Skip to main content
Log in

Statistics of Quantum Turbulence in Superfluid He

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Based on our current understanding of statistics of quantum turbulence as well as on results of intensive ongoing analytical, numerical and experimental studies, we overview here the following problems in the large-scale, space-homogeneous, steady-state turbulence of superfluid \(^4\)He and \(^3\)He: (1) energy spectra of normal and superfluid velocity components; (2) cross-correlation function of normal and superfluid velocities; (3) energy dissipation by mutual friction and viscosity; (4) energy exchange between normal and superfluid components; (5) high-order statistics and intermittency effects. The statistical properties are discussed for turbulence in different types of flows: coflow of \(^4\)He; turbulent \(^3\)He with the laminar normal fluid; pure superflow and counterflow in \(^4\)He.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R.P. Feynman, in Progress in Low Temperature Physics, vol. 1, Chap. 2, ed. C.J. Gorter (North-Holland, Amsterdam, 1955), pp. 17–53

  2. W.F. Vinen, Mutual Friction in a Heat Current in Liquid Helium II. I. Experiments on Steady Heat Currents Proceedings of Royal Society A 240, 114–128 (1957);ibid emphMutual Friction in a Heat Current in Liquid Helium II. III. Theory of the Mutual Friction, 242, 489 (1957)

  3. R.J. Donnelly, C.E. Swanson, Quantum turbulence. J. Fluid Mech. 173, 387 (1986)

    Article  ADS  Google Scholar 

  4. W.F. Vinen, J.J. Niemela, Quantum turbulence. J. Low Temp. Phys. 128, 167 (2002)

    Article  ADS  Google Scholar 

  5. L. Skrbek, K.R. Sreenivasan, Developed quantum turbulence and its decay. Phys. Fluids 24, 011301 (2012)

    Article  ADS  Google Scholar 

  6. S.K. Nemirovskii, Quantum turbulence: theoretical and numerical problems. Phys. Rep. 524, 85 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  7. C.F. Barenghi, V.S. L’vov, P.-E. Roche, Turbulent velocity spectra in a quantum fluid: experiments, numerics and theory. Proc. Natl. Acad. Sci. 111, 4683 (2014)

    Article  ADS  MATH  Google Scholar 

  8. L. Boue, V.S. L’vov, A. Pomyalov, I. Procaccia, Enhancement of intermittency in superfluid turbulence. Phys. Rev. Lett. 110, 014502 (2013)

    Article  ADS  Google Scholar 

  9. V.S. L’vov, S.V. Nazarenko, G.E. Volovik, Energy spectra of developed superfluid turbulence. JETP Lett. 80, 479 (2004)

    Article  ADS  Google Scholar 

  10. L. Boue, V.S. L’vov, A. Pomyalov, I. Procaccia, Energy spectra of superfluid turbulence in 3He-B. Phys. Rev. B 85, 104502 (2012)

    Article  ADS  Google Scholar 

  11. S. Babuin, V.S. L’vov, A. Pomyalov, L. Skrbek, E. Varga, Coexistence and interplay of quantum and classical turbulence of superfluid He-4: decay, velocity decoupling and counterflow energy spectra. Phys. Rev. B (2016, in press)

  12. A. Marakov, J. Gao, W. Guo, S.W. Van Sciver, G.G. Ihas, D.N. McKinsey, W.F. Vinen, Visualization of the normal-fluid turbulence in counterflowing superfluid \(^4\)He. Phys. Rev. B 91, 094503 (2015)

    Article  ADS  Google Scholar 

  13. J. Gao, E. Varga, W. Guo, W.F. Vinen, Statistical measurement of counterflow turbulence in superfluid Helium-4 using He-II tracer-line tracking technique. J. Low Temp. Phys. doi:10.1007/s10909-016-1681-y

  14. J. Gao, W. Guo, V.S. L’vov, A. Pomyalov, L. Skrbek, E. Varga, W.F. Vinen, The decay of counterflow turbulence in superfluid He-4. JETP Lett. 103, 732 (2016)

