.; Ford, R. E.; Tosic, M.; Teakle, D. S., eds. Sugarcane pathology, vol. II. Viruses and phytoplasma diseases. New Delhi: Oxford and IBH Publishing Co. Pvt. Ltd.; 2001:175–192.

    Google Scholar 

  • Briggs, S. P.; Koziel, M. Engineering new plant traits for commercial markets. Curr. Opin. Biotechnol. 9:233–235; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Brumbley, S. M.; Petrasovits, L. A.; Birch, R. G.; Taylor, P. W. J. Transformation and transposon mutagenesis of Leifsonia xyli subsp. xyli, causal organism of ratoon stunting disease of sugarcane. Mol. Plant-Microbe Interact. 15:262–268; 2002.

    PubMed  CAS  Google Scholar 

  • Brumbley, S. M.; Petrasovits, L. A.; Bonaventura, P. A.; O'Shea, M. J.; Purnell, M. P.; Nielsen, L. K. Production of polyhydroxyalkanoates in sugarcane. Proc. Int. Soc. Sugar Cane Technol. Mol. Biol. Workshop, Montpellier, France 4:31; 2003.

    Google Scholar 

  • Brumbley, S. M.; Petrasovits, L. A.; Murphy, R. M.; Nagel, R. J.; Candy, J. M.; Hermann, S. R. Establishment of a functional genomics platform for Leifsonia xyli subsp. xyli. Mol. Plant-Microbe Interact. 17:175–183; 2004a.

    PubMed  CAS  Google Scholar 

  • Brumbley, S. M.; Purnell, M. P.; Petrasovits, L. A.; O'Shea, M. J.; Nielsen, L. K. Development of sugarcane as a biofactory for biopolymers. Plant and Animal Genomes XII Conf., San Diego, January 10–14; 2004b (Abstract W117).

  • Burner, D. M.; Grisham, M. P. Induction and stability of phenotypic variation in sugarcane as affected by propagation procedure. Crop Sci. 35:875–880; 1995.

    Article  Google Scholar 

  • Butterfield, M. K.; Barnes, J. M.; Heinze, B. S.; Rutherford, R. S.; Huckett, B. I. RFLP markers for resistance to eldana and smut from an unstructured sugarcane population. Proc. Int. Soc. Sugar Cane Technol., Mol. Biol. Workshop, Montpellier, France 4:14; 2003.

    Google Scholar 

  • Butterfield, M. K.; Irvine, J. E.; Valdez Garza, M.; Mirkov, T. E. Inheritance and segregation of virus and herbicide resistance transgenes in sugarcane. Theor. Appl. Genet. 104:797–803; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Cai, Q.; Aitken, K.; Deng, H. H.; Chen, X. W.; Cheng, F.; Jackson, P. A.; Fan, Y. H.; McIntyre, C. L. Verification of intergeneric hybrids (F1) from Saccharum officinarum×Erianthus arundinaceus, and BCI from F1×sugarcane (Saccharum spp.) clones using molecular markers. J. Plant Breed. (in press); 2005.

  • Cao, H.; Li, X.; Dong, X. Generation of broad spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance. Proc. Natl Acad. Sci. USA 95:6531–6536; 1999.

    Article  Google Scholar 

  • Carson, D. L.; Huckett, B. I.; Botha, F. C. Sugarcane ESTs differentially expressed in immature and maturing internodal tissue. Plant Sci. 162:289–300; 2002.

    Article  CAS  Google Scholar 

  • Casu, R. E.; Grof, C. P. L.; Rae, A. L.; McIntyre, C. L.; Dimmock, C. M.; Manners, J. M. Identification of a novel sugar transporter homologue strongly expressed in maturing stem vascular tissues of sugarcane by expressed sequence tag and microarray analysis. Plant Mol. Biol. 52:371–386; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Casu, R. E.; Manners, J. M.; Bonnet, G. D.; Jackson, P. A.; Meintyre, C. L.; Dunne, R.; Chapman, S. C.; Rae, A. L.; Grof, C. P. L. Genomic approaches for the indentification of genes determining important traits in sugarcane. Field Crop Res. 92:137–147; 2005.

    Article  Google Scholar 

  • Chakrabarti, A.; Ganapathi, T. R.; Mukherjee, P. K.; Bapat, V. V. MSI-99, a maganin analogue, imparts enhanced disease resistance in transgenic tobacco and banana. Planta 216:587–596; 2003.

    PubMed  CAS  Google Scholar 

  • Chatenet, M.; Delage, C.; Ripolles, M.; Irey, M.; Lockhart, B. E. L.; Rott, P. Detection of Sugarcane yellow leaf virus in quarantine and production of virus-free sugarcane by apical meristem culture. Plant Dis. 35:1177–1180; 2001.

    Google Scholar 

  • Chen, W. H.; Gartland, K. M. A.; Davey, M. R.; Sotak, R.; Gartland, J. S.; Mulligan, B. J.; Power, J. B.; Cocking, E. C. Transformation of sugarcane protoplasts by direct uptake of a selectable chimacric gene. Plant Cell Rep. 6:297–301; 1987.

    Article  CAS  Google Scholar 

  • Chowdhury, M. K. U.; Vasil, I. Stably transformed herbicide resistant callus of sugarcane via microprojectile bombardment of cell suspension cultures and electroporation of protoplasts. Plant Cell Rep. 11:494–498; 1992.

    Article  Google Scholar 

  • Chowdhury, M. K. U.; Vasil, I. Molecular analysis of plants regenerated from embryogenic cultures of hybrid sugarcane cultivars (Saccharum spp.) Theor. Appl. Genet. 86:181–188; 1993.

    Article  CAS  Google Scholar 

  • Christensen, A. H.; Quail, P. H. Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res. 5:213–318; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Comstock, J. C.; Shine, J. M.; Davis, M. J.; Dean, J. L. The relationship between resistance to Clavibacter xyli subsp. xyli colonisation in sugarcane and spread of ratoon stunting disease in the field. Plant Dis. 80:704–708; 1996.

    Article  Google Scholar 

  • Cordeiro, G. M.; Pan, Y. B.; Henry, R. J. Sugarcane microsatellites for the assessment of genetic diversity in sugarcane germplasm. Plant Sci. 165:181–189; 2003.

    Article  CAS  Google Scholar 

  • Cox, M. C.; Hansen, P. B. Productivity traits in southern and central regions and the impact of new varieties. In: Egan, B. T., ed. Proc. Aust. Soc. Sugarcane Technol., 17:1–7; 1995.

  • Cuadrado, A.; Acevedo, R.; Moreno Díaz de la Espina, S.; Jouve, N.; de la Torre, C. Genome remodeling in three modern S. officinarum× S. spontancum sugarcane cultivars. J. Exp. Bot. 55:847–854; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Daniell, H. Environmentally friendly approaches to genetic engineering. In Vitro Cell. Dev. Biol. Plant 35:361–368; 1999.

    Google Scholar 

  • Daniell, H.; Streatfield, S. J.; Wycoff, K. Medical molecular farming: production of antibodies, biopharmaceuticals and edible vaccines in plants. Trend. Plant Sci. 6:219–225; 2001.

    Article  CAS  Google Scholar 

  • Daniels, J.; Roach, B. T. Taxonomy and evolution. In: Heinz, D. J., ed. Sugarcane improvement through breeding. Amsterdam: Elsevier; 1987:7–84.

    Google Scholar 

  • Daniels, J.; Smith, P.; Paton, N.; Williams, C. A. The origin of the genus Saccharum. Sugarcane Breed. Newsl. 35:19–20; 1975.

