Skip to main content
Log in

Protecting Groups as a Factor of Stereocontrol in Glycosylation Reactions

  • REVIEW ARTICLE
  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract—

Synthetic oligosaccharides are objects of interest as model compounds in studies on the biological activity of natural compounds, but also as components for new drugs, glycoconjugate vaccines, carbohydrate diagnostic agents and various other products. The key stage in oligosaccharide synthesis is the glycosylation reaction, which leads to the formation of a linkage between carbohydrate fragments. This review highlights a current problem in modern glycochemistry – the methods of stereocontrol in the glycosylation reaction. Protecting groups within the structure of glycosyl donors are considered as stereocontrolling factors, affecting the reaction mechanism by means of (1) participation or anchimeric assistance, (2) deactivation, (3) intramolecular aglycone delivery. The well-established mechanism of neighboring group participation at O-2 for the synthesis of 1,2- trans glycosides is shown, as well as its modern modifications, including activating ethers, chiral protecting groups and achiral bicyclic glycosyl donors. The mechanisms of remote participation from O-3, O-4 and O-6 of the glycosyl donor are discussed in detail. In addition, approaches to stereocontrol using deactivating protection (conformation constraining and electron withdrawing groups) are described. Finally, synthetic approaches based on intramolecular aglycone delivery are considered. Both classical and novel protecting groups used to control the steric outcome of glycosylation are presented, the mechanisms underlying the presented approaches are discussed in detail, while also showing how the described strategies apply to the synthesis of complex structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Essentials of Glycobiology, 3rd ed., Varki, A., Cummings, R.D., Esko, J.D., Stanley, P., Hart, G.W., Aebi, M., Darvill, A.G., Kinoshita, T., Packer, N.H., Prestegard, J.H., Schnaar, R.L., and Seeberger, P.H., Eds., Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press, 2017.

    Google Scholar 

  2. Varki, A., Cold Spring Harb. Perspect. Biol., 2011, vol. 3. https://doi.org/10.1101/cshperspect.a005462

  3. Moremen, K.W., Tiemeyer, M., and Nairn, A.V., Nat. Rev. Mol. Cell Biol., 2012, vol. 13, pp. 448–462. https://doi.org/10.1038/nrm3383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Varki, A., Glycobiology, 2016, vol. 27, pp. 3–49. https://doi.org/10.1093/glycob/cww086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bochkov, A.F., Afanas’ev, V.A., and Zaikov, G.E., Obrazovanie i rasshcheplenie glikozidnykh svyazei (Formation and Cleavage of Glycosidic Bonds), Moscow: Nauka, 1978.

  6. Nukada, T., Bereces, A., Zgierski, M.Z., and Whitfield, D., J. Am. Chem. Soc., 1998, vol. 120, pp. 13291–13295. https://doi.org/10.1021/ja981041m

    Article  CAS  Google Scholar 

  7. Chatterjee, S., Moon, S., Hentschel, F., Gilmore, K., and Seeberger, P.H., J. Am. Chem. Soc., 2018, vol. 140 no. 38, pp. 11942–11953. https://doi.org/10.1021/jacs.8b04525

    Article  CAS  PubMed  Google Scholar 

  8. Kim, J.-H., Yang, H., Khot, V., Whitfield, D., and Boons, G.-J., Eur. J. Org. Chem., 2006, pp. 5007–5028. https://doi.org/10.1002/ejoc.200600440

  9. Yang, B., Yang, W., Ramadan, S., and Huang, X., Eur. J. Org. Chem., 2018, vol. 2018, pp. 1075–1096. https://doi.org/10.1002/ejoc.201701579

    Article  CAS  Google Scholar 

  10. Leng, W.-L.YaoH., He, J.-X., and Liu, X.-W., Acc. Chem. Res., 2018, vol. 51, pp. 628–639. https://doi.org/10.1021/acs.accounts.7b00449

