Skip to main content

Physiology and Biochemistry of Sourdough Lactic Acid Bacteria and Their impact on Bread Quality

  • Chapter
  • First Online:
Handbook on Sourdough Biotechnology

Abstract

In the past decades, studies on the physiology and biochemistry of sourdough lactic acid bacteria provided insight into the microbial ecology of sourdough as well as the effect of the metabolic activity of lactic acid bacteria on flavor, texture, shelf life, and nutritional properties of leavened baked goods. Lactic acid bacteria are the dominant microorganisms of sourdough. Their metabolic versatility favors adaptation to the various processing conditions and the metabolic interactions with autochthonous yeasts determine mechanisms of proto-cooperation during sourdough fermentation (Gobbetti et al. Trends Food Sci Technol 16:57–69, 2005; De Vuyst and Neysens. Trends Food Sci Technol 16:43–56, 2005; Gänzle. Food Microbiol 37:2–10, 2014; Gänzle and Zheng. Int J Food Microbiol 302:15–23, 2019; Gänzle. Curr Opin Food Sci 2:106–117, 2015). Species of genera in the Lactobacillaceae species are most frequently found in sourdough fermentations although species belonging to the genera Enterococcus and Lactococcus were also occasionally identified (Gänzle and Zheng. Int J Food Microbiol 302:15–23, 2019; Hammes and Gänzle. Microbiol Fermented Foods 199–216, 1998; Vogel et al. Antonie van Leeuwenhoek Int J Gen Mol Microbiol 76:403–411, 1999; De Vuyst et al. Food Microbiol 37:11–29, 2014; see Chap. 6). A large number of species in the Lactobacillaceae were first identified from sourdoughs or fermentation processes of cereals (Vogel et al. Antonie van Leeuwenhoek, Int J Gen Mol Microbiol 76:403–411, 1999; Zheng et al. Int J Syst Evol Microbiol 70:2782–2858, 2020). This chapter gives an overview of the general growth and stress parameters, carbohydrate and amino acid metabolism, synthesis of exopolysaccharides and antimicrobial compounds, and the conversion of phenolic compounds and lipids of lactic acid bacteria during sourdough fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gobbetti M, De Angelis M, Corsetti A, Di Cagno R (2005) Biochemistry and physiology of sourdough lactic acid bacteria. Trends Food Sci Technol 16:57–69

    Article  CAS  Google Scholar 

  2. De Vuyst L, Neysens P (2005) The sourdough microflora: Biodiversity and metabolic interactions. Trends Food Sci Technol 16:43–56

    Article  Google Scholar 

  3. Gänzle M (2014) Enzymatic and bacterial conversions during sourdough fermentation. Food Microbiol 37:2–10

    Article  PubMed  Google Scholar 

  4. Gänzle M, Zheng J (2019) Lifestyles of sourdough lactobacilli—do they matter for microbial ecology and bread quality? Int J Food Microbiol 302:15–23

    Article  PubMed  Google Scholar 

  5. Gänzle M (2015) Lactic metabolism revisited: Metabolism of lactic acid bacteria in food fermentations and food spoilage. Curr Opin Food Sci 2:106–117

    Article  Google Scholar 

  6. Hammes WP, Gänzle MG (1998) Sourdough breads and related products. Microbiol Fermented Foods 199–216

    Google Scholar 

  7. Vogel RF, Knorr R, Müller MRA, Steudel U, Gänzle MG, Ehrmann MA (1999) Non-dairy lactic fermentations: The cereal world. Antonie van Leeuwenhoek Int J Gen Mol Microbiol 76:403–411

    Article  CAS  Google Scholar 

  8. De Vuyst L, Van Kerrebroeck S, Harth H, Huys G, Daniel HM, Weckx S (2014) Microbial ecology of sourdough fermentations: Diverse or uniform? Food Microbiol 37:11–29

    Article  PubMed  Google Scholar 

  9. Zheng J, Wittouck S, Salvetti E, Franz CMAP, Harris HMB, Mattarelli P, O’toole PW, Pot B, Vandamme P, Walter J, Watanabe K, Wuyts S, Felis GE, Gänzle MG, Lebeer S (2020) A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int J Syst Evol Microbiol 70:2782–2858

