Skip to main content
Log in

Site-selective, stereocontrolled glycosylation of minimally protected sugars

  • Article
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

The identification of general and efficient methods for the construction of oligosaccharides stands as one of the great challenges for the field of synthetic chemistry1,2. Selective glycosylation of unprotected sugars and other polyhydroxylated nucleophiles is a particularly significant goal, requiring not only control over the stereochemistry of the forming bond but also differentiation between similarly reactive nucleophilic sites in stereochemically complex contexts3,4. Chemists have generally relied on multi-step protecting-group strategies to achieve site control in glycosylations, but practical inefficiencies arise directly from the application of such approaches5,6,7. Here we describe a strategy for small-molecule-catalyst-controlled, highly stereo- and site-selective glycosylations of unprotected or minimally protected mono- and disaccharides using precisely designed bis-thiourea small-molecule catalysts. Stereo- and site-selective galactosylations and mannosylations of a wide assortment of polyfunctional nucleophiles is thereby achieved. Kinetic and computational studies provide evidence that site-selectivity arises from stabilizing C–H/π interactions between the catalyst and the nucleophile, analogous to those documented in sugar-binding proteins. This work demonstrates that highly selective glycosylation reactions can be achieved through control of stabilizing non-covalent interactions, a potentially general strategy for selective functionalization of carbohydrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Strategies for site-selective glycosylation and catalyst optimization.
Fig. 2: Scope studies.
Fig. 3: Linear-free-energy relationship study and catalyst optimization for galactosylation of α-3a.
Fig. 4: Kinetic and computational studies.

Similar content being viewed by others

Data availability

The data that support the findings in this work are available within the paper and its Supplementary Information.

References

  1. Boltje, T. J., Buskas, T. & Boons, G.-J. Opportunities and challenges in synthetic oligosaccharide and glycoconjugate research. Nat. Chem. 1, 611–622 (2009).

    Article  CAS  Google Scholar 

  2. Krasnova, L. & Wong, C.-H. Oligosaccharide synthesis and translational innovation. J. Am. Chem. Soc. 141, 3735–3754 (2019).

    Article  CAS  Google Scholar 

  3. Dimakos, V. & Taylor, M. S. Site-selective functionalization of hydroxyl groups in carbohydrate derivatives. Chem. Rev. 118, 11457–11517 (2018).

    Article  CAS  Google Scholar 

  4. Bati, G., He, J. X., Pal, K. B. & Liu, X. W. Stereo- and regioselective glycosylation with protection-less sugar derivatives: an alluring strategy to access glycans and natural products. Chem. Soc. Rev. 48, 4006–4018 (2019).

    Article  Google Scholar 

  5. Green, L. G. & Ley, S. V. in Carbohydrates in Chemistry and Biology (eds Ernst, B. et al.) Ch. 17, 427–448 (Wiley-VCH, 2000).

  6. Volbeda, A. G., van der Marel, G. A. & Codée, J. D. C. in Protecting Groups Strategies and Applications in Carbohydrate Chemistry (ed. Vidal, S.) Ch. 1, 1–24 (Wiley-VCH, 2019).

  7. Young, I. & Baran, P. Protecting-group-free synthesis as an opportunity for invention. Nat. Chem. 1, 193–205 (2009).

    Article  CAS  Google Scholar 

  8. Huang, Z. & Dong, G. Site-selectivity control in organic reactions: a quest to differentiate reactivity among the same kind of functional groups. Acc. Chem. Res. 50, 465–471 (2007).

    Article  Google Scholar 

  9. Hartwig, J. F. Catalyst-controlled site-selective bond activation. Acc. Chem. Res. 50, 549–555 (2007).

    Article  Google Scholar 

  10. Trincone, A. & Giordano, A. Glycosyl hydrolases and glycosyltransferases in the synthesis of oligosaccharides. Curr. Org. Chem. 10, 1163–1193 (2006).

    Article  CAS  Google Scholar 

  11. Lairson, L. L., Henrissat, B., Davies, G. J. & Withers, S. G. Glycosyltransferases: structures, functions, and mechanisms. Annu. Rev. Biochem. 77, 521–555 (2008).