    Article  CAS  PubMed  Google Scholar 

  11. Tipson, S., J. Biol. Chem., 1939, vol. 130, pp. 55–59.

    Article  CAS  Google Scholar 

  12. Isbell, H.S., Annu. Rev. Biochem., 1940, vol. 9, pp. 65–92.

    Article  CAS  Google Scholar 

  13. Paulsen, H. and Herold, C.-P., Chem. Ber., 1970, vol. 103, pp. 2450–2462. https://doi.org/10.1002/cber.19701030817

    Article  CAS  Google Scholar 

  14. Crich, D., Dain, Z., and Gastaldi, S., Org. Chem., 1999, vol. 64, pp. 5224–5229. https://doi.org/10.1021/jo990424f

    Article  CAS  Google Scholar 

  15. Mucha, E., Marianski, M., Xu, F.-F., Thomas, D.A., Meijer, G., von Helden, G., Seeberger, P.H., and Pagel, K., Nat. Commun., 2018, vol. 9, p. 4174. https://doi.org/10.1038/s41467-018-06764-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Boltje, T.J., Liu, L., and Boons, G.-J., in Glycochemical Synthesis, Hung, S.-C. and Zulueta, M. M. L., Eds., Hoboken, New Jersey: Wiley, 2016, pp. 97–130. https://doi.org/10.1002/9781119006435.ch4

    Book  Google Scholar 

  17. Yu, H., Williams, D.L., and Ensley, H.E., Tetrahedron Lett., 2005, vol. 46, pp. 3417–3421. https://doi.org/10.1016/j.tetlet.2005.03.099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu, H., Hansen, T., Zhou, S.-Y., Wen, G.-E., Liu, X.-X., Zhang, Q.-J., Codee, J.D.C., Schmidt, R.R., and Sun, J.-S., Org. Lett., 2019, vol. 21, pp. 8713–8717. https://doi.org/10.1021/acs.orglett.9b03321

    Article  CAS  PubMed  Google Scholar 

  19. Smoot, J.T., Pornsuriyasak, P., and Demchenko, A.V., Angew. Chem., Int. Ed. Engl., 2005, vol. 44, pp. 7123–7126. https://doi.org/10.1002/anie.200502694

    Article  CAS  Google Scholar 

  20. Buda, S., Gołębiowska, P., and Mlynarski, J., Eur. J. Org. Chem., 2013, pp. 3988–3991. https://doi.org/10.1002/ejoc.201300123

  21. Le Mai, HoangK. and Liu, X.-W., Nat. Commun., 2014, vol. 5, p. 5051. https://doi.org/10.1038/ncomms6051

    Article  CAS  Google Scholar 

  22. Karak, M., Suenaga, M., Oishi, T., and Torikai, K., Org. Lett., 2019, vol. 21 , no. 4, pp. 1221–1225. https://doi.org/10.1021/acs.orglett.9b00220

    Article  CAS  PubMed  Google Scholar 

  23. Kim, J.-H., Yang, H., and Boons, G.-J., Angew. Chem., Int. Ed. Engl., 2005, vol. 44, pp. 947–949. https://doi.org/10.1002/anie.200461745

    Article  CAS  Google Scholar 

  24. Kim, J.-H., Yang, H., Park, J., and Boons, G.-J., J. Am. Chem. Soc., 2005, vol. 127, pp. 12090–12097. https://doi.org/10.1021/ja052548h

    Article  CAS  PubMed  Google Scholar 

  25. Cox, D.A. and Fairbanks, A.J., Tetrahedron: Asymmetry, 2009, vol. 20, pp. 773–780. https://doi.org/10.1016/j.tetasy.2009.02.018

    Article  CAS  Google Scholar 

  26. Fascione, M.A. and Turnbull, W.B., Beilstein J. Org. Chem., 2010, vol. 6. https://doi.org/10.3762/bjoc.6.19

  27. Fang, T., Mo, K.-F., and Boons, G.-J., J. Am. Chem. Soc., 2012, vol. 134 P, p. 7545. https://doi.org/10.1021/ja3018187

