Skip to main content
Log in

Development and potential of starter lactobacilli resulting from exploration of the sourdough ecosystem

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Lactic acid bacteria are widely used as starter organisms in food fermentations. The development of such cultures as organisms fulfilling all metabolic, technical and handling requirements is the result of a multidisciplinary approach, i.e. to analyse, follow and direct the microbial ecology in food fermentations by molecular biology tools, gene cloning, biochemical and physiological analyses, pilot trials and modelling of behaviour and metabolism. The possibilities and restrictions of such an approach is given for cereal fermentations, namely sourdoughs. In this environment highly adapted lactobacilli are predominant, sharing the environment with yeasts present in traditional preparations. The competitiveness of these lactobacilli and their contribution to flavour, machineability and prebiosis of doughs and bread relies on their maltose and amino acid metabolism, use of electron acceptors and EPS formation. Their reactions on environmental stresses can be used to embed these recalcitrant organisms into starter culture preparations. Beyond the cereal environment the described strategy can be generally applied to understand ecosystems in food fermentations and finally control them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bohak I, Back W, Richter L, Ehrmann M, Ludwig, W & Schleifer KH (1998) Lactobacillus amylolyticus sp.nov.isolated from beer malt and beer wort. System. Appl. Microbiol. 21: 360–364.

    CAS  Google Scholar 

  • Corsetti A, Gobbetti M & Smacchi E (1996) Antibacterial activity of sourdough lactic acid bacteria: isolation of a bacteriocin-like inhibitory substance from Lactobacillus sanfrancisco C57. Food Microbiol. 13: 447–456.

    Article  CAS  Google Scholar 

  • Corsetti A, Gobbetti M, Rossi J & Damiani P (1998) Antimould activity of sourdough lactic acid bacteria: identification of a mixture of organic acids produced by Lactobacillus sanfrancisco CB1. Appl. Microbiol. Biotechnol. 50: 253–256.

    Article  PubMed  CAS  Google Scholar 

  • Dal Bello F, Walter J, Hertel C & Hammes WP (2001) In vitro study of prebiotic properties of levan-type exopolysaccharides from lactobacilli and non-digestible carbohydrates using denaturing gradient gel electrophoresis. System. Appl. Microbiol. 24: 232–237.

    Article  CAS  Google Scholar 

  • Ehrmann A & Vogel RF (1998) Maltose metabolism of Lactobacillus sanfranciscensis: cloning and heterologous expession of the key enzymes, maltose phosphorylase and phosphoglucomutase. FEMS Microbiol. Lett. 169: 81–86.

    Article  PubMed  CAS  Google Scholar 

  • Ehrmann A & Vogel RF (2001) Characterisation of IS153,an IS3-family insertion sequence isolated from Lactobacillus sanfranciscensis and its use for strain differentiation. System. Appl. Microbiol., in press.

  • Gänzle MG, Ehmann M & Hammes WP (1998) Modelling of growth of Lactobacillus sanfranciscensis and Candida milleri in response to process parameters of the sourdough fermentation. Appl. Environ. Microbiol. 64: 2616–2623.

    PubMed  Google Scholar 

  • Gänzle M (1998) Useful properties of lactobacilli for application as protective cultures in food. PhD Thesis, Universität Hohenheim, Germany.

    Google Scholar 

  • Gobetti M, Corsetti A, Morelli L & Elli M (1995) Expression of α-amylase gene from Bacillus stearothermophilus in Lactobacillus sanfrancisco. Biotechnol. Lett. 18: 969–974.

    Article  Google Scholar 

  • Gobetti M, Corsetti A & Rossi J (1996) Lactobacillus sanfrancisco, a key sourdough lactic acid bacterium: Physiology, genetic and biotechnology. Adv. Food Sci. 18: 167–175.

    Google Scholar 

  • Gobbetti M (1998) Interactions of lactic acid bacteria and yeasta in sourdoughs. Trends Food Sci. Technol. 9: 267–274.

    Article  CAS  Google Scholar 

  • Hamad SH, Dieng MC, Ehrmann MA & Vogel RF (1997) Characterization of the bacteial flora of sudanese sorghum flour and sorghum sourdough. J. Appl. Microbiol. 83: 764–770.

    Article  PubMed  CAS  Google Scholar 

  • Hammes WP, Stolz P & Gänzle M (1996) Metabolism of lactobacilli in traditional sourdoughs. Adv. Food Sci. 18: 176–184.

    CAS  Google Scholar 

  • Hammes WP & Vogel RF (1997) Mikrobiologie von Sauerteig. In: Müller G, Holzapfel W & Weber H (Eds) Mikrobiologie der Lebensmittel: Lebensmittel pfanzlicher Herkunft. Behr's Verlag Hamburg.