    Article  CAS  Google Scholar 

  12. Guo, J. & Ye, X. S. Protecting groups in carbohydrate chemistry: influence on stereoselectivity of glycosylations. Molecules 15, 7235–7265 (2010).

    Article  CAS  Google Scholar 

  13. van der Vorm, S. et al. Acceptor reactivity in glycosylation reactions. Chem. Soc. Rev. 48, 4688–4706 (2019).

    Article  Google Scholar 

  14. van der Vorm, S. et al. Mapping the relationship between glycosyl acceptor reactivity and glycosylation stereoselectivity. Angew. Chem. Int. Ed. 57, 8240–8244 (2018).

    Article  Google Scholar 

  15. Cordero-Vargas, A. & Sartillo-Piscil, F. in Protecting‐Group‐Free Organic Synthesis: Improving Economy and Efficiency (ed. Fernandes, R. A.) Ch. 7, 183–200 (Wiley, 2018).

  16. Muramatsu, W. & Yoshimatsu, H. Regio- and stereochemical controlled Koenigs−Knorr-type monoglycosylation of secondary hydroxy groups in carbohydrates utilizing the high site recognition ability of organotin catalysts. Adv. Synth. Catal. 355, 2518–2524 (2013).

    Article  CAS  Google Scholar 

  17. Gouliaras, C., Lee, D., Chan, L. & Taylor, M. S. Regioselective activation of glycosyl acceptors by a diarylborinic acid-derived catalyst. J. Am. Chem. Soc. 133, 13926–13929 (2011).

    Article  CAS  Google Scholar 

  18. D’Angelo, K. A. & Taylor, M. S. Borinic acid catalyzed stereo- and regioselective couplings of glycosyl methanesulfonates. J. Am. Chem. Soc. 138, 11058–11066 (2016).

    Article  Google Scholar 

  19. Nishi, N., Nashida, J., Kaji, E., Takahashi, D. & Toshima, K. Regio- and stereoselective beta-mannosylation using a boronic acid catalyst and its application in the synthesis of a tetrasaccharide repeating unit of lipopolysaccharide derived from E. coli O75. Chem. Commun. 53, 3018–3021 (2017).

    Article  CAS  Google Scholar 

  20. Nishi, N. et al. Stereospecific β‐l‐rhamnopyranosylation through an SNi‐type mechanism by using organoboron reagents. Angew. Chem. Int. Ed. 57, 13858–13862 (2018).

    Article  CAS  Google Scholar 

  21. Tomita, S. et al. Diboron-catalyzed regio- and 1,2-cis-β-stereoselective glycosylation of trans-1,2-diols. J. Org. Chem. 85, 16254–16262 (2020).

    Article  CAS  Google Scholar 

  22. Hudson, K. L. et al. Carbohydrate–aromatic interactions in proteins. J. Am. Chem. Soc. 137, 15152–15160 (2015).

    Article  CAS  Google Scholar 

  23. Asensio, J. L., Arda, A., Canada, F. J. & Jimenez-Barbero, J. Carbohydrate–aromatic interactions. Acc. Chem. Res. 46, 946–954 (2013).

    Article  CAS  Google Scholar 

  24. Screen, J. et al. IR-spectral signatures of aromatic-sugar complexes: probing carbohydrate-protein interactions. Angew. Chem. Int. Ed. 46, 3644–3648 (2017).

    Article  Google Scholar 

  25. Davis, A. P. Biomimetic carbohydrate recognition. Chem. Soc. Rev. 49, 2531–2545 (2020).

    Article  CAS  Google Scholar 

  26. Arnaud, J., Audfray, A. & Imberty, A. Binding sugars: from natural lectins to synthetic receptors and engineered neolectins. Chem. Soc. Rev. 42, 4798–4813 (2013).

    Article  CAS  Google Scholar 

  27. Kawabata, T., Muramatsu, W., Nishio, T., Shibata, T. & Schedel, H. A catalytic one-step process for the chemo- and regioselective acylation of monosaccharides. J. Am. Chem. Soc. 129, 12890–12895 (2007).

    Article  CAS  Google Scholar 

  28. Griswold, K. S. & Miller, S. J. A peptide-based catalyst approach to the regioselective functionalization of carbohydrates. Tetrahedron 59, 8869–8875 (2003).