    Google Scholar 

  • Da Silva, J.; Honeycutt, R. J.; Burnquist, W.; Al-Janabi, S. M.; Sorrells, M. E.; Tanksley, S. D.; Sobral, B. W. S. Saccharum spontancum L. ‘SES 208’ genetic linkage map combining RFLP- and PCR-based markers. Mol. Breed. 1:165–179; 1995.

    Article  CAS  Google Scholar 

  • Da Silva, F. R.; Telles, G. P.; Arruda, P. Clustering 300,000 sugareane EST's, the challenge of dealing with orthologs, peralogs, homologs and some rubbish. Proc. VII Int. Congr. Plant Mol. Biol. Barcelona, June 23–28; 2003:58.

  • Daugrois, J. H.; Grivet, L.; Roques, D.; Hoaran, J.-Y.; Lombard, H.; Glaszmann, J.-C.; D'Hont, A. A putative major gene for rust resistance linked with a RFLP marker in sugarcane cultivar ‘R570’. Theor. Appl. Genet. 92:1059–1064; 1996.

    Article  CAS  Google Scholar 

  • De Cosa, B.; Moar, W.; Lee, S. B.; Miller, M.; Daniell, H. Overexpression of the BtCry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals. Nature Biotechnol. 19:71–74; 2001.

    Article  Google Scholar 

  • Deng, H. H.; Liao, Z. Z.; Li, Q. W.; Loa, F. Y.; Fu, C.; Chen, X. W.; Zhang, C. M.; Liu, S. M.; Yang, Y. H. Breeding and isozyme marker assisted selection of F2 hybrids from Saccharum spp.×Erianthus arundinaccous. Sugarcane Canesugar 1:1–5; 2002.

    Google Scholar 

  • Devine, A. L.; Daniell, H. Chloroplast genetic engineering for enhanced agronomic traits and expression of proteins for medical/industrial applications. In: Moller, S., ed. Chloroplast genetic engineering in plastids. Oxford: Blackwell Publishers; 2004:283–320.

    Google Scholar 

  • D'Hont, A.; Glaszmann, J.-C. Sugarcane genome analysis with molecular markers: a first decade of research. In: Hogarth, D. M., ed. Proc. Int. Soc. Sugar Cane Technol., Brisbane, Australia 24:556–559; 2001.

  • D'Hont, A.; Grivet, L.; Feldmann, P.; Rao, S.; Berding, N.; Glaszmann, J.-C. Characterisation of the double genome structure of modern sugarcane cultivars (Saccharum spp.) by molecular cytogenetics. Mol. Gen. Genet. 250:405–413; 1996.

    Article  PubMed  Google Scholar 

  • D'Hont, A.; Ison, D.; Alix, K.; Roux, C.; Glaszmann, J.-C. Determination of basic chromosome numbers in the genus Saccharum by physical maping of ribosomal RNA genes. Genome Res. 41:221–225; 1998.

    Article  Google Scholar 

  • D'Hont, A.; Lu, Y. H.; Feldmann, P.; Glaszmann, J.-C. Cytoplasmic diversity in sugar cane revealed by heterologous probes. Sugar Cane 1:12–15; 1993.

    Google Scholar 

  • D'Hont, A.; Rao, P. S.; Feldmann, P.; Grivet, L.; Islam, F. N.; Taylor, P.; Glaszmann, J.-C. Identification and characterisation of sugarcane intergeneric hybrids, Saccharum officinarum×Erianthus arundinaceus, with molecular markers and DNA in situ hybridisation. Theor. Appl. Genet. 91:320–326; 1995.

    Article  Google Scholar 

  • Doerge, R. W.; Craig, B. A. Model selection for quantitative trait locus analysis in polyploids. Proc. Natl Acad. Sci. USA 97:7951–7956; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Elliott, A. R.; Campbell, J. A.; Bretell, R. I. S.; Grof, C. P. L. Agrobacterium-mediated transformation of sugarcane using GEP as a screenable marker. Aust. J. Plant Physiol. 25:739–743; 1998.

    CAS  Google Scholar 

  • Elliott, A. R.; Campbell, J. A.; Dugdale, B.; Brettell, R. I. S.; Grof, C. P. L. Green-fluorescent protein facilitates rapid in vivo detection of genetically transformed plant cells. Plant Cell Rep. 18:707–714; 1999.

    Article  CAS  Google Scholar 

  • Elliott, A. R.; Geijskes, R. J.; Lakshmanan, P.; McKeon, M. G.; Wang, L. F.; Berding, N.; Grof, C. P. L.; Smith, G. R. Direct regeneration of transgenic sugarcane following microprojectile transformation of regenerable cells in thin transverse section explants. In: Vasil, I. K., ed. Proc. Xth Int. Assoc. Plant Tissue Cult. Biotechnol. Orlando, June 23–28; 2002 (Abstract P-1376).

  • Ellis, J.; Dodds, P.; Pryor, T. The generation of plant disease resistance gene specificities. Trends Plant Sci. 5:373–379; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Enriquez, G. A.; Trujillo, L. E.; Menendez, C.; Vazquez, R. I.; Tiel, K.; Arieta, J.; Selman, G.; Hernandez, L. Sugarcane (Saccharum hybrid) genetic transformation mediated by Agrobacterium tumefaciens: production of transgenic plants expressing proteins with agronomic and industrial value. In: Areneibia, A. D., ed. Plant genetic engineering: towards the third millennium. Amsterdam: Elsevier Science; 2000:76–81.

    Google Scholar 

  • Enriquez-Obregon, G. A.; Vazquez, P. R. I.; Prieto, S. D. L.; Riva-Gustavo, A. D. I.; Selman, H. G. Herbicide resistant sugarcane (Saccharum officinarum L.) plants by Agrobacterium-mediated transformation. Planta 206:20–27; 1998.

    Article  CAS  Google Scholar 

  • Falco, M. C.; Silva-Filho, M. C. Expression of soybean proteinase inhibitors in transgenic sugarcane plants: effects on natural defense against Diatraea saccharalis. Plant Physiol. Biochem. 41:761–766; 2003.

    Article  CAS  Google Scholar 

  • Fegan, M.; Croft, B. J.; Teakle, D. S.; Hayward, A. C.; Smith, G. R. Sensitive and specific detection of Clavibacter xyli subsp. xyli, causal agent of ratoon stunting disease of sugarcane, with a polymerase chain reaction-based assay. Plant Pathol. 47:495–504; 1998.

    Article  CAS  Google Scholar 

  • Fitch, M. M. M.; Moore, P. H. Long term culture of embryogenic sugarcane callus. Plant Cell Tiss. Organ Cult. 32:335–343; 1993.

    Article  CAS  Google Scholar 

  • Franks, T.; Birch, R. G. Gene transfer into intact sugarcane cells using microprojectile bombardment. Aust. J. Plant Physiol. 18:471–480; 1991.

    CAS  Google Scholar 

  • Fu, X.; Due, L. T.; Fontana, S.; Bong, B. B.; Tinjuangjun, P.; Sudhakar, D.; Twyman, R. M.; Christon, P.; Kohli, A. Linear transgene constructs lacking vector backbone sequences generate low-copy-number transgenic plants with simple integration patterns. Transgenic Res. 9:11–19; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Gallo-Meagher, M.; Irvine, J. E. Herbicide resistant transgenic sugarcane plants containing the bar gene. Crop Sci. 36:1367–1374; 1996.

    Article  CAS  Google Scholar 

  • Gambley, R. L.; Bryant, J. D.; Masel, N. P.; Smith, G. R. Cytokinin-enhanced regeneration of plants from microprojectile bombarded sugarcane meristematic tissue. Aust. J. Plant Physiol. 21:603–612; 1994.