    Article  CAS  PubMed  Google Scholar 

  10. Duar RM, Lin XB, Zheng J, Martino ME, Grenier T, Pérez-Muñoz ME, Leulier F, Gänzle M, Walter J (2017) Lifestyles in transition: evolution and natural history of the genus Lactobacillus. FEMS Microbiol Rev 41:S27–S48

    Article  PubMed  Google Scholar 

  11. Gänzle MGMG, Ehmann M, Hammes WPWP (1998) Modeling of growth of Lactobacillus sanfranciscensis and Candida milleri in response to process parameters of sourdough fermentation. Appl Environ Microbiol 64:2616–2623

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wolfrum G (2002) Wachstum und Physiologie der Mikroflora in Getreidefermentationen. Technical University of Munich, Munich

    Google Scholar 

  13. Messens W, Neysens P, Vansieleghem W, Vanderhoeven J, De Vuyst L (2002) Modeling growth and bacteriocin production by Lactobacillus amylovorus DCE 471 in response to temperature and pH values used for sourdough fermentations. Appl Environ Microbiol 68:1431–1435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Passos FV, Fleming HP, Ollis DF, Felder RM, McFeeters RF (1994) Kinetics and modeling of lactic acid production by Lactobacillus plantarum. Appl Environ Microbiol 60:2627–2636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Krumbeck JA, Marsteller NL, Frese SA, Peterson DA, Ramer-Tait AE, Hutkins RW, Walter J (2016) Characterization of the ecological role of genes mediating acid resistance in Lactobacillus reuteri during colonization of the gastrointestinal tract. Environ Microbiol 18:2172–2184

    Article  CAS  PubMed  Google Scholar 

  16. Li Q, Gänzle M (2020) Host-adapted lactobacilli in food fermentations: Impact of metabolic traits of host adapted lactobacilli on food quality and human health. Curr Opin Food Sci 31:71–80

    Article  Google Scholar 

  17. Ripari V, Bai Y, Gänzle MG (2019) Metabolism of phenolic acids in whole wheat and rye malt sourdoughs. Food Microbiol 77:43–51

    Article  CAS  PubMed  Google Scholar 

  18. Sánchez-Maldonado AF, Schieber A, Gänzle MG (2011) Structure-function relationships of the antibacterial activity of phenolic acids and their metabolism by lactic acid bacteria. J Appl Microbiol 111:1176–1184

    Article  PubMed  Google Scholar 

  19. Sekwati-Monang B, Valcheva R, Gänzle MG (2012) Microbial ecology of sorghum sourdoughs: Effect of substrate supply and phenolic compounds on composition of fermentation microbiota. Int J Food Microbiol 159:240–246

    Article  CAS  PubMed  Google Scholar 

  20. Pswarayi F, Qiao N, Gaur G, Gänzle M (2022) Antimicrobial plant secondary metabolites, MDR transporters and antimicrobial resistance in cereal-associated lactobacilli: is there a connection? Food Microbiol 102:103917

    Article  CAS  PubMed  Google Scholar 

  21. Qiao N, Wittouck S, Mattarelli P, Zheng J, Lebeer S, Felis GE, Gänzle MG (2022) After the storm—Perspectives on the taxonomy of Lactobacillaceae. JDS Commun 3:222–227

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zheng J, Ruan L, Sun M, Gänzle MG (2015) A genomic view of lactobacilli and pediococci demonstrates that phylogeny matches ecology and physiology. Appl Environ Microbiol 81:7233–7243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Quattrini M, Liang N, Fortina MG, Xiang S, Curtis JM, Gänzle M (2019) Exploiting synergies of sourdough and antifungal organic acids to delay fungal spoilage of bread. Int J Food Microbiol 308:8–14

    Article  Google Scholar 

  24. Hansen A, Schieberle P (2005) Generation of aroma compounds during sourdough fermentation: applied and fundamental aspects. Trends Food Sci Technol 16:85–94

    Article  CAS  Google Scholar 

  25. Galle S, Schwab C, Arendt E, Gänzle M (2010) Exopolysaccharide-forming Weissella strains as starter cultures for sorghum and wheat sourdoughs. J Agric Food Chem 58:5834–5841

    Article  CAS  PubMed  Google Scholar 

  26. Korakli M, Vogel RF (2003) Purification and characterisation of mannitol dehydrogenase from Lactobacillus sanfranciscensis. FEMS Microbiol Lett 220:281–286