  • Hancioglu Ö & Karapinar M (1997) Microflora of Boza, a traditional fermented Turkish beverage. Int. J. Food Microbiol. 35: 271–274.

    Article  PubMed  CAS  Google Scholar 

  • Knorr R (2000) Adaptation and stress response of the carbohydrate metabolism of Lactobacillus sanfranciscensis: Biochemical and genetical characterization of key enzymes involved in acetate production. Doctoral Thesis, Technische Universität München, Germany.

    Google Scholar 

  • Knorr R, Ehrmann MA & Vogel RF (2001) Cloning, expression, and characterization of acetate kinase from Lactobacillus sanfranciscensis. Microbiol. Res. 156: 1–11.

    Article  Google Scholar 

  • Korakli M, Rossmann A, Gänzle MG & Vogel RF (2001) Sucrose metabolism and exopolysaccharide production in wheat and rye sourdoughs by Lactobacillus sanfranciscensis LTH2590, submitted.

  • Kurtzmann CP, Robnett CJ (1998) Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie van Leeuwenhoek 73: 331–371.

    Article  Google Scholar 

  • Lavermicocca P, Valerio F, Evidente A, Lazzaroni S, Corsetti A & Gobbetti G (2000) Purification and characterization of novel antifungal compounds from the sourdough Lactobacillus plantarum strain 21B. Appl. Environ. Microbiol. 66: 4084–4090.

    Article  PubMed  CAS  Google Scholar 

  • Mäntynen VH, Korhola M, Gudmundsson H, Turkainen H, Alfredsson GA, Salovaara H & Lindström K (1999) A polyphasic study on the taxonomic position of industrial sour dough yeasts. System. Appl. Microbiol. 22: 87–96.

    Google Scholar 

  • Martinez-Anaya MA, Llin Z, Macias MP & Collar C (1994) Regulation of acetic acid production by homo-and heterofermentative lactobacilli in whole wheat sour-doughs. Z. Lebensm. Unters. Forsch. 199: 186–190.

    Article  PubMed  CAS  Google Scholar 

  • Müller MRA, Rouvet M, Brassart D, Böcker G, Ehrmann MA & Vogel RF (1998) Adhesion of Lactobacillus strains from cereal fermentations to human intestinal cells. Int. Dairy J. 8: 584.

    Google Scholar 

  • Müller MRA, Ehrmann MA & Vogel RF (2000a) Multiplex PCR for the detection of Lactobacillus pontis and two related species in a sourdough fermentation. Appl. Environ. Microbiol. 66: 2113–2116.

    Article  PubMed  Google Scholar 

  • Müller MRA, Ehrmann MA & Vogel RF (2000b) Lactobacillus frumenti sp. nov., a new lactic acid bacterium isolated from rye-bran fermentations with a long fermentation period. Int. J. System. Envol. Microbiol. 50: 2127–2133.

    Google Scholar 

  • Müller MRA (2001) Characterization of the microbial ecosystem of cereal fermentations using molecular biological methods. Doctoral Thesis, Technische Universität München, Germany.

    Google Scholar 

  • Müller MRA, Wolfrum G, Stolz P, Ehrmann MA & Vogel RF (2001) Monitoring the growth of Lactobacillus species during a rye flour fermentation. Microbiol. 18: 217–227.

    Google Scholar 

  • Neubauer H, Glaasker E, Hammes WP, Poolmann B, & Konings W (1994) Mechanisms of maltose uptake and glucose excretion on Lactobacillus sanfrancisco. J. Bacteriol. 176: 3007–3012.

    PubMed  CAS  Google Scholar 

  • Olsen A, Halm M & Jakobsen K (1995) The antimicrobial activity of lactic acid bacteria from fermented maize (kenkey) and their interactions during fermentation. J. Appl. Bacteriol. 79: 506–512.

    PubMed  CAS  Google Scholar 

  • Röcken W & Voysey PA (1995) Sour-dough fermentation in bread making. J. Appl. Bacteriol. 79: 38S–48S.

    Google Scholar 

  • Roos S, Karner F, Axelsson L & Jonsson H (2000) Lactobacillus mucosae sp. nov., a new species with in vitro mucus-binding activity isolated from pig intestine. Int. J. System. Evol. Microbiol. 50: 251–258.

    CAS  Google Scholar 

  • Simpson JM, McCracken VJ, Gaskins HR & Mackie RI (2000) Denaturing gradient gel electrophoresis analysis of 16S ribosomal DNA amplicons to monitor changes in fecal bacterial populations of weaning pigs after introduction of Lactobacillus reuteri strain MM53. Appl. Envir. Microbiol. 66: 4705–4714.