    CAS  Google Scholar 

  • Gambley, R. L.; Ford, R.; Smith, G. R. Microprojectile transformation of sugarcane meristems and regeneration of shoots expressing β-glucuronidase. Plant Cell Rep. 12:343–346; 1993.

    Article  CAS  Google Scholar 

  • Gayler, K. R.; Glasziou, K. T. Physiological functions of acid and neutral invertases in growth and sugar storage in sugarcane. Physiol. Plant. 27:25–31; 1972.

    CAS  Google Scholar 

  • Geijskes, R. J.; Braithwaite, K. S.; Dale, J. L.; Harding, R. M.; Smith, G. R. Sequence analysis of an Australian isolate of sugarcane bacilliform badnavirus. Arch. Virol. 147:2393–2404; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Geijskes, R. J.; Wang, L. F.; Lakshmanan, P.; McKeon, M. G.; Berding, N.; Swain, R. S.; Elliott, A. R.; Grof, C. P. L.; Jackson, J.; Smith, G. R. Smartsett™ seedlings: tissue culture seed plants for the Australian sugar industry. Sugarcane Int. May/June:13–17; 2003.

  • Glaszmann, J.-C.; Fautret, A.; Nover, J. L.; Feldmann, P.; Lanaud, C. Biochemical genetic markers in sugarcane. Theor. Appl. Genet. 78:537–543; 1989.

    Article  CAS  Google Scholar 

  • Glaszmann, J.-C.; Lu, Y. H.; Lanaud, C. Variation of nuclear ribosomal DNA in sugarcane. J. Genet. Breed. 44:191–198; 1990.

    Google Scholar 

  • Glazebrook, J.; Zook, M.; Mert, F.; Kagan, I.; Rogers, E. E.; Crute, I. R.; Holub, E. B.; Hammerschmidt, R.; Ausubel, F. M. Phytoalexin-deficient mutants of Arabidopsis reveal that PAD4 encodes a regulatory factor and that four PAD genes contribute to downy mildew resistance. Genetics 146:381–392; 1997.

    PubMed  CAS  Google Scholar 

  • Grivet, L.; Arruda, P. Sugarcane genomics: depicting the complex genome of and important tropical crop. Curr. Opin. Plant Biol. 2:122–127; 2002.

    Article  Google Scholar 

  • Grivet, L.; D'Hont, A.; Roques, D.; Feldmann, P.; Lanaud, C.; Glaszmann, J.-C. RFLP mapping in cultivated sugarcane (Saccharum spp.). Genome organization in a highly polyploid and aneuploid interspecific hybrid. Genetics 142:987–1000; 1996.

    PubMed  CAS  Google Scholar 

  • Grivet, L.; Glaszmann, J.-C.; Vincentz, M.; Da Sliva, F.; Arruda, P. ESTs as a source for sequence polymorphism discovery in sugarcane: example of the Adh genes. Theor. Appl. Genet. 106:190–197; 2003.

    PubMed  CAS  Google Scholar 

  • Groenewald, J. H.; Groenewald, S.; Whittaker, A.; Huckett, B. I.; Botha, F. C. Molecular agriculture: prospects for production of alternative commodities in sugarcane through genetic engineering. Proc. South African Sugar Technol. 69:14–20; 1995.

    Google Scholar 

  • Grof, C. P. L.; Campbell, J. A. Sugarcane sucrose metabolism: scope for molecular manipulation. Aust. J. Plant Physiol. 28:1–12; 2001.

    CAS  Google Scholar 

  • Grof, C. P. L.; Glassop, D.; Quick, W. P.; Sonnewald, U.; Campbell, J. A. Molecular manipulation of sucrose phosphate synthase in sugarcane. In: Wilson, J. R.; Hogarth, D. M.; Campbell, J. A.; Garside, A. L., eds. Sugarcane: research towards efficient and sustainable production. Brisbane: CSIRO Division of Tropical Crops and Pastures; 1996:124–126.

    Google Scholar 

  • Guda, C.; Lee, S. B.; Daniell, H. Stable expression of a biodegradable protein-based polymer in tobacco chloroplasts. Plant Cell Rep. 19:257–262; 2000.

    Article  CAS  Google Scholar 

  • Guiderdoni, E.; Demarly, Y. Histology of somatic embryogenesis in cultured leaf segments of sugarcane plantlets. Plant Cell Tiss. Organ Cult. 14:71–88; 1988.

    Article  Google Scholar 

  • Guiderdoni, E.; Merot, B.; Eksomtramage, T.; Paulet, F.; Feldmann, P.; Glaszmann, J.-C. Somatic embryogenesis in sugarcane (Saccharum species). In: Bajaj Y. P. S., ed. Biotechnology in agriculture and forestry, vol. 31. Somatic embryogenesis and synthetic seed II. Berlin: Springer; 1995:92–113.

    Google Scholar 

  • Guimaráes, C. T.; Honeyeutt, R. J.; Sills, G. R.; Sorbal, B. W. S. Genetic maps of Saccharum officinarum L. and Saccharum robustum Brandes & Jesw. Ex Grassl. Genet. Mol. Biol. 22:125–132; 1997a.

    Google Scholar 

  • Guimarács, C. T.; Sills, G. R.; Sobral, B. W. S. Comparative mapping of Andropogoneae: Saccharum L. (sugarcane) and its relation to sorghum and maize. Proc. Natl Acad. Sci. USA 94:14261–14266; 1997b.

    Article  Google Scholar 

  • Ha, S.; Moore, P. H.; Heinz, D.; Kato, S.; Ohmido, N.; Fukui, K. Quantitative chromosome map of the polyploid Saccharum spontaneum by multicolor fluorescence in situ hybridization and imaging methods. Plant Mol. Biol. 39:1165–1173; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Hancock, R. E. W.; Lehrer, R. Cationic peptides: a new source of antibiotics. Trends Biotechnol. 16:82–88; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Hanlon, D.; MacMahon, G. G.; McGuire, P.; Beattie, R. N.; Stringer, J. K. Managing low sugar prices on farms—short term and long term strategies. In: Hogarth, D. M., ed. Proc. Aust. Soc. Sugarcane Technol., 22:1–8; 2000.

  • Hansom, S.; Bower, R.; Zhang, L.; Potier, B.; Elliot, A.; Basnayake, S.; Cordeiro, G.; Hogarth, D. M.; Cox, M.; Berding, N.; Birch, R. G. Regulation of transgene expression in sugarcane. In: Singh, V.; Kumar, V., eds. Proc. Int. Soc. Sugar Cane Technol. New Delhi 23:278–289; 1999.

  • Harrison, S. J.; Marcus, J. P.; Goulter, K. C.; Brumbley, S.; Green, J. L.; Maclean, D. J.; Manners, J. M. Antimicrobial proteins: new options for disease control in sugarcane. In: Wilson, J. R.; Hogarth, D. M.; Campbell, J. A.; Garside, A. L., eds. Sugarcane: research towards efficient and sustainable production. Brisbane: CSIRO Division of Tropical Crops and Pastures; 1996:135–137.

    Google Scholar 

  • Hedden, P.; Phillips, A. Manipulation of hormone biosynthetic genes in transgenic plants. Curr. Opin. Biotechnol. 11:130–137; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Heinz, D. J.; Mee, G. W. P. Plant differentiation from callus tissue of Saccharum species. Crop Sci. 9:346–348; 1969.

    Article  Google Scholar 

  • Heinz, D. J.; Mee, G. W. P. Morphologic, cytogenetic, and enzymatic variation in Saccharum species hybrid clones derived from callus tissue. Am. J. Bot. 58:257–262; 1971.