  28. Huang, W., Gao, Q., and Boons, G.-J., Chem.-Eur. J., 2015, vol. 21, pp. 12920–12926. https://doi.org/10.1002/chem.201501844

    Article  CAS  PubMed  Google Scholar 

  29. Komarova, B.S., Tsvetkov, Y.E., and Nifantiev, N.E., Chem. Res., 2016, vol. 16, pp. 488–506. https://doi.org/10.1002/tcr.201500245

    Article  CAS  Google Scholar 

  30. Khatuntseva, E.A., Ustuzhanina, N.E., Zatonskii, G.V., Shashkov, A.S., Usov, A.I., and Nifant’ev, N.E., J. Carbohydr. Chem., 2000, vol. 19, pp. 1151–1173. https://doi.org/10.1080/07328300008544140

    Article  CAS  Google Scholar 

  31. Gerbst, A.G., Ustuzhanina, N.E., Grachev, A.A., Zlotina, N.S., Khatuntseva, E.A., Tsvetkov, D.E., Shashkov, A.S., Usov, A.I., and Nifantiev, N.E., J. Carbohydr. Chem., 2002, vol. 21, pp. 313–324. https://doi.org/10.1081/CAR-120013500

    Article  CAS  Google Scholar 

  32. Gerbst, A.G., Ustuzhanina, N.E., Grachev, A.A., Tsvetkov, D.E., Khatuntseva, E.A., Shashkov, A.S., Usov, A.I., Preobrazhenskaya, M.E., Ushakova, N.A., and Nifantiev, N.E., J. Carbohydr. Chem., 2003, vol. 22 P, pp. 109–122. https://doi.org/10.1081/CAR-120020481

  33. Ustyuzhanina, N., Krylov, V., Grachev, A., Gerbst, A., and Nifantiev, N., Synthesis, 2006, vol. 23, pp. 4017–4031. https://doi.org/10.1055/s-2006-950333

    Article  CAS  Google Scholar 

  34. Krylov, V.B., Kaskova, Z.M., Vinnitskiy, D.Z., Ustyuzhanina, N.E., Grachev, A.A., Chizhov, A.O., and Nifantiev, N.E., Carbohydr. Res., 2011, vol. 346, pp. 540–550. https://doi.org/10.1016/j.carres.2011.01.005

    Article  CAS  PubMed  Google Scholar 

  35. Gerbst, A.G., Grachev, A.A., Ustyuzhanina, N.E., Khatuntseva, E.A., Tsvetkov, D.E., Usov, A.I., Shashkov, A.S., Preobrazhenskaya, M.E., Ushakova, N.A., and Nifantiev, N.E., Russ. J. Bioorg. Chem., 2004, vol. 30, pp. 137–147. https://doi.org/10.1023/B:RUBI.0000023099.48598.9a

    Article  CAS  Google Scholar 

  36. Vinnitsky, D.Z., Krylov, V.B., Ustyuzhanina, N.E., Dmitrenok, A.S., and Nifantiev, N.E., Org. Biomol. Chem., 2016, vol. 14, pp. 598–611. https://doi.org/10.1039/c5ob02040a

    Article  Google Scholar 

  37. Komarova, B.S., Tsvetkov, Y.E., Knirel, Y.A., Zahringer, U., Pier, G.B., and Nifantiev, N.E., Tetrahedron Lett., 2006, vol. 47, pp. 3583–3587. https://doi.org/10.1016/j.tetlet.2006.03.045

    Article  CAS  Google Scholar 

  38. Komarova, B.S., Tsvetkov, Y.E., Pier, G.B., and Nifantiev, N.E., Org. Chem., 2008, vol. 73, pp. 8411–8421. https://doi.org/10.1021/jo801561p

    Article  CAS  Google Scholar 

  39. Komarova, B.S., Tsvetkov, Y.E., Pier, G.B., and Nifantiev, N.E., Carbohydr. Res., 2012, vol. 360, pp. 56–68. https://doi.org/10.1016/j.carres.2012.07.019

