Skip to main content
Log in

Modeling of classical turbulence by quantized vortices

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

Quantum turbulence in superfluids appears as a stochastic tangle of quantized vortex lines. Interest to this system extends beyond the field of superfluid helium to include a large variety of topics both fundamental and engineering problem. In the article we present a discussion of the hot topic, which is undoubtedly mainstream in this field, and which deals with the quasi-classical properties of quantum turbulence. The idea that classical turbulence can be modeled by a set of slim vortex tubes (or vortex sheets) has been discussed for quite a long time. In classical fluids, the concept of thin vortex tubes is a rather fruitful mathematical model. Quantum fluids, where the vortex filaments are real objects, give an excellent opportunity for the study of the question, whether the dynamics of a set of vortex lines is able to reproduce (at least partially) the properties of real hydrodynamic turbulence. The main goal of this article is to discuss the current state of this activity. We cover such important topics as theoretical justification of this model, and experimental and numerical evidence for quasi-classical turbulence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Feynman, R.P., Progress in Low Temperature Physics, vol. 1, Gorter, C.J., Ed., Amsterdam: North-Holland, 1955, p.7.

    Google Scholar 

  2. Vinen, W.F., Mutual Friction in a Heat Current in Liquid Helium-II, III. Theory of theMutual Friction, Proc. R. Soc. London A, 1957, vol. 242, pp. 493–515.

    Article  ADS  Google Scholar 

  3. Vinen, W.F., Mutual Friction in a Heat Current in Liquid Helium-II, II. Experiments on Transient Effects, Proc. R. Soc. London A, 1957, vol. 240, p.128.

    Article  ADS  Google Scholar 

  4. Vinen, W.F., Mutual Friction in a Heat Current in Liquid Helium-II, IV. Critical Heat Currents in Wide Channels, Proc. R. Soc. London A, 1958, vol. 243, no. 1234, pp. 400–413.

    ADS  Google Scholar 

  5. Schwarz, K.W., Three-Dimensional Vortex Dynamics in Superfluid 4He: Homogeneous Superfluid Turbulence, Phys. Rev. B, 1988, vol. 38, no. 4, pp. 2398–2417.

    Article  ADS  Google Scholar 

  6. Frisch, U., Turbulence, Cambridge: Cambridge Univ. Press, 1995.

    MATH  Google Scholar 

  7. Belotserkovsky, S. and Nisht, M., Otryvnoe i bezotryvnoe obtekanie tonkikh kryl’yev ideal’noi zhidkosti (Separated and Separation-Free Flow of Ideal Fluid over Thin Wings), Moscow: Nauka, 1978.

    Google Scholar 

  8. Geshev, P.I. and Ezdin, B.S., Modeling Turbulent Transfer in a Channel byMeans of Point Vortices, J. Appl. Mech. Techn. Phys., 1986, vol. 27, pp. 228–233.

    Article  ADS  Google Scholar 

  9. Sethian, J.A., in Vortex Methods and VortexMotion, Gustafson, K.E., Ed., Philadelphia, PA: SIAM, 1991, p.59.

  10. Siggia, E.D., Collapse and Amplification of a Vortex Filament, Phys. Fluids, 1985, vol. 28, p.794.

    Article  ADS  MATH  Google Scholar 

  11. Hussain, A.K.M.F., Coherent Structures and Turbulence, J. Fluid Mech., 1986, vol. 173, pp. 303–356.

    Article  ADS  Google Scholar 

  12. Chorin, A.J., The Evolution of a Turbulent Vortex, Comm. Math. Phys., 1982, vol. 83, p.517.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Chorin, A.J., Vortex Methods and Vortex Motion, Gustafson, K.E. and Sethian, J.A., Eds., Philadelphia, PA: SIAM, 1991, p.195.

  14. Agishtein, M.E. and Migdal, A.A., Computer Simulation of Three-Dimensional Vortex Dynamics, Mod. Phys. Lett. A, 1986, vol. 1, p.221.

    Article  ADS  Google Scholar 

  15. Vincent, A. and Meneguzzi, M., The Spatial Structure and Statistical Properties of Homogeneous Turbulence, J. Fluid Mech., 1991, vol. 225, pp. 1–20.

    Article  ADS  MATH  Google Scholar 

  16. Vinen, W., Quantum Turbulence: Achievements and Challenges, J. Low Temp. Phys., 2010, vol. 161, pp. 419–444.

    Article  ADS  Google Scholar 

  17. Skrbek, L. and Sreenivasan, K.R., Developed Quantum Turbulence and Its Decay, Phys. Fluids, 2012, vol. 24, no. 1, p. 011301.

    Article  ADS  Google Scholar 

  18. Vinen, W.F., Classical Character of Turbulence in a Quantum Liquid, Phys. Rev. B, 2000, vol. 61, no. 2, pp. 1410–1420.