    Article  Google Scholar 

  • Hempel, F. D.; Welch, D. R.; Feldman, L. J. Floral induction and determination: where is flowering controlled? Trends Plant Sci. 5:17–21; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Hendre, R. R.; Iyer, R. S.; Kotwal, M.; Khuspe, S. S.; Mascarenhas, A. F. Rapid multiplication of sugarcane by tissue culture. Sugarcane May/June:5–8; 1983.

    Google Scholar 

  • Hoarau, J.-Y.; Grivet, L.; Offmann, B.; Raboin, L.-M.; Diorflar, J.-P.; Payet, J.; Hellmann, M.; D'Hont, A.; Glaszmann, J.-C. Genetic dissection of a modern sugarcane cultivar (Saccharum spp.) II. Detection of QTLs for yield components. Theor. Appl. Genet. 105:1027–1037; 2002.

    Article  PubMed  Google Scholar 

  • Hoarau, J.Y.; Offmann, B.; D'hont, A.; Risterucci, A.M.; Roques, D.; Glaszmann, J.-C.; Grivett, L. Genetic dissection of a modern sugarcane cultivar (Saccharum spp.) I. Genome mapping with AFLP markers. Theor. Appl. Genet. 103:84–97; 2001.

    Article  CAS  Google Scholar 

  • Hogarth, D. M.; Cox, M. C.; Bull, J. K. Sugarcane improvement: pastachievements and future prospects. In: Kang, M. S., ed. Crop improvement for the 21st centruy. Trivandrum: Research Signpost 1997:29–56.

    Google Scholar 

  • Hoy, J. W.; Bischoff, K. P.; Milligan, S. B.; Gravois, K. A. Effect of tissue culture explant source on sugarcane yield components. Euphytica 129:237–240; 2003.

    Article  CAS  Google Scholar 

  • Hughes, F. L.; Rybicki, E. P.; Kirby, R. Complete nucleotide sequence of sugarcane streak monogeminivirus. Arch Virol. 132:171–132; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Hurney, A. P.; Berding, N. Impact of suckering and lodging on productivity of cultivars in the wet tropics. In: Hogarth, D. M., ed. Proc. Aust. Soc. Sugarcane Technol. 22:323–333; 2000.

  • Ingelbrecht, I. L.; Irvine, J. E.; Mirkov, T. E. Posttranscriptional gene silencing in transgenic sugarcane. Dissection of homology-dependent virus resistance in a monocol that has a complex polyploid genome. Plant Physiol. 119:1187–1197; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Irey, M. S.; Baucum, L. E.; Detrick, K. S.; Manjumath, K. L.; Lockhart, B. E. Detection of the lutcovirus associated with yellow leaf syndrome of sugarcane (YLS) by a reverse transcriptase polymetase chain reaction and incidence of YLS in commercial varieties in Florida. Proc. 5th Int. Soc. Sugar Cane Technol. Pathol. and 2nd Int. Soc. Sugar Cane Technol. Mol. Biol. Workshop, Umhlange Rocks, South Africa, May; 1997.

  • Irvine, J. E.; Benda, G. T. A. Transmission of sugarcane diseases in plants derived by rapid regeneration from diseased leaf tissue. Sugar Cane 6:14–16; 1987.

    Google Scholar 

  • Irvine, J. E.; Benda, G. T. A.; Legendre, B. L.; Machado, G. R. The frequency of marker changes in sugarcane plants regenerated from callus culture. II Evidence for vegetative and genetic transmission, epigenic effects and chimeral disruption. Plant Cell Tiss. Organ Cult. 26:115–125; 1991.

    Article  Google Scholar 

  • Irvine, J. E.; Mirkov, T. E. The development of genetic transformation of sugarcane in Texas. Sugar J. 60:25–29; 1997.

    Google Scholar 

  • Ishimaru, K.; Ono, K.; Kashiwagi, T. Identification of a new gene controlling plant height in rice using the candidate gene approach. Planta 218:388–395; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, P.; Bonnett, G.; Chudleigh, P.; Hogarth, M.; Wood, A. The relative importance of cane yield and traits affecting CCS in sugarcane varieties. In: Hogarth, D. M., ed. Proc. Aust. Soc. Sugarcane Technol. 22:23–29; 2000.

  • Jackson, P. A. Breeding for improved sugar content in sugarcane. Field Crop Res. 92:277–290;2005.

    Article  Google Scholar 

  • Jannoo, N.; Grivet, L.; Dookun, A.; D'Hont, A.; Glaszmann, J.-C. Linkage disequilibrium among modern sugarcane cultivars. Theor. Appl. Genet. 99:1053–1060; 1999a.

    Article  CAS  Google Scholar 

  • Jannoo, N.; Grivet, L.; Seguin, M.; Paulet, F.; Domaingue, R.; Rao, P. S.; Dookun, A.; D'Hont, A.; Glaszmann, J.-C. Molecular investigation of the genetic base of sugarcane cultivars. Theor. Appl. Genet. 99:171–184; 1999b.

    Article  CAS  Google Scholar 

  • Joyce, P. A.; McQualter, R. B.; Bernard, M. J.; Smith, G. R. Engineering for resistance to SCMV in sugarcane. Acta Hort. 46:385–391; 1998a.

    Google Scholar 

  • Joyce, P. A.; McQualter, R. B.; Handley, J. A.; Dale, J. L.; Harding, R. M.; Smith, G. R. Transgenic sugarcane resistant to sugarcane mosaic virus. In: Hogarth, D. M., ed. Proc. Aust. Soc. Sugarcane Technol. 20:204–210: 1998b.

  • Keating, B. A.; Wilson, J. R. Intensive sugarcane production: meeting the challenge beyond 2000. Wallingford: CAB International; 1997.

    Google Scholar 

  • Krishmamurthy, K.; Balconi, C.; Sherwood, J. E.; Giroux, M. J. Wheat puroindolines enhance fungal disease resistance in transgenic rice. Mol. Plant-Microbe Interact. 14:1255–1260; 2001.

    Google Scholar 

  • Krishmamurthy, M.; Tlaskal, J. Fiji disease resistant Saccharum officinarum var.PPindar sub-clones from tissue cultures Proc. Int. Soc. Sugar Cane Technol. 15:130–137; 1974.

    Google Scholar 

  • Kristini, A. The use of tissue culture to climinate some important diseases in sugarcane. M.Sc. thesis, University of Queensland, Australia; 2004.

    Google Scholar 

  • Lakshmanan, P.; Geijskes, R. J.; Elliott, A. R.; Wang, L. F.; McKeon, M. G.; Swain, R. S.; Borg, Z.; Berding, N.; Grof, C. P. L.; Smith, G. R. A thin cell layer culture system for the rapid and high frequency direct regeneration of sugarcane and other monocot species. In: Vasil, I. K., ed. Proc. X Int. Assoc. Plant Tiss. Cult. Biotechnol. Orlando, June 23–28; 2002 (Abstract P-1441).

  • Lakshmanan, P.; Geijskes, R. J.; Elliott, A. R.; Wang, L. F.; McKeon, M. G.; Swain, R. S.; Borg, Z.; Berding, N.; Grof, C. P. L.; Smith, G. R. Direct regeneration tissue culture and transformation systems for sugarcane and other monocot species. Proc. Int. Soc. Sugar Cane Technol. Mol. Biol. Workshop, Montpellier 4:25; 2003.

    Google Scholar 

  • Laporte, M. M.; Galagan, J. A.; Shapiro, J. A.; Boersig, M.R.; Shewmaker, C. K.; Sharkey, T. D. Sucrose-phosphate synthase activity and yield analysis of tomato plants transformed with maize sucrose-phosphate synthase. Planta 203:253–259; 1997.