    Article  CAS  PubMed  Google Scholar 

  40. Komarova, B.S., Orekhova, M.V., Tsvetkov, Y.E., Beau, R., Aimanianda, V., Latgé, J.-P., and Nifantiev, N.E., Chem.-Eur. J., 2015, vol. 20, pp. 1029–1035. https://doi.org/10.1002/chem.201404770

    Article  CAS  Google Scholar 

  41. Komarova, B.S., Wong, S.S., Orekhova, M.V., Tsvetkov, Y.E., Krylov, V.B., Beauvais, A., Bouchara, J.-P., Kearney, J., Aimanianda, V., Latgé, J.-P., and Nifantiev, N.E., Org. Chem., 2018, vol. 83, pp. 12965–12976. https://doi.org/10.1021/acs.joc.8b01142

    Article  CAS  Google Scholar 

  42. Komarova, B.S., Dorokhova, V.S., Tsvetkov, Y.E., and Nifantiev, N.E., Org. Chem. Front., 2018, vol. 5, pp. 909–928. https://doi.org/10.1039/c7qo01007a

    Article  CAS  Google Scholar 

  43. Kazakova, E.D., Yashunsky, D.V., Krylov, V.B., Bouchara, J.P., Cornet, M., Valsecchi, I., Fontaine, T., Latge, J.-P., and Nifantiev, N.E., J. Am. Chem. Soc., 2020, vol. 142, pp. 1175–1179. https://doi.org/10.1021/jacs.9b11703

    Article  CAS  PubMed  Google Scholar 

  44. Kazakova, E.D., Yashunsky, D.V., Khatuntseva, E.A., and Nifantiev, N.E., Pure Appl. Chem., 2020, vol. 92, pp. 1047–1056. https://doi.org/10.1515/pac-2020-0105

    Article  CAS  Google Scholar 

  45. Hahm, H.S., Hurevich, M., and Seeberger, P.H., Nat. Commun, 2016, vol. 7, p. 12482. https://doi.org/10.1038/ncomms12482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Krylov, V., Ustyuzhanina, N., Bakker, H., and Nifantiev, N., Synthesis, 2007, pp. 3147–3154. https://doi.org/10.1055/s-2007-990784

  47. Sethi, M.K., Buettner, F.F.R., Krylov, V., Takeuchi, H., Nifantiev, N., Haltiwanger, R.S., and Gerardy-Schahn, R., J. Biol. Chem., 2010, vol. 285, pp. 1582–1586. https://doi.org/10.1074/jbc.C109.065409

    Article  CAS  PubMed  Google Scholar 

  48. Sethi, M.K., Buettner, F.F.R., Ashikov, A., Krylov, V.B., Takeuchi, H., Nifantiev, N.E., Haltiwanger, R.S., Gerardy-Schahn, R., and Bakker, H., J. Biol. Chem., 2012, vol. 287, pp. 2739–2748. https://doi.org/10.1074/jbc.M111.302406

    Article  CAS  PubMed  Google Scholar 

  49. Mukaiyama, T., Suenaga, M., Chiba, H., and Jona, H., Chem. Lett., 2002, pp. 56–57. https://doi.org/10.1246/cl.2002.56

  50. Li, Z., Zhu, L., and Kalikanda, J., Tetrahedron Lett., 2011, vol. 52, pp. 5629–5632. https://doi.org/10.1016/j.tetlet.2011.08.091

    Article  CAS  Google Scholar 

  51. Komarova, B.S., Gerbst, A.G., Finogenova, A.M., Dmitrenok, A.S., Tsvetkov, Y.E., and Nifantiev, N.E., Org. Chem., 2017, vol. 82, pp. 8897–8908. https://doi.org/10.1021/acs.joc.7b01167

    Article  CAS  Google Scholar 

  52. Komarova, B.S., Orekhova, M.V., Tsvetkov, Y.E., and Nifantiev, N.E., Carbohydr. Res., 2014, vol. 384, pp. 70–86. https://doi.org/10.1016/j.carres.2013.11.016