    Article  Google Scholar 

  15. J. Gao, W. Guo, V.S. L’vov, A. Pomyalov, Statistical analysis of the counterflow visualization data, unpublished

  16. U. Frisch, Turbulence. The Legacy of A.N. Kolmogorov (Cambridge University press, Cambridge, 1995)

    MATH  Google Scholar 

  17. J. Salort, B. Chabaud, E. Lévéque, P.-E. Roche, Energy cascade and the four-fifths law in superfluid turbulence. Europhys. Lett. 97, 34006 (2012)

    Article  ADS  Google Scholar 

  18. L. Biferale, Shell models of energy cascade in turbulence. Ann. Rev. Fluid Mech. 35, 441 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. V.S. L’vov, E. Podivilov, A. Pomyalov, I. Procaccia, D. Vandembroucq, Improved shell model of turbulence. Phys. Rev. E 58, 1811 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  20. H.E. Hall, W.F. Vinen, in Proceedings of the Royal Society A. The Rotation of Liquid Helium II. I. Experiments on the Propagation of Second Sound in Uniformly Rotating Helium II, 238, 204 (1956)

  21. I.L. Bekarevich, I.M. Khalatnikov, Phenomenological derivation of the equations of vortex motion in He II. Sov. Phys. JETP 13, 643 (1961)

    Google Scholar 

  22. S. Fuzier, B. Baudouy, S.N. Van Sciver, Cryogenics 41, 453 (2001)

    Article  ADS  Google Scholar 

  23. L. Boue, V.S. L’vov, Y. Nagar, S.V. Nazarenko, A. Pomyalov, I. Procaccia, Energy and vorticity spectra in turbulent superfluid \(^4\)He from \(T = 0\) to \(T_\lambda \). Phys. Rev. B 91, 144501 (2015)

    Article  ADS  Google Scholar 

  24. D.H. Wacks, C.F. Barenghi, Shell model of superfludi turbulence. Phys. Rev. B 84, 184505 (2011)

    Article  ADS  Google Scholar 

  25. J. Salort, B. Chabaud, E. Lévéque, P.-E. Roche, Investigation of intermittency in superfluid turbulence. J. Phys. Conf. Ser. 318, 042014 (2011)

    Article  Google Scholar 

  26. J. Maurer, P. Tabeling, Local investigation of superfluid turbulence. Europhys. Lett. 43, 29 (1998)

    Article  ADS  Google Scholar 

  27. V.S. L’vov, S.V. Nazarenko, L. Skrbek, Energy spectra of developed turbulence in helium superfluids. J. Low Temp. Phys. 145, 125 (2006)

    Article  ADS  Google Scholar 

  28. L. Kovasznay, Spectrum of locally isotropic turbulence. J. Aeronaut. Sci. 15, 745 (1947)

    Article  MathSciNet  Google Scholar 

  29. D. Khomenko, V.S. L’vov, A. Pomyalov, I. Procaccia, Counterflow-induced decoupling in super-fluid turbulence. Phys. Rev. B 93, 014516 (2016)

    Article  ADS  Google Scholar 

  30. S. Babuin, E. Varga, W.F. Vinen, L. Skrbek, Quantum turbulence of bellows-driven He4 superflow: Decay. Phys. Rev. B 92, 184503 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We acknowledge L. Skrbek, E. Varga, W. Guo and J. Gao who provided us with their experimental results prior to publications and allowed to use them in preparing this review. Useful discussion with them and with J. Vinen, I. Procaccia, S. Nazarenko, G. Volovik, C. Barenghi, P-E Roche and other colleagues made this review possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. L’vov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

L’vov, V.S., Pomyalov, A. Statistics of Quantum Turbulence in Superfluid He. J Low Temp Phys 187, 497–514 (2017). https://doi.org/10.1007/s10909-016-1680-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-016-1680-z

Keywords

Navigation