    Article  CAS  Google Scholar 

  • Last, K. I.; Brettell, R. I. S.; Chamberlain, D. A.; Chandlury, A. M.; Larkin, P. J.; Marsch, E. L.; Peacock, W. J.; Dennis, E. S. pEmu: an improved promoter for gene expression in cereal cells. Theor. Appl. Genet. 81:581–588; 1991.

    Article  CAS  Google Scholar 

  • Lee, T. S. G. Micropropagation of sugarcane (Saccharum spp.). Plant Cell Tiss, Organ Cult. 10:47–55; 1987.

    Article  Google Scholar 

  • Legaspi, J. C.; Mirkov, T. E. Evaluation of transgenic sugarcane against stalkborers. In: Allsopp, P. G.; Suasa-ard, W., eds. Proc. Int. Soc. Sugar Cane Technol. Sugarcane Entomology Workshop, Khon Kaen 4:68–71; 2000.

  • Leibbrandt, N. B.; Snyman, S. J. Stability of gene expression and aggronomic performance of a transgenic herbicide-resistant sugarcane line in South Africa. Crop Sci. 43:671–678; 2003.

    Article  CAS  Google Scholar 

  • Leu, L. S. Apical meristem culture and redifferentiation of callus masses to free some sugarcane systemic diseases. Plant Protect. Bull. (Taiwan) 20:77–82; 1978.

    Google Scholar 

  • Lima, M. L. A.; Garcia, A. A. F.; Oliveira, K. M.; Matsuoka, S.; Arizono, H.; De Souza, C. L.; De Souza, A. P. Analysis of genetic similarity detected by AFLP and coefficient of parentage among genotypes of sugar cane (Saccharum spp.). Theor. Appl. Genet. 104:30–38; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Lingle, S. A. Sugar metabolism during growth and development in sugarcane internodes. Crop Sci. 39:480–486; 1999.

    Article  CAS  Google Scholar 

  • Liu, D. W.; Oard, S. V.; Oard, J. H. High transgene expression levels in sugarcane (Saccharum officinarum L.) driven by the rice ubiquitin promoter RUBO2. Plant Sci. 165:743–750; 2003.

    Article  CAS  Google Scholar 

  • Liu, M. C. In vitro methods applied to sugarcane improvement. In: Thorpe, T. A., ed. Plant tissue culture: methods and applications in agriculture. New York: Academic Press; 1981:299–323.

    Google Scholar 

  • Liu, M. C. Factors affecting induction, somatic, embryogenesis and plant regeneration of callus from cultured immature inflorescences of sugarcane. J. Plant Physiol. 141:714–720; 1993.

    Google Scholar 

  • Lössl, A.; Eibl, C.; Harloff, H. J.; Jung, C.; Koop, H. U. Polyester synthesis in transplastomic tobacco (Nicotiana tabacum L.): significant contents of polyhydroxybutyrate are associated with growth reduction. Plant Cell Rep. 21:891–899; 2003.

    PubMed  Google Scholar 

  • Lourens, A. G.; Martin, F. A. Evaluation of in vitro propagated sugarcane hybrids for somaclonal variation. Crop Sci. 27:793–796; 1987.

    Article  Google Scholar 

  • Lu, Y. H.; D'Hont, A.; Paulet, F.; Grivet, L.; Arnaud, M.; Glaszmann, J.-C. Molecular diversity and genome structure in modern sugarcane varieties. Euphytica 78:217–226; 1994.

    Article  Google Scholar 

  • Ma, H.; Albert, H. H.; Paull, R.; Moore, P. H. Metabolic engineering of invertase activities in different subcellular compartments affects sucrose accumulation in sugarcane cells. Aust. J. Plant Physiol. 27:1021–1030; 2000.

    CAS  Google Scholar 

  • MacKenzie, D. R.; Anderson, P. M.; Wernham, C. C. A mobile air blast inoculator for pot experiments with maize dwarf mosaic virus. Plant Dis. Rep. 50:363–367; 1966.

    Google Scholar 

  • Maliga, P. Plastid transformation in higher palnts. Annu. Rev. Plant Biol. 55:289–313; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Manickavasagam, M.; Ganapathi, A. Direct somatic embryogenesis and plant regeneration from leaf explants of sugarcane. Indian J. Exp. Biol. 36:832–835; 1998.

    Google Scholar 

  • Manickavasagam, M.; Ganapathi, A.; Anbazhagan, V. R.; Sudhakar, B.; Selvaraj, N.; Vasudevan, A.; Kasthurirengan, S. Agrobacterium-mediated genetic transformation and development of herbicideresistant sugarcane (Saccharum species hybrids) using axillary buds. Plant Cell Rep. 23:134–143; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Maretzki, A.; Sun, S. S.; Nagai, C.; Bidney, D.; Houtchens, K. A.; Dela Cruz, A. Development of a transformation system for sugarcane. VII Int. Congr. Plant Tiss. Cell Cult. Amsterdam 68; 1990.

  • Mayer, M. J.; Narbad, A.; Parr, A. J.; Parker, M. L.; Walton, N. J.; Mellon, F. A.; Michael, A. J.. Rerouting the plant phenylpropanoid pathway by expression of a novel bacterial enoyl-CoA hydratase/lyase enzyme function. Plant Cell 13:1669–1682; 2001.

    Article  PubMed  CAS  Google Scholar 

  • McDowell, J. M.; Woffenden, B. J. Plant disease resistance genes: recent insights and potential applications. Trends Biotechnol. 21:178–183; 2003.

    Article  PubMed  CAS  Google Scholar 

  • McElroy, D.; Blowers, A. D.; Jenes, B.; Wu, R. Construction of expression vectors based on the rice actia 1 (Actl) 5′ region for use in monocot transformation. Mol. Gen. Genet. 231:150–160; 1991.

    Article  PubMed  CAS  Google Scholar 

  • McIntyre, L.; Aitken, K.; Berding, K.; Casu, R.; Drenth, J.; Jackson, P.; Jordan, D.; Piperidis, G.; Reffay, N.; Smith, G.; Tao, Y.; Whan, V.; Whan, V. Identification of DNA markers linked to agronomic traits in sugarcane in Australia. In: Hogarth, D. M., ed. Proc. Int. Soc. Sugar Cane Technol., Brisbane 24:560–562; 2001.

  • McLeod, R. S.; McMahon, G. G.; Allsopp, P. G. Costs of major pests and diseases to the Australian sugar industry. Plant Protect. Quart. 14:42–46; 1999.

    Google Scholar 

  • McQualter, R. B.; Burns, P.; Smith, G. R.; Dale, J. L.; Harding, R. M. Molecular analysis of Fiji disease fijivirus genome segments 5, 6, 8 and 10. ARch. Virol. 149:713–721; 2003a.

    Article  PubMed  CAS  Google Scholar 

  • McQualter, R. B.; Dale, J. L.; Harding, R. H.; McMahon, J. A.; Smith, G. R. Production and evaluation of transgenic sugarcane containing a Fiji disease virus (FDV) genome segment S9-derived synthetic resistance gene. Aust. J. Agric. Res. 55:139–145; 2004a.

    Article  CAS  Google Scholar 

  • McQualter, R. B.; Fong Chong, B.; O'Shea, M.; Meyer, K.; van Dyk, D. E.; Viitanen, P. V.; Brumbley, S. M. Initial evaluation of sugarcane as a production platform for a p-hydroxybenzoic acid. Plant Biotechnol. J. 2:1–13; 2004b.