    Article  CAS  PubMed  Google Scholar 

  53. Crich, D., Hu, T., and Cai, F., Org. Chem., 2008, vol. 73, pp. 8942–8953. https://doi.org/10.1021/jo801630m

    Article  CAS  Google Scholar 

  54. Baek, J.Y., Lee, B.-Y., Jo, M.G., and Kim, K.S., J. Am. Chem. Soc., 2009, vol. 131, pp. 17705–17713. https://doi.org/10.1021/ja907252u

    Article  CAS  PubMed  Google Scholar 

  55. Marianski, M., Mucha, E., Greis, K., Moon, S., Pardo, A., Kirschbaum, K., Thomas, D.A., Meijer, G., von Helden, G., Gilmore, K., Seeberger, P.H., and Pagel, K., Angew. Chem., Int. Ed. Engl., 2020, vol. 59, pp. 6166–6171. https://doi.org/10.1002/anie.201916245

    Article  CAS  Google Scholar 

  56. Gerbst, A.G., Ustuzhanina, N.E., Grachev, A.A., Khatuntseva, E.A., Tsvetkov, D.E., Whitfield, D.M., Bereces, A., and Nifantiev, N.E., J. Carbohydr. Chem., 2001, vol. 20, pp. 821–831. https://doi.org/10.1081/CAR-100108659

    Article  CAS  Google Scholar 

  57. Gerbst, A.G., Krylov, V.B., and Nifantiev, N.E., in Carbohydrate Chemistry—A Specialist Periodical Reports, Rauter, A.P., Lindhorst, T., and Queneau, Y., Eds., 2021, vol. 44, pp. 151–169. https://doi.org/10.1039/9781788013864-00151

  58. Hansen, T., Elferink, H., van Hengst, J.M.A., Houthuijs, K.J., Remmerswaal, W.A., Kromm, A., Berden, G., van der Vorm, S., Rijs, A.M., Overkleeft, H.S., Filippov, D.V., Rutjes, F.P.J., van der Marel, G., Martens, J., Oomens, J., Codée, J.D.C., and Boltje, T.J., Nat. Commun., 2020, vol. 11. https://doi.org/10.1038/s41467-020-16362-x

  59. Mootoo, D.R., Konradsson, P., Udodong, U., and Fraser-Reid, B., J. Am. Chem. Soc., 1988, vol. 110, pp. 5583–5584. https://doi.org/10.1021/ja00224a060

    Article  CAS  Google Scholar 

  60. Yang, B., Yoshida, K., and Huang, X., in Glycochemical Synthesis, Hung, S.-C. and Zulueta, M.M.L., Eds., Hoboken, New Jersey: Wiley, 2016, pp. 155–188. https://doi.org/10.1002/9781119006435.ch6

    Book  Google Scholar 

  61. Crich, D. and Sun, S., J. Am. Chem. Soc., 1997, vol. 119, pp. 11217–11223. https://doi.org/10.1021/ja971239r

    Article  CAS  Google Scholar 

  62. Kahne, D., Walker, S., Cheng, Y., and Van Engen, D., J. Am. Chem. Soc., 1989, vol. 111, pp. 6881–6882. https://doi.org/10.1021/ja00199a081

    Article  CAS  Google Scholar 

  63. Fraser-Reid, B., Wu, Z., Andrews, C.W., and Skowronski, E., J. Am. Chem. Soc., 1991, vol. 113, pp. 1434–1435. https://doi.org/10.1021/ja00004a066

    Article  CAS  Google Scholar 

  64. Jensen, H.H., Nordstrom, L.U., and Bols, M., J. Am. Chem. Soc., 2004, vol. 126, pp. 9205–9213. https://doi.org/10.1021/ja047578j