    Article  CAS  Google Scholar 

  29. Sun, X., Lee, H., Lee, S. & Tan, K. L. Catalyst recognition of cis-1,2-diols enables site-selective functionalization of complex molecules. Nat. Chem. 5, 790–795 (2013).

    Article  CAS  Google Scholar 

  30. Xiao, G. et al. Catalytic site-selective acylation of carbohydrates directed by cation–n interaction. J. Am. Chem. Soc. 139, 4346–4349 (2017).

    Article  CAS  Google Scholar 

  31. Lee, J., Borovika, A., Khomutnyk, Y. & Nagorny, P. Chiral phosphoric acid-catalyzed desymmetrizative glycosylation of 2-deoxystreptamine and its application to aminoglycoside synthesis. Chem. Commun. 53, 8976–8979 (2017).

    Article  CAS  Google Scholar 

  32. Tay, J.-H. et al. Regiodivergent glycosylations of 6-deoxy-erythronolide B and oleandomycin-derived macrolactones enabled by chiral acid catalysis. J. Am. Chem. Soc. 139, 8570–8578 (2017).

    Article  CAS  Google Scholar 

  33. Park, Y. et al. Macrocyclic bis-thioureas catalyze stereospecific glycosylation reactions. Science 355, 162–166 (2017).

    Article  ADS  CAS  Google Scholar 

  34. Levi, S. M., Li, Q., Rötheli, A. R. & Jacobsen, E. N. Catalytic activation of glycosyl phosphates for stereoselective coupling reactions. Proc. Natl Acad. Sci. USA 116, 35–39 (2019).

    Article  ADS  CAS  Google Scholar 

  35. Mayfield, A. B., Metternich, J. B., Trotta, A. H. & Jacobsen, E. N. Stereospecific furanosylations catalyzed by bis-thiourea hydrogen-bond donors. J. Am. Chem. Soc. 142, 4061–4069 (2020).

    Article  CAS  Google Scholar 

  36. Li, Q., Levi, S. M. & Jacobsen, E. N. Highly selective β-mannosylations and β-rhamnosylations catalyzed by bis-thiourea. J. Am. Chem. Soc. 142, 11865–11872 (2020).

    Article  CAS  Google Scholar 

  37. Tsuzuki, S., Uchimaru, T. & Mikami, M. Magnitude and nature of carbohydrate-aromatic interactions in fucose-phenol and fucose-indole complexes: CCSD(T) level interaction energy calculations. J. Phys. Chem. A 115, 11256–11262 (2011).

    Article  CAS  Google Scholar 

  38. Raju, R. K., Ramraj, A., Vincent, M. A., Hillier, I. H. & Burton, N. A. Carbohydrate–protein recognition probed by density functional theory and ab initio calculations including dispersive interactions. Phys. Chem. Chem. Phys. 10, 6500–6508 (2008).

    Article  CAS  Google Scholar 

  39. Ryu, H. et al. Pitfalls in computational modelling of chemical reactions and how to avoid them. Organometallics 37, 3228–3239 (2018).

    Article  CAS  Google Scholar 

  40. Plata, R. E. & Singleton, D. A. A case study of the mechanism of alcohol-mediated Morita Baylis− Hillman reactions. The importance of experimental observations. J. Am. Chem. Soc. 137, 3811–3826 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the NIH through GM132571 and the Common Fund Glycoscience Program (U01 GM116249) and a postdoctoral fellowship to A.E.W., and by NSF pre-doctoral fellowships to S.M.L. and C.W.

Author information

Authors and Affiliations

Authors

Contributions

Q.L., S.M.L., A.E.W. and E.N.J. conceived the work, S.M.L., Q.L., A.E.W. and C.C.W. conducted the experiments, E.N.J. directed the research, and Q.L., S.M.L., C.C.W. and E.N.J. wrote the manuscript.

Corresponding author

Correspondence to Eric N. Jacobsen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Steven Townsend and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This Supplementary Information file contains Materials and Methods, Supplementary Text, Figs. 1–22 and Tables 1–11.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Levi, S.M., Wagen, C.C. et al. Site-selective, stereocontrolled glycosylation of minimally protected sugars. Nature 608, 74–79 (2022). https://doi.org/10.1038/s41586-022-04958-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-04958-w

  • Springer Nature Limited

This article is cited by

Navigation