    Article  Google Scholar 

  • McQualter, R. B.; harding, R. M.; Dale, J. L.; Smith, G. R. Virus derived resistance to Fiji disease in transgenic plants. In: Hogarth, D. M., ed. Proc. Int. Soc. Sugar Cane Technol., Brisbane 24:584–585; 2001.

  • McQualter, R. B.; Harding, R. M.; Dale, J. L.; Smith, G. R. A transgene derived from segmeat 9 ORF I of the genome of Fiji disease fijivirus confers resistance in transgenic plants. Proc. Int. Soc. Sugar Cane Technol. Molecular Biology Workshop, Montpellier 4:18; 2003b.

    Google Scholar 

  • McQualter, R. B.; Smith, G. R.; Dale, J. L.; Harding, R. M. Molecular analysis of Fiji disease fijivirus genome segments 1 and 3. Virus Genes 26:283–289; 2003c.

    Article  PubMed  CAS  Google Scholar 

  • Ming, R.; Del Monte, T. A.; Hernandez, E.; Moore, P. H.; Irvine, J. E.; Paterson, A. H. Comparative analysis of QTLs affecting plant height and flowering among closely-related diploid and polyploid genomes. Genome 45:794–803; 2002a.

    Article  PubMed  CAS  Google Scholar 

  • Ming, R.; Liu, S. C.; Bowers, J. E.; Moore, P. H.; Irvine, J. E.; Paterson, A. H. Construction of a Saccharum consensus genetic map from two interspecific crosses. Crop Sci. 42:570–583; 2002b.

    Article  CAS  Google Scholar 

  • Ming, R.; Liu, S. C.; Lin, Y. R.; Da Silva, J.; Wilson, W.; Braga, D.; van Deynze, A.; Wenslaff, T. F.; Wu, K. K.; Moore, P. H.; Burnquist, W.; Sorrells, M. E.; Irvine, J. E.; Paterson, A. H. Detailed aligment of Saccharum and Soghum chromosomes: comparative organization of closely related diploid and polyploid genomes. Genetics 150:1663–1682; 1998.

    PubMed  CAS  Google Scholar 

  • Ming, R.; Liu, S. C.; Moore, P. H.; Irvine, J. E.; Paterson, A. H. QTL analysis in a complex autopolyploid: genetic control of sugar content in sugarcane. Genome Res. 11:2075–2084; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Ming, R.; Wang, Y. W.; Draye, X.; Moore, P. H.; Irvine, J. E.; Paterson, A. H. Molecular dissection of complex traits in autopolyploids: mapping QTLs affecting sugar yield and related traits in sugarcane. Theor. Appl. Gen. 105:332–345; 2002c.

    Article  CAS  Google Scholar 

  • Moonan, F.; Molina, J.; Mirkov, T. E. Sugarcane yellow leaf virus: an emerging virus that has evolved by recombination between lutcoviral and poleroviral ancestors. Virol. 269:156–171; 2000.

    Article  CAS  Google Scholar 

  • Moore, P. H. Progress and development in sugarcane biotechnology. In: Singh, V.; Kumar, V., eds. Proc. Int. Soc. Sugar Cane Technol New Delhi 23:241–253; 1999.

  • Mourgues, F.; Briset, M. N.; Chevreau, E. Strategies to improve plant resistance to bacterial diseases through genetic engineering. Trends Biotechnol. 16:203–210; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Mudge, J.; Andersen, W. R.; Kehrer, R. L.; Fairbanks, D. J. A RAPD genetic map of Saccharum officinarum. Crop Sci. 36:1362–1366; 1996.

    Article  CAS  Google Scholar 

  • Murray, C.; Christeller, J. T. Genomic nucleotide sequence of a proteinase inhibitor II gene. Plant Physiol. 106:1681; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Nair, N. V.; Nair, S.; Sreenivasan, T. V.; Mohan, M. Analysis of genetic diversity and phylogeny in Saccharum and related genera using RAPD markers. Genet. Res. Crop. Evol. 46:73–79; 1999.

    Article  Google Scholar 

  • Nawrath, C.; Poirier, Y.; Somerville, C. Targeting of the polyhydroxybutyrate biosynthetic pathway to the plastids of Arabidopsis thaliana results in high levels of polymer accumulation. Proc. Natl Acad. Sci. USA 91:12760–12764; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Nickell, L. G. Tissue and cell cultures of sugarcane: another research tool. Hawaii Plant Rec. 57:223–229; 1964.

    Google Scholar 

  • Nutt, K. A.: Allsopp, P. G.; Geijskes, R. J.; McKeon, M. G.; Smith, G. R. Canegrub resistant sugarcane In: Proc. Int. Soc. Sugar Cane Technol., Brisbane 24:584–585; 2001.

  • Nutt, K. A.; Allsopp, P. C.; McGhie, T. K.; Shepherd, K. M.; Joyce, P. A.; Tayoor, G. O.; McQualter, R. B.; Smith, G. R. Transgenic sugarcane with increased resistance to canegrubs. In: Hogarth, D. M., ed. Proc. Aust. Soc. Sugarcane Technol. 21:171–176; 1999.

  • Oropeza, M.; de-Garcia, E. Use of molecular markers for the identification of varieties of sugarcane (Succharum sp.). Phyton 61:81–85; 1997.

    CAS  Google Scholar 

  • Oropeza, M.; Guevara, P.; de Garcia, E.; Ramirez, J. L. Identification of somaclonal variants of sugarcane (Saccharum spp.) resistant to sugarcane mosaic virus via RAPD markers. Plant Mol. Biol. Rep. 13:182–189; 1995.

    CAS  Google Scholar 

  • Osusky, M.; Osuska, L.; Hancock, R. E.; Kay, W. W.; Misra, S. Transgenic plants expressing cationic peptide chimeras exhibit broad-spectrum resistance to phytopathogens. Transgenic Res. 13:181–190; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Osusky, M.; Zhou, G.; Osuska, L.; Hancock, R. E.; Kay, W. W.; Misra, S. Transgenic plants expressing cationic peptide chimeras exhibit broad-spectrum resistance to phytopathogens. Nature Biotechnol. 18:1162–1166; 2000.

    Article  CAS  Google Scholar 

  • Pau, Y. B.; Grisham, M. P.; Burner, D. M.; Damann, K. E. A polymerase chain reaction protocol for the detection of Clavibacter xyli subsp. xyli, the causal bacterium of sugarcane ratoon stunting disease. Plant Dis. 82:285–290; 1998.

    Google Scholar 

  • Parmessur, Y.; Aljanabi, S.; Sammtally, S.; Dookun-Samtally, A. Sugarcane yellow leaf virus and sugarcane yellows phytoplasma: elimination by tissue culture. Plant Pathol. 51:561–566; 2002.

    Article  Google Scholar 

  • Piperidis, G.; Christopher, M. J.; Carroll, B. J.; Berding, N.; D'Hont, A. Molecular contribution to selection of intergeneric hybrids between sugarcane and the wild species Erianthus arundinaceus. Genome 43:1033–1037; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Piperidis, G.; Rattey, A. R.; Taylor, G. O.; Cox, M. C. DNA markers: a tool for identifying sugarcane varieties. In: Hogarth, D. M., ed. Proc. Aust. Soc. Sugarcane Technol., 26; 2004.

  • Poirier, Y.; Dennis, D. E.; Klomparens, K.; Somerville, C. Polyhydroxybuterate, a biodegradable thermoplastic, produced in transgenic plants. Science 256:520–523; 1992.

    Article  CAS  PubMed  Google Scholar 

  • Price, S.; Warner, J. N. The possible use of induced mutations for sugarcane improvement. Proc. Int. Soc. Sugar Cane Technol. 10:782–794; 1959.