    Article  ADS  Google Scholar 

  19. Nemirovskii, S.K., Quantum Turbulence: Theoretical and Numerical Problems, Phys. Rep., 2013, vol. 524, no. 3, pp. 85–202.

    Article  ADS  MathSciNet  Google Scholar 

  20. Procaccia, I. and Sreenivasan, K., The State of the Art in Hydrodynamic Turbulence: Past Successes and Future Challenges, Phys. D: Nonlin. Phen., 2008, vol. 237, nos. 14–17, pp. 2167–2183

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Golov, A. and Walmsley, P., Homogeneous Turbulence in Superfluid 4He in the Low-Temperature Limit: Experimental Progress, J. Low Temp. Phys., 2009, vol. 156, p.51.

    Article  ADS  Google Scholar 

  22. Maurer, J. and Tabeling, P., Local Investigation of Superfluid Turbulence, Europhys. Lett., 1998, vol. 43, p.29.

    Article  ADS  Google Scholar 

  23. Vinen, W. and Niemela, J., Quantum Turbulence, J. Low Temp. Phys., 2002, vol. 128, p.167.

    Article  ADS  Google Scholar 

  24. Araki, T., Tsubota, M., and Nemirovskii, S.K., Energy Spectrum of Superfluid Turbulence with no Normal-Fluid Component, Phys. Rev. Lett., 2002, vol. 89, no. 14, p. 145301.

    Article  ADS  Google Scholar 

  25. Kivotides, D., Vassilicos, C.J., Samuels, D.C., and Barenghi, C.F., Velocity Spectra of Superfluid Turbulence Europhys. Lett., 2002, vol. 57, no. 6, p.845.

    Article  ADS  Google Scholar 

  26. Kivotides, D., Barenghi, C.F., and Samuels, D.C., Superfluid Vortex Reconnections at Finite Temperature, Europhys. Lett., 2001, vol. 54, p.771.

    Article  ADS  Google Scholar 

  27. Barenghi, C.F., L’vov, V.S., and Roche, P.-E., Experimental, Numerical, and Analytical Velocity Spectra in Turbulent Quantum Fluid, Proc. Nat. Acad. Sci. USA, 2014, vol. 111, pp. 4683–4690.

    Article  ADS  MATH  Google Scholar 

  28. Baggaley, A.W., Barenghi, C.F., and Sergeev, Ya., Three-Dimensional Inverse Energy Transfer Induced by Vortex Reconnections, Phys. Rev. E, 2014, vol. 89, p. 013002.

    Article  ADS  Google Scholar 

  29. Kondaurova, L., Andryuschenko, V., and Nemirovskii, S., Numerical Simulations of Superfluid Turbulence under Periodic Conditions, J. Low Temp. Phys., 2008, vol. 150, pp. 415–419.

    Article  ADS  Google Scholar 

  30. Nore, C., Abid, M., and Brachet, M.E., Kolmogorov Turbulence in Low-Temperature Superflows, Phys. Rev. Lett., 1997, vol. 78, no. 20, pp. 3896–3899.

    Article  ADS  Google Scholar 

  31. Nore, C., Abid, M., and Brachet, M.E., Decaying Kolmogorov Turbulence in a Model of Superflow, Phys. Fluids, 1997, vol. 9, p. 2644.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Kobayashi, M. and Tsubota, M., Kolmogorov Spectrum of Superfluid Turbulence: Numerical Analysis of the Gross–Pitaevskii Equation with a Small-Scale Dissipation, Phys. Rev. Lett., 2005, vol. 94, no. 6, p. 065302.

    Article  ADS  Google Scholar 

  33. Sasa, N., Kano, T., Machida, M., L’vov, V.S., Rudenko, O., and Tsubota, M., Energy Spectra of Quantum Turbulence: Large-Scale Simulation and Modeling, Phys. Rev. B, 2011, vol. 84, p. 054525.

    Article  ADS  Google Scholar 

  34. Nemirovskii, S., Energy Spectrum of the 3D Velocity Field Induced by Vortex Tangle, J. Low Temp. Phys., 2013, vol. 171, nos. 5/6, pp. 504–510.

    Article  ADS  Google Scholar 

  35. Batchelor, G., The Theory of Homogeneous Turbulence, Cambridge: Cambridge Univ. Press, 1953.

    MATH  Google Scholar 

  36. Monin, A. and Yaglom, A., Statistical Fluid Dynamics, vol. 2, Cambridge,MA: MIT, 1975.

  37. Stalp, S.R., Skrbek, L., and Donnelly, R.J., Decay of Grid Turbulence in a Finite Channel, Phys. Rev. Lett., 1999, vol. 82, no. 24, pp. 4831–4834.

    Article  ADS  Google Scholar 

  38. Walmsley, P.M., Golov, A.I., Hall, H.E., Levchenko, A.A., and Vinen, W.F., Dissipation of Quantum Turbulence in the Zero Temperature Limit, Phys. Rev. Lett., 2007, vol. 99, no. 26, p. 265302.