    Article  CAS  PubMed  Google Scholar 

  65. Crich, D., Acc. Chem. Res., 2010, vol. 43 I, pp. 1144–1153. https://doi.org/10.1021/ar100035r

    Article  CAS  PubMed  Google Scholar 

  66. Crich, D., de la Mora, M., and Vinod, A.U., Org. Chem., 2003, vol. 68, pp. 8142–8148. https://doi.org/10.1021/jo0349882

    Article  CAS  Google Scholar 

  67. Kumagai, D., Miyazaki, M., and Nishimura, S.-I., Tetrahedron Lett., 2001, vol. 42, pp. 1953–1956. https://doi.org/10.1016/S0040-4039(01)00044-2

    Article  CAS  Google Scholar 

  68. Yun, M., Shin, Y., Chun, K.H., and Jen, S., Bull. Korean Chem. Soc., 2000, vol. 21, pp. 562–566.

    CAS  Google Scholar 

  69. Weingart, R. and Schmidt, R.R., Tetrahedron Lett., 2000, vol. 41, pp. 8753–8758. https://doi.org/10.1016/S0040-4039(00)01497-0

    Article  CAS  Google Scholar 

  70. Baek, J.Y., Choi, T.J., Jeon, H.B., and Kim, K.S., Angew. Chem., Int. Ed. Engl., 2006, vol. 45, pp. 7436–7440. https://doi.org/10.1002/anie.200602642

    Article  CAS  Google Scholar 

  71. Tsuda, T., Sato, S., Nakamura, S., and Hashimoto, S., Heterocycles, 2003, vol. 59, pp. 509–515. https://doi.org/10.3987/COM-02-S80

    Article  CAS  Google Scholar 

  72. Karelin, A.A., Tsvetkov, Y.E., Paulovicova, E., Paulovicova, L., and Nifantiev, N.E., Eur. J. Org. Chem., 2016, pp. 1173–1181. https://doi.org/10.1002/ejoc.201501464

  73. Crich, D. and Vinogradova, O., J. Am. Chem. Soc., 2007, vol. 129, pp. 11756–11765. https://doi.org/10.1021/ja0730258

    Article  CAS  PubMed  Google Scholar 

  74. Baek, J.Y., Kwon, H.-W., Myug, S.J., Park, J.J., Kim, M.Y., Rathwell, D.C.K., Jeon, H.B., Seeberger, P.H., and Kim, K.S., Tetrahedron, 2015, vol. 71, pp. 5315–5320. https://doi.org/10.1016/j.tet.2015.06.014

    Article  CAS  Google Scholar 

  75. Bos, L.J., Dinkelaar, J., Overkleeft, H.S., and van der Marel, G., J. Am. Chem. Soc., 2006, vol. 128, pp. 13066–13067. https://doi.org/10.1021/ja064787q

    Article  CAS  PubMed  Google Scholar 

  76. Tang, S.-L. and Pohl, N.L.B., Org. Lett., 2015, vol. 17, pp. 2642–2645. https://doi.org/10.1021/acs.orglett.5b01013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Behrendt, M.E. and Schmidt, R.R., Tetrahedron Lett., 1993, vol. 34, pp. 6733–6736. https://doi.org/10.1016/S0040-4039(00)61687-8

    Article  CAS  Google Scholar 

  78. Xiao, G.J. and Demchenko, A.V., Beilstein J. Org. Chem., 2017, vol. 13, pp. 2028–2048. https://doi.org/10.3762/bjoc.13.201

    Article  CAS  Google Scholar 

  79. Kusomoto, S., Imoto, M., Ogiku, T., and Shiba, T., Bull. Chem. Soc. Jpn., 1986, vol. 59, pp. 1419–1423. https://doi.org/10.1246/bcsj.59.1419