    Google Scholar 

  • Qu, L.; Hancock, J. F. Detecting mad mapping repulsion-phase linkage in polyploids with polysomic inheritance. Theor. Appl. Genet. 103:136–143; 2001.

    Article  CAS  Google Scholar 

  • Rae, A. L.; Grof, C. P. L.; Casu, R. E.; Bonnett, G. D. Sucrose accumulation in the sugarcane stem: pathways and control points for transport and compartmentation. Field Crop Res. 92:159–163; 2005a.

    Article  Google Scholar 

  • Rae, A. L.; Perroux, J.; Grof, C. P. L. Sucrose patitioning between vascular bundles and storage parenchyma in the sugarcane stem: a potential role for the ShSUTI sucrose transporter. Planta 220:817–825; 2005b.

    Article  PubMed  CAS  Google Scholar 

  • Rangel, P.; Gomez, L.; Victoria, J. I.; Angel, F. Transgenic plants of CC 84-75 resistant to the virus associated with the sugarcane yellow leaf syndrome. Proc. Int. Soc. Sugar Cane Technol., Mol. Biol. Workshop, Montpellier 4:30; 2003.

    Google Scholar 

  • Rathus, C.; Birch, R. G. Stable transformation of callus from electroporated sugarcane protoplasts. Plant Sci. 82:81–89; 1992.

    Article  CAS  Google Scholar 

  • Rathus, C.; Bower, R.; Birch, R. G. Effects of promoter, intron and enhancer elements on transient gene expression in sugarcane and carrot protoplasts. Plant Mol. Biol. 23:613–618; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Roach, B. T. Origin and improvement of the genetic base of sugarcane. In: Egan, B. T., ed. Proc. Aust. Soc. Sugarcane Technol. 11:34–47; 1989.

  • Roberts, S. E.; Grof, C. P. L.; Bucheli, C. S.; Robinson, S. P.; Wilson, J. R. Genetic engineering of sugarcane for low colour raw sugar. In: Wilson, J. R.; Hogarth, D. M.; Campbell, J. A.; Garside, A. L., eds. Sugarcane: research towards efficient and sustainable production. Brisbane: CSIRO Division of Tropical Crops and Pastures; 1996:130–132.

  • Rohwer, J. M.; Botha, F. C. Analysis of sucrose accumulation in the sugar cane culm on the basis of in vitro kinetic data. Biochem. J. 358:437–445; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Rossi, M.; Araujo, P. G.; Paulet, F.; Garsmeur, O.; Dias, V. M.; Chen, H.; Van Sluys, M.-A.; D'Hont, A. Genomic distribution and characterization of EST-derived resistance gene analogs (RGAs) in sugarcane. Mol. Gen. Genet. 269:406–409; 2003.

    CAS  Google Scholar 

  • Rott, P.; Bailey, R. A.; Comstock, J. C.; Croft, B. J.; Saumtally, A. S. A guide to sugarcane diseases. Montpellier, France: CIRAD Publication Service; 2000.

    Google Scholar 

  • Salter, B.; Bonnett, G. D. High soil nitrate concentrations during autumn and winter increase suckering, In: Hogarth, D. M., ed. Proc. Aust. Soc. Sugarcane Technol. 22:322–327; 2000.

  • Sehenk, P. M.; Remans, T.; Sagi, L.; Elliott, A. R.; Dietzgen, R. C.; Swennen, R.; Ebert, P. R.; Grof, C. P. L.; Manners, J. M. Promoters for pregenomic RNA of banana streak badnavirus are active for transgene expression in monocot and dicot plants. Plant Mol. Biol. 47:399–412;2001.

    Article  Google Scholar 

  • Selvi, A.; Nair, N. V.; Balasundaram, N.; Mohapatra, T. Evaluation of maize microsatelline markers for genetic diversity analysis for fingerprinting in sugarcane. Genome 46:394–403; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Setamou, M.; Bernal, J. S.; Legaspi, J. C.; Mirkov, T. E.; Legaspi, B. C. Evaluation of lectin-expressing transgenic sugarcane against stalkborers (Lepidoptera: Pyralidae): effects on life history parameters. J Econ. Entomol. 95:469–477; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Shimizu-Sato, S.; Mori, H. Control of outgrowth and dormancy in axillary buds. Plant Physiol. 127:1405–1413; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Sills, G. R.; Bridges, W.; Al-Janabi, S. M.; Sobral, B. W. S. Genetic analysis of agronomic traits in a cross between sugarcane (Succharum officinarum L.) and its presumed progenitor (S. robustum Brandes & Jesw. ex Grassl). Mol. Breed. 1:355–363; 1995.

    Article  CAS  Google Scholar 

  • Singh, G.; Chapman, S. C.; Jackson, P. A.; Lawn, R. J. Lodging a major constraint to high yield and CGS in the wet and dry tropics. In: Hogarth, D. M., ed. Proc. Aust. Soc. Sugarcane Technol. 22:315–321; 2000.

  • Smith, G. R.; Clarke, M. L.; Van de Velde, R.; Dale, J. L. Chemiluminescent detection of Fiji disease virus in sugarcane with biotinylated DNA probes. Arch Virol. 136:325–334; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Smith, G. R.; Ford, R.; Frenkel, M. J.; Shukla, D. D.; Dale, J. L. Transient expression of the coat protein of sugarcane mosaic virus in sugarcane protoplasts and expression in Escherichia coli. Arch. Virol. 125:15–23; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Smith, G. R.; Joyce, P. A.; Handley, J. A.; Sithisarn, P.; Maugeri, M. M.; Bernad, M. J.; Berding, N.; Dale, J. L.; Harding, R. M. Genetically engincering resistance to sugarcanc mosaic and Fiji disease viruses in sugarcane. In: Wilson, J. R., Hogarth, D. M.; Campbell, J. A.; Garside, A. L., eds. Sugarcane: research towards efficient and sustainable production. Brisbane: CSIRO Division of Tropical Crops and Pastures; 1996:133–140.

    Google Scholar 

  • Smith, G. R.; van de Velde, R. Defection of sugarcane mosaic virus and Fiji disease virus in diseased sugarcane using the polymerase chain reaction. Plant Dis. 78:557–561; 1994.

    Article  CAS  Google Scholar 

  • Snell, K. D.; Peoples, O. P. Polyhydroxyalkanoate polymers and their production in transgenic plants. Metabol. Engng 4:29–40; 2002.

    Article  CAS  Google Scholar 

  • Somers, D. A.; Makarevich, I. Transgene integration in plants: poking or patching holes in promiscuous genomes? Curr. Opin. Biotechnol. 15:126–131; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Soo, H. M.; Handley, J. A.; Mauger, M. M.; Burns, P.; Smith, G. R.; Dale, J. L.; Harding, R. M. Molecular characterisation of Fiji disease reovirus genome segment 9. J. Gen. Virol. 79:3155–3161; 1998.

    PubMed  CAS  Google Scholar 

  • Staskawicz, B. J.; Ausobel, F. M.; Baker, B. J.; Ellis, J. G.; Jones, J. D. G. Molecular genetics of plant disease resistance. Science 268:661–667; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, P. W. J.; Dukie, S. Development of an in vitro culture technique for conservation of Saccharum spp. hybrid germplasm. Plant Cell Tiss. Organ Cult. 34:217–222; 1993.

    Article  CAS  Google Scholar 

  • Taylor, P. W. J.; Geijskes, J. R.; Ko, H. L.; Fraser, T. A.; Henry, R. J.; Birch, R. G. Sensitivity of random amplified polymorphic DNA analysis to detect genetic change in sugarcane during tissue culture. Theor. Appl. Genet. 90:1169–1173; 1995.