    Article  CAS  PubMed  Google Scholar 

  27. Loponen J, Gänzle MG (2018) Use of sourdough in low FODMAP baking. Foods 7:96

    Article  PubMed  PubMed Central  Google Scholar 

  28. Liu SQ (2003) Practical implications of lactate and pyruvate metabolism by lactic acid bacteria in food and beverage fermentations. Int J Food Microbiol 83:115–131

    Article  CAS  PubMed  Google Scholar 

  29. Gänzle M, Vermeulen N, Vogel RF (2007) Carbohydrate, peptide and lipid metabolism of lactic acid bacteria in sourdough. Food Microbiol 24:128–138

    Article  PubMed  Google Scholar 

  30. De Angelis M, Gobbetti M (1999) Lactobacillus sanfranciscensis CB1: manganese, oxygen, superoxide dismutase and metabolism. Appl Microbiol Biotechnol 51:358–363

    Article  PubMed  Google Scholar 

  31. De Angelis M, Gobbetti M (2004) Environmental stress responses in Lactobacillus: a review. Proteomics 4:106–122

    Article  PubMed  Google Scholar 

  32. Zhang C, Gänzle MG (2010) Metabolic pathway of α-ketoglutarate in Lactobacillus sanfranciscensis and Lactobacillus reuteri during sourdough fermentation. J Appl Microbiol 109:1301–1310

    Article  CAS  PubMed  Google Scholar 

  33. Vermeulen N, Czerny M, Gänzle MG, Schieberle P, Vogel RF (2007) Reduction of (E)-2-nonenal and (E,E)-2,4-decadienal during sourdough fermentation. J Cereal Sci 45:78–87

    Article  CAS  Google Scholar 

  34. Vermeulen N, Kretzer J, Machalitza H, Vogel RF, Gänzle MG (2006) Influence of redox-reactions catalysed by homo- and hetero-fermentative lactobacilli on gluten in wheat sourdoughs. J Cereal Sci 43:137–143

    Article  CAS  Google Scholar 

  35. Zhang J, Du GC, Zhang Y, Liao XY, Wang M, Li Y, Chen J (2010) Glutathione protects Lactobacillus sanfranciscensis against freeze-thawing, freeze-drying, and cold treatment. Appl Environ Microbiol 76:2989–2996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ferain T, Schanck AN, Delcour J (1996) 13C nuclear magnetic resonance analysis of glucose and citrate end products in an ldhL-ldhD double-knockout strain of Lactobacillus plantarum. J Bacteriol 178:7311–7315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Damiani P, Gobbetti M, Cossignani L, Corsetti A, Simonetti MS, Rossi J (1996) The sourdough microflora. Characterization of hetero- and homofermentative lactic acid bacteria, yeasts and their interactions on the basis of the volatile compounds produced. LWT Food Sci Technol 29:63–70

    Article  CAS  Google Scholar 

  38. Stolz P, Böcker G, Hammes WP, Vogel RF (1995) Utilization of electron acceptors by lactobacilli isolated from sourdough I. Lactobacillus sanfrancisco. Zeitschrift für Leb und Forsch 201:91–96

    Article  CAS  Google Scholar 

  39. Sekwati-Monang B, Gänzle MG (2011) Microbiological and chemical characterisation of ting, a sorghum-based sourdough product from Botswana. Int J Food Microbiol 150:115–121

    Article  CAS  PubMed  Google Scholar 

  40. Oude Elferink SJ, Krooneman J, Gottschal JC, Spoelstra SF, Faber F, Driehuis F (2001) Anaerobic conversion of lactic acid to acetic acid and 1,2-propanediol by Lactobacillus buchneri. Appl Environ Microbiol 67:125–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang C, Brandt MJ, Schwab C, Gänzle M (2010) Propionic acid production by cofermentation of Lactobacillus buchneri and Lactobacillus diolivorans in sourdough. Food Microbiol 27:390–395

    Article  CAS  PubMed  Google Scholar 

  42. Lin XB, Gänzle MG (2014) Effect of lineage-specific metabolic traits of Lactobacillus reuteri on sourdough microbial ecology. Appl Environ Microbiol 80:5782–5789