    Article  Google Scholar 

  80. Barresi, F. and Hindsgau, O., J. Am. Chem. Soc., 1991, vol. 113, pp. 9376–9377. https://doi.org/10.1021/ja00024a057

    Article  CAS  Google Scholar 

  81. Stork, G. and Kim, G., J. Am. Chem. Soc., 1992, vol. 114, pp. 1087–1088. https://doi.org/10.1021/ja00029a047

    Article  CAS  Google Scholar 

  82. Bols, M., Tetrahedron, 1993, vol. 49, pp. 10049–10060. https://doi.org/10.1016/S0040-4020(01)80200-3

    Article  CAS  Google Scholar 

  83. Ito, Y. and Ogawa, T., Angew. Chem., Int. Ed. Engl., 1994, vol. 33, pp. 1765–1767. https://doi.org/10.1002/anie.199417651

    Article  Google Scholar 

  84. Ishiwata, A.ItoY., in Selective Glycosylations: Synthetic Methods and Catalysts, Bennet, C.S., Ed., Weinheim: Wiley-VCH Verlag GmbH & Co. KgaA, 2017, pp. 81–96.

    Google Scholar 

  85. Yasomanee, J.P. and Demchenko, A.V., J. Am. Chem. Soc., 2012, vol. 134, pp. 20097–20102. https://doi.org/10.1021/ja307355n

    Article  CAS  PubMed  Google Scholar 

  86. Zhang, Y., Zhou, S., Wang, X., Zhan, H., Guo, Z., and Gao, J., Org. Chem. Front., 2019, vol. 6, pp. 762–772.

    Article  CAS  Google Scholar 

  87. Shchegravina, E.S., Sachkova, A.A., Usova, S.D., Nyuchev, A.V., Gracheva, Yu.A., and Fedorov, A.Yu., Russ. J. Bioorg. Chem., 2021, vol. 47, pp. 69–96. https://doi.org/10.31857/S013234232101022X.

    Article  Google Scholar 

  88. Gening, M.L., Kurbatova, E.A., and Nifantiev, N.E., Russ. J. Bioorg. Chem., 2021, vol. 47, pp. 1–24. https://doi.org/10.31857/S0132342321010073.

    Article  Google Scholar 

  89. Khatuntseva, E.A. and Nifantiev, N.E., Russ. J. Bioorg. Chem., 2021, vol. 47. 25–51. https://doi.org/10.31857/S0132342321010103.

    Article  Google Scholar 

  90. Adamo, R., Nilo, A., Castagner, B., Boutureira, O., Berti, F., and Bernardes, G.J.L., Chem. Sci., 2013, vol. 4, pp. 2995–3008. https://doi.org/10.1039/C3SC50862E

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hu, Q.-Y., Berti, F., and Adamo, R., Chem. Soc. Rev., 2016, vol. 45, pp. 1691–1719. https://doi.org/10.1039/c4cs00388h

    Article  CAS  PubMed  Google Scholar 

  92. Phillips-Jones, M.K. and Harding, S.E., Biotechnol. Genet. Eng. Rev., 2019, vol. 35, pp. 93–125. https://doi.org/10.1080/02648725.2019.1703614

    Article  PubMed  Google Scholar 

  93. Seeberger, P.H., Acc. Chem. Res., 2015, vol. 48, p. 1450. https://doi.org/10.1021/ar5004362

    Article  CAS  PubMed  Google Scholar 

  94. Pardo-Vargas, A., Delbianco, M., and Seeberger, P.H., Curr. Opin. Chem. Biol., 2018, vol. 46, pp. 48–55. https://doi.org/10.1016/j.cbpa.2018.04.007

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Russian Scientific Foundation (Grant no. 19-73-20240).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. E. Nifantiev.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This publication does not contain the description of any research with the participation of humans or animals as research objects.

Conflict of Interests

The authors declare no conflict of interests.

Additional information

Abbreviations: CIP, contact ion pair; SSIP, solvent-separated ion pair.

Corresponding author: phone: +7 (499) 135-87-84.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tokatly, A.I., Vinnitskiy, D.Z., Ustuzhanina, N.E. et al. Protecting Groups as a Factor of Stereocontrol in Glycosylation Reactions. Russ J Bioorg Chem 47, 53–70 (2021). https://doi.org/10.1134/S1068162021010258

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162021010258

Navigation