    Article  CAS  Google Scholar 

  • Steudel U (2001) Physiologische und molekulare Charakterisierung der Stressantwort von Lactobacillus pontis und Lactobacillus sanfranciscensis. Doctoral Thesis, Technische Universität München, Germany.

    Google Scholar 

  • Stolz P, Böcker G, Vogel RF & Hammes WP (1993) Utilisation of maltose and glucose by lactobacilli isolated from sourdough. FEMS Microbiol. Lett. 109: 237–242.

    Article  CAS  Google Scholar 

  • Stolz P, Böcker G, Hammes WP & Vogel RF (1995a) Utilization of electron acceptors by lactobacilli isolated from sourdough. I. Lactobacillus sanfrancisco. Z. Lebensm. Unters. Forsch. 201: 91–96.

    Article  CAS  Google Scholar 

  • Stolz P, Vogel RF & Hammes WP (1995b) Utilization of electron acceptors by lactobacilli isolated from sourdough. II. Lactobacillus pontis, L. reuteri, L. amylovorus, and L. fermentum. Z. Lebensm. Unters. Forsch. 201: 402–410.

    Article  CAS  Google Scholar 

  • Stolz P, Hammes WP & Vogel RF (1996) Maltose-phosphorylase and hexokinase activity in lactobacilli from traditionally prepared sourdoughs. Adv. Food Sci. 18: 1–6.

    CAS  Google Scholar 

  • Thiele C, Gänzle MG & Vogel RF (2001) Contribution of sourdough lactobacilli, yeast, and cereal enzymes to the generation of amino acids in dough relevant for bread flavour. Cereal Chemistry 79: 45–51.

    Google Scholar 

  • Ulrich A & Müller T (1998) Heterogeneity of plant-associated streptococci as characterized by phenotypic features and restriction analysis of PCR-amplified 16S rDNA, In: J. Appl. Microbiol. 84: 293–303.

    Article  PubMed  CAS  Google Scholar 

  • Van Geel-Schutten, GH, Faber EJ, Smit E, Bonting K, Smith MR, Ten Brink B, Kamerling JP, Vliegenthart JFG & Dijkhuizen L (1999) Biochemical and structural characterization of the glucan and fructan exopolysaccharides synthesized by the Lactobacillus reuteri wild-type strain and by mutant strains. Appl. Envir. Microbiol. 65: 3008–3014.

    CAS  Google Scholar 

  • Vogel RF & Ehrmann M (1996) Genetics of lactobacilli in food fermentations. In: II El-Gewely MR (Ed) Biotechnology Annual Review (pp 123-150).

  • Vogel RF, Böcker G, Stolz P, Ehrmann M, Fanta D, Ludwig W, Pot B, Kersters K, Schleifer KH & Hammes WP (1994) Identification of lactobacilli from sourdough and description of Lactobacillus pontis sp. nov. Int. J. System. Bacteriol. 44: 223–229.

    CAS  Google Scholar 

  • Vogel RF, Müller M, Stolz P & Ehrmann M (1996) Ecology in sourdoughs produced by traditional and modern technologies. Adv. Food. Sci. 18: 152–159.

    Google Scholar 

  • Weidner S, Arnold W & Pühler A (1996) Diversity of uncultured microorganisms associated with the seagrass Halophila stipulacea estimated by restriction fragment length polymorphism analysis of PCR-amplified 16S rRNA genes, Appl. Environ. Microbiol. 62: 766–771.

    PubMed  CAS  Google Scholar 

  • Wiese B, Strohmar W, Rainey FA & Diekmann H (1996) Lactobacillus panis sp. nov., from sourdough with a long fermentation period. Int. J. System. Bacteriol. 46: 449–453.

    Article  CAS  Google Scholar 

  • Yarrow D (1978) Candida milleri sp. nov. Int. J. System. Bacteriol. 28: 608–610.

    Google Scholar 

  • Zapparoli G, Torriani S & Dellaglio F (1998) Differentiation of Lactobacillus sanfranciscensis strains by randomly amplified polymorphic DNA and pulsed field gel electrophoresis. FEMS Microbiol. Lett. 166: 325-3-32.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudi F. Vogel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vogel, R.F., Ehrmann, M.A. & Gänzle, M.G. Development and potential of starter lactobacilli resulting from exploration of the sourdough ecosystem. Antonie Van Leeuwenhoek 81, 631–638 (2002). https://doi.org/10.1023/A:1020530227192

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020530227192

Navigation