    Article  PubMed  PubMed Central  Google Scholar 

  43. Titgemeyer F, Hillen W (2002) Global control of sugar metabolism: a Gram-positive solution. Antonie van Leeuwenhoek 82:59–71

    Article  CAS  PubMed  Google Scholar 

  44. Tannock GW, Wilson CM, Loach D, Cook GM, Eason J, O’Toole PW, Holtrop G, Lawley B (2012) Resource partitioning in relation to cohabitation of Lactobacillus species in the mouse forestomach. ISME J 6:927–938

    Article  CAS  PubMed  Google Scholar 

  45. Leroy F, De Winter T, Adriany T, Neysens P, De Vuyst L (2006) Sugars relevant for sourdough fermentation stimulate growth of and bacteriocin production by Lactobacillus amylovorus DCE 471. Int J Food Microbiol 112:102–111

    Article  CAS  PubMed  Google Scholar 

  46. Paramithiotis S, Sofou A, Tsakalidou E, Kalantzopoulos G (2007) Flour carbohydrate catabolism and metabolite production by sourdough lactic acid bacteria. World J Microbiol Biotechnol 23:1417–1423

    Article  CAS  Google Scholar 

  47. Teixeira JS, Abdi R, Su MSW, Schwab C, Gänzle MG (2013) Functional characterization of sucrose phosphorylase and scrR, a regulator of sucrose metabolism in Lactobacillus reuteri. Food Microbiol 36:432–439

    Article  CAS  PubMed  Google Scholar 

  48. Tieking M, Korakli M, Ehrmann MA, Gänzle MG, Vogel RF (2003) In situ production of exopolysaccharides during sourdough fermentation by cereal and intestinal isolates of lactic acid bacteria. Appl Environ Microbiol 69:945–952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Schwab C, Walter J, Tannock GW, Vogel RF, Gänzle MG (2007) Sucrose utilization and impact of sucrose on glycosyltransferase expression in Lactobacillus reuteri. Syst Appl Microbiol 30:433–443

    Article  CAS  PubMed  Google Scholar 

  50. Stolz P, Böcker G, Vogel RF, Hammes WP (1993) Utilisation of maltose and glucose by lactobacilli isolated from sourdough. FEMS Microbiol Lett 109:237–242

    Article  CAS  Google Scholar 

  51. Ehrmann MA, Vogel RF (1998) Maltose metabolism of Lactobacillus sanfranciscensis: cloning and heterologous expression of the key enzymes, maltose phosphorylase and phosphoglucomutase. FEMS Microbiol Lett 169:81–86

    Article  CAS  PubMed  Google Scholar 

  52. Neubauer H, Glaasker E, Hammes WP, Poolman B, Konings WN (1994) Mechanism of maltose uptake and glucose excretion in Lactobacillus sanfrancisco. J Bacteriol 176:3007–3012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. De Vuyst L, Schrijvers V, Paramithiotis S, Hoste B, Vancanneyt M, Swings J, Kalantzopoulos G, Tsakalidou E, Messens W (2002) The biodiversity of lactic acid bacteria in Greek traditional wheat sourdoughs is reflected in both composition and metabolite formation. Appl Environ Microbiol 68:6059–6069

    Article  PubMed  PubMed Central  Google Scholar 

  54. Gobbetti M, Lavermicocca P, Minervini F, De Angelis M, Corsetti A (2000) Arabinose fermentation by Lactobacillus plantarum in sourdough with added pentosans and αα-L-arabinofuranosidase: a tool to increase the production of acetic acid. J Appl Microbiol 88:317–324

    Article  CAS  PubMed  Google Scholar 

  55. Gobbetti M, De Angelis M, Arnaut P, Tossut P, Corsetti A, Lavermicocca P (1999) Added pentosans in breadmaking: fermentations of derived pentoses by sourdough lactic acid bacteria. Food Microbiol 16:409–418

    Article  CAS  Google Scholar 

  56. Gänzle MG, Follador R (2012) Metabolism of oligosaccharides and starch in lactobacilli: A review. Front Microbiol 3:340

    Article  PubMed  PubMed Central  Google Scholar 

  57. Li Q, Loponen J, Gänzle MG (2020) Characterization of the extracellular fructanase FruA in Lactobacillus crispatus and its contribution to fructan hydrolysis in breadmaking. J Agric Food Chem 68:8637–8647

