Skip to main content
Log in

An intrinsic velocity-independent criterion for superfluid turbulence

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Hydrodynamic flow in classical and quantum fluids can be either laminar or turbulent. Vorticity in turbulent flow is often modelled with vortex filaments. While this represents an idealization in classical fluids, vortices are topologically stable quantized objects in superfluids. Superfluid turbulence1 is therefore thought to be important for the understanding of turbulence more generally. The fermionic 3He superfluids are attractive systems to study because their characteristics vary widely over the experimentally accessible temperature regime. Here we report nuclear magnetic resonance measurements and numerical simulations indicating the existence of sharp transition to turbulence in the B phase of superfluid 3He. Above 0.60Tc (where Tc is the transition temperature for superfluidity) the hydrodynamics are regular, while below this temperature we see turbulent behaviour. The transition is insensitive to the fluid velocity, in striking contrast to current textbook knowledge of turbulence2. Rather, it is controlled by an intrinsic parameter of the superfluid: the mutual friction between the normal and superfluid components of the flow, which causes damping of the vortex motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Summary of events at high and low temperatures.
Figure 2: NMR absorption spectra before and after vortex-loop injection.
Figure 3: Principle of measurement and phase diagram of turbulent superflow in 3He-B.

Similar content being viewed by others

References

  1. Vinen, W. F. & Niemela, J. J. Quantum turbulence. J. Low-Temp. Phys. 128, 167–231 (2002)

    Article  ADS  CAS  Google Scholar 

  2. McComb, W. D. The Physics of Fluid Turbulence 2 (Clarendon, Oxford, 1990)

    Google Scholar 

  3. Sonin, E. B. Vortex oscillations and hydrodynamics of rotating superfluids. Rev. Mod. Phys. 59, 87–155 (1987)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  4. Barenghi, C. F. et al. Thermal excitation of waves on quantized vortices. Phys. Fluids 28, 498–504 (1985)

    Article  ADS  CAS  Google Scholar 

  5. Kopnin, N. B. Theory of Nonequilibrium Superconductivity 271 (Clarendon, Oxford, 2001)

    Google Scholar 

  6. Bevan, T. D. C. et al. Vortex mutual friction in superfluid 3He. J. Low-Temp. Phys. 109, 423–459 (1997)

    ADS  CAS  Google Scholar 

  7. Blaauwgeers, R. et al. Shear flow and Kelvin-Helmholtz instability in superfluids. Phys. Rev. Lett. 89, 155301 (2002)

    Article  ADS  CAS  Google Scholar 

  8. Ostermeier, R. M. & Glaberson, W. I. Instability of vortex lines in the presence of axial normal fluid flow. J. Low-Temp. Phys. 21, 191–196 (1975)

    Article  ADS  CAS  Google Scholar 

  9. Ruutu, V. M. H. et al. Intrinsic and extrinsic mechanisms of vortex formation in superfluid 3He-B. J. Low-Temp. Phys. 107, 93–164 (1997)

    Article  ADS  CAS  Google Scholar 

  10. Ruutu, V. M. H. et al. Vortex formation in neutron-irradiated superfluid 3He as an analogue of cosmological defect formation. Nature 382, 334–336 (1996)

    Article  ADS  CAS  Google Scholar 

  11. Fisher, S. N. et al. Generation and detection of quantum turbulence in superfluid 3He-B. Phys. Rev. Lett. 86, 244–247 (2001)

    Article  ADS  CAS  Google Scholar 

  12. Skrbek, L. et al. Vortex flow in rotating superfluid 3He-B. Physica B 329–333, 106–107 (2003)

    Article  ADS  Google Scholar 

  13. Schwarz, K. W. Three-dimensional vortex dynamics in superfluid 4He: Homogenous superfluid turbulence. Phys. Rev. B 38, 2398–2417 (1988)

    Article  ADS  CAS  Google Scholar 

  14. Tsubota, M. et al. Dynamics of vortex tangle without mutual friction in superfluid 4He. Phys. Rev. B 62, 11751–11762 (2000)

    Article  ADS  CAS  Google Scholar 

  15. Tsubota, M. et al. Rotating superfluid turbulence. Phys. Rev. Lett. 90, 205301 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the EU-IHP ULTI-3, ESF-COSLAB, and ESF-VORTEX programmes. N.B.K. and G.E.V. are grateful to the Russian Foundation for Basic Research and L.S. to the Grant Agency of the Czech Republic. We thank C.F. Barenghi, P.V.E. McClintock and W.F. Vinen for discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. E. Volovik.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Finne, A., Araki, T., Blaauwgeers, R. et al. An intrinsic velocity-independent criterion for superfluid turbulence. Nature 424, 1022–1025 (2003). https://doi.org/10.1038/nature01880

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01880

  • Springer Nature Limited

This article is cited by

Navigation