    Article  ADS  Google Scholar 

  39. Staas, F., Taconis, K., and Van Alphen, W., Experiments on Laminar and Turbulent Flow of HeII in Wide Capillaries, Phys., 1961, vol. 27, no. 10, pp. 893–923.

    ADS  MATH  Google Scholar 

  40. Nemirovskii, S.K., Hydrodynamics and Heat Transfer in Superfluid Helium, J. Eng. Phys. Thermophys., 1982, vol. 43, pp. 1172–1186.

    Article  Google Scholar 

  41. Fisher, S.N., Hale, A.J., Guénault, A.M., and Pickett, G.R., Generation and Detection of Quantum Turbulence in Superfluid 3He-B, Phys. Rev. Lett., 2001, vol. 86, pp. 244–247.

    Article  ADS  Google Scholar 

  42. Jäger, J., Schuderer, B., and Schoepe, W., Turbulent and Laminar Drag of Superfluid Helium on an Oscillating Microsphere, Phys. Rev. Lett., 1995, vol. 74, pp. 566–569.

    Article  ADS  Google Scholar 

  43. Schoepe, W., Fluctuations and Stability of Superfluid Turbulence at mK Temperatures, Phys. Rev. Lett., 2004, vol. 92, p. 095301.

    Article  ADS  Google Scholar 

  44. Yano, H., Handa, A., Nakagawa, H., Obara, K., Ishikawa, O., Hata, T., and Nakagawa, M., Observation of Laminar and Turbulent Flow in Superfluid 4He Using a VibratingWire, J. Low Temp. Phys., 2005, vol. 138, p.561.

    Article  ADS  Google Scholar 

  45. Schmoranzer, D., Král’ová, M., Pilcová, V., Vinen, W.F., and Skrbek, L., Experiments Relating to the Flow Induced by a Vibrating Quartz Tuning Fork and Similar Structures in a Classical Fluid, Phys. Rev. E, 2010, vol. 81, p. 066316.

    Article  ADS  Google Scholar 

  46. Bradley, D.I., Človečko, M., Fisher, S.N., Garg, D., Guise, E., Haley, R.P., Kolosov, O., Pickett, G.R., Tsepelin, V., Schmoranzer, D., and Skrbek, L., Crossover from Hydrodynamic to Acoustic Drag on Quartz Tuning Forks in Normal and Superfluid 4He, Phys. Rev. B, 2012, vol. 85, p. 014501.

    Article  ADS  Google Scholar 

  47. Hanninen, R., Tsubota, M., and Vinen, W.F., Generation of Turbulence by Oscillating Structures in Superfluid Helium at Very Low Temperatures, Phys. Rev. B, 2007, vol. 75, no. 6, p. 064502.

    Article  ADS  Google Scholar 

  48. Goto, R., Fujiyama, S., Yano, H., Nago, Y., Hashimoto, N., Obara, K., Ishikawa, O., Tsubota, M., and Hata, T., Turbulence in Boundary Flow of Superfluid 4He Triggered by Free Vortex Rings, Phys. Rev. Lett., 2008, vol. 100, p. 045301.

    Google Scholar 

  49. Tsubota, M., Quantum Turbulence: From Superfluid Helium to Atomic Bose–Einstein Condensates, J. Phys.: Condensed Matt., 2009, vol. 21, no. 16, p. 164207.

    ADS  Google Scholar 

  50. Hashimoto, N., Goto, R., Yano, H., Obara, K., Ishikawa, O., and Hata, T., Control of Turbulence in Boundary Layers of Superfluid 4He by Filtering out Remanent Vortices, Phys. Rev. B, 2007, vol. 76, p. 020504.

    Article  ADS  Google Scholar 

  51. Hanninen, R. and Schoepe, W., Universal Critical Velocity for the Onset of Turbulence of Oscillatory Superfluid Flow, J. Low Temp. Phys., 2008, vol. 153, pp. 189–196.

    Article  ADS  Google Scholar 

  52. Nemirovskii, S.K., Stamm, G., and Fiszdon, W., MacroscopicDynamics of the Vortex Tangle in He-II, Phys. Rev. B, 1993, vol. 48, no. 10, pp. 7338–7347.

    Article  ADS  Google Scholar 

  53. Nemirovskii, S.K. and Fiszdon, W., Chaotic Quantized Vortices and Hydrodynamic Processes in Superfluid Helium, Rev. Mod. Phys., 1995, vol. 67, no. 1, pp. 37–84.

    Article  ADS  Google Scholar 

  54. Smith, M.R., Hilton, D.K., and Van Sciver, S.W., Observed Drag Crisis on a Sphere in Flowing He-I and He-II, Phys. Fluids, 1999, vol. 11, no. 4, pp. 751–753.

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Nemirovskii.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nemirovskii, S.K. Modeling of classical turbulence by quantized vortices. J. Engin. Thermophys. 26, 476–484 (2017). https://doi.org/10.1134/S181023281704004X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S181023281704004X

Navigation