    Article  CAS  Google Scholar 

  • Terras, F. R. G.; Eggermont, K.; Kovaleva, V.; Raikhel, N. V.; Osborn, R. W.; Kester, A.; Rees, S. B.; Torrekens, S.; Van-Leuven, F.; Vanderleyden, J.; Cammune, B. P. A.; Brockaert, W. F. Small cysteine-rich antifungal proteins from radish: their role in host defense. Plant Cell 7:573–588; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, N.; Choi, Y.; Randles, J. W. Sugarcane striate mosaic disease: development of a diagnostic test. Proc. 7th Int. Congr. Plant Path., Edinburgh; 1998 (Abstract 3.3.21).

  • Twyman, R. M.; Stoger, E.; Schillberg, S.; Christou, P.; Fischer, R. Molecular farming in plants: host systems and expression technology. Trend. Biotechnol. 21:570–578; 2003.

    Article  CAS  Google Scholar 

  • Ulian, E. Functional genomics for sugar accumulation gene discovery in sugarcane. Sugarcane Genomics Workshop, Brisbane, Australia; 2000.

  • van Damme, E. J. M.; Allen, A. K.; Peumans, W. J. Isolation and characterization of a lectin with exclusive specificity towards mannose from snowdrop (Galanthus nivialis) bulbs. FEBS Lett. 215:140–144; 1987.

    Article  Google Scholar 

  • van der Merwe, M. J.; Groenewald, J. H.; Botha, F. C. Isolation and evaluation of a developmentally regulated sugarcane promoter. Proc. South African Sugar Cane Technol. 77:146–169; 2003.

    Google Scholar 

  • Vettore, A. L.; da Silva, F. R.; Kemper, E. L.; Souza, G. M.; da-Silva, A. M.; Ferro, M. I. T.; Henrique-Silva, F.; Giglioti, E. A.; Lemos, M. V. F.; Coutinho, L. L.; Nobrega, M. P.; Carrer, H.; Franca, S. C.; Bacci, M. (Jr.); Goldman, M. H. S.; Gomes, S. L.; Numes, L. R.; Camargo, L. E. A.; Siqueira, W. J.; Van-Sluys, M. A.; Thiemann, O. H.; Kuramae, F. E.; Santelli, R. V.; Marino, C. L.; Targon, M. L. P. N.; Ferro, J. A.; Silveira, H. C. S.; Marini, D. C.; Lemos, E. G. M.; Monteiro-Vitorello, C. B.; Tambor, J. H. M.; Carraro, D. M.; Roberto, P. G.; Martins, V. G.; Goldman, G. H.; de-Oliveira, R. C.; Truffi, D.; Colombo, C. A.; Rossi, M.; de-Araujo, P. G.; Sculaccio, S. A.; Angella, A.; Lima, M. M. A.; De-Rosa, V. E. (Jr.); Siviero, F.; Coscrato, V. E.; Machado, M. A.; Grivet, L.; DiMauro, S. M. Z.; Nobrega, F. G.; Menck, C. F. M.; Braga, M. D. V.; Telles, G. P.; Cara, F. A. A.; Pedrosa, G.; Meidanis, J.; Arruda, P. Analysis and functional annoltation of an expressed sequence tag collection for tropical crop sugarcane. Genome Res. 13:2725–2735; 2003.

    Article  PubMed  Google Scholar 

  • Vickers, J. E.; Grof, C. P. L.; Bonnett, G. D.; Jackson, P. A.; Knight, D. P.; Roberts, S. E.; Robinson, S. P. Overexpression of polyphenol oxidase in transgenic sugarcane results in darker juice and raw sugar. Crop Sci. 45:354–362; 2005a.

    Article  CAS  Google Scholar 

  • Vickers, J. E.; Grof, C. P. L.; Bonnett, G. D.; Jackson, P. A.; Morgan, T. E. Effects of tissue culture, biolistic transformation, and introduction of PPO and SPS gene constructs a performance of sugarcane clones in the field. Aust. J. Agric. Res. 56:57–68; 2005b.

    Article  CAS  Google Scholar 

  • Vijaya, M. Vanetal resistance to smut in sugarcane. J. Mycol. Plant Pathol. 27:74–75; 1997.

    Google Scholar 

  • Wagih, M. E.; Gordon, G. H.; Ryan, C. C.; Adkins, S. W. Development of an axillary bud culture technique for Fiji disease virus elimination in sugarcane. Aust. J. Bot. 43:135–143; 1995.

    Article  Google Scholar 

  • Wang, M. L.; Goldstein, C.; Su, W.; Moore, P. H.; Albert, H. H. Production of biologically active GM-CSF in sugarcane: a secure biofactory. Transgenic Res. 14:167–178; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Watt, D.; McCormics, A.; Goveader, C.; Cramer, M.; Huckett, B.; Botha, F. C. Increasing the utility of genomics in unraveling sucrose accumulation. Field Crop Res. 92:149–158; 2005.

    Article  Google Scholar 

  • Wei, H. Isolation and characterization of two sugacane polyubiquitin gene promoters and matrix attachment regions. University of Hawaii, Manoa; 2001.

    Google Scholar 

  • Wei, H.; Albert, H. H.; Moore, P. H. Differential expression of sugarcane polyubiquitin genes and isolation of promoters from two highly expressed members of the gene family. J. Plant Physiol. 155:513–519; 1999.

    CAS  Google Scholar 

  • Wei, H.; Moore, P. H.; Albert, H. H. Comparative expression analysis of two sugarcane polybiquintin promoters and flanking sequences in transgenic plants. J. Plant Physiol. 160:1241–1251; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Wenzl, P.; Carling, J.; Kudrna, D.; Jaccoud, D.; Hottner, E.; Kleinhols, A.; Kilian, A. Diversity Arrays Technology (DarT) for wholegenome profiling of barley. Proc. Natl. Acad. Sci. USA 101:9915–9920; 2001.

    Article  Google Scholar 

  • Worrell, A. C.; Bruneau, J. M.; Summerfelt, K.; Boersig, M.; Voelker, T. A. Expression of a maize sucrose phosphate synthase in tomato alters leaf carbohydrate partitioning. Plant Cell 3:1121–1130; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Wu, K. K.; Burnquist, W.; Sorrels, M. E.; Tew, T. L.; Moore, P. H.; Tanksley, S. D. The detection and estimation of linkage in polyploids using single-dose restriction fragments. Theor. Appl. Genet. 83:294–300; 1992.

    Article  Google Scholar 

  • Yang, M. Z.; Bower, R.; Burow, M. D.; Paterson, A. H.; Mirkov, T. E. A rapid and direct approach to identify promoters that confer high levels of gene expression in monocots. Crop Sci. 43:1805–1814; 2003.

    Article  CAS  Google Scholar 

  • Yang, Z. N.; Mirkov, T. E. Sequence and relationships of sugarcane mosaic and sorghum mosaic strains and development of RT-PCR-based RFLPs for strain discrimination. Phytopathology 87:932–939; 1997.

    CAS  PubMed  Google Scholar 

  • Zhang, L.; Xu, J.; Birch, R. G. Engineered detoxification confers resistance against a pathogenic bacterium. Nature Biotechnol. 17:1021–1024; 1999.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prakash Lakshmanan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lakshmanan, P., Geijskes, R.J., Aitken, K.S. et al. Sugarcane biotechnology: The challenges and opportunities. In Vitro Cell.Dev.Biol.-Plant 41, 345–363 (2005). https://doi.org/10.1079/IVP2005643

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1079/IVP2005643

Key words

Navigation