    Article  CAS  PubMed  Google Scholar 

  58. Li Q, Gänzle MG (2020) Characterization of two extracellular arabinanases in Lactobacillus crispatus. Appl Microbiol Biotechnol 104:10091–10103

    Article  CAS  PubMed  Google Scholar 

  59. Petrova P, Emanuilova M, Petrov K (2010) Amylolytic Lactobacillus strains from Bulgarian fermented beverage boza. Zeitschrift fur Naturforsch 65c:218–224

    Article  Google Scholar 

  60. Sanni AI, Morlon-Guyot J, Guyot JP (2002) New efficient amylase-producing strains of Lactobacillus plantarum and L. fermentum isolated from different Nigerian traditional fermented foods. Int J Food Microbiol 72:53–62

    Article  CAS  PubMed  Google Scholar 

  61. Yong JG, Lee JH, Hutkins RW (2007) Functional analysis of the fructooligosaccharide utilization operon in Lactobacillus paracasei 1195. Appl Environ Microbiol 73:5716–5724

    Article  Google Scholar 

  62. Zhao X, Gänzle MG (2018) Genetic and phenotypic analysis of carbohydrate metabolism and transport in Lactobacillus reuteri. Int J Food Microbiol 272:12–21

    Article  CAS  PubMed  Google Scholar 

  63. Barrangou R, Azcarate-Peril MA, Duong T, Conners SB, Kelly RM, Klaenhammer TR (2006) Global analysis of carbohydrate utilization by Lactobacillus acidophilus using cDNA microarrays. Proc Natl Acad Sci U S A 103:3816–3821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Fuhren J, Rösch C, ten Napel M, Schols HA, Kleerebezem M (2020) Synbiotic matchmaking in Lactobacillus plantarum: Substrate screening and gene-trait matching to characterize strain-specific carbohydrate utilization. Appl Environ Microbiol 86

    Google Scholar 

  65. Barrangou R, Altermann E, Hutkins R, Cano R, Klaenhammer TR (2003) Functional and comparative genomic analyses of an operon involved in fructooligosaccharide utilization by Lactobacillus acidophilus. Proc Natl Acad Sci U S A 100:8957–8962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Shewry PR, America AHP, Lovegrove A, Wood AJ, Plummer A, Evans J, van den Broeck HC, Gilissen L, Mumm R, Ward JL, Proos Z, Kuiper P, Longin CFH, Andersson AAM, Philip van Straaten J, Jonkers D, Brouns F (2022) Comparative compositions of metabolites and dietary fibre components in doughs and breads produced from bread wheat, emmer and spelt and using yeast and sourdough processes. Food Chem 374:131710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Menezes LAA, Molognoni L, de Sá Ploêncio LA, Costa FBM, Daguer H, Dea Lindner JD (2019) Use of sourdough fermentation to reducing FODMAPs in breads. Eur Food Res Technol 245:1183–1195

    Article  CAS  Google Scholar 

  68. Teixeira JS, McNeill V, Gänzle MG (2012) Levansucrase and sucrose phoshorylase contribute to raffinose, stachyose, and verbascose metabolism by lactobacilli. Food Microbiol 31:278–284

    Article  CAS  PubMed  Google Scholar 

  69. Griffiths MW, Tellez AM (2013) Lactobacillus helveticus: The proteolytic system. Front Microbiol 4:30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kunji ER, Mierau I, Hagting A, Poolman B, Konings WN (1996) The proteolytic systems of lactic acid bacteria. Antonie Van Leeuwenhoek 70:187–221

    Article  CAS  PubMed  Google Scholar 

  71. Guédon E, Renault P, Ehrlich SD, Delorme C (2001) Transcriptional pattern of genes coding for the proteolytic system of Lactococcus lactis and evidence for coordinated regulation of key enzymes by peptide supply. J Bacteriol 183:3614–3622

    Article  PubMed  PubMed Central  Google Scholar 

  72. Vermeulen N, Pavlovic M, Ehrmann MA, Gänzle MG, Vogel RF (2005) Functional characterization of the proteolytic system of Lactobacillus sanfranciscensis DSM 20451T during growth in sourdough. Appl Environ Microbiol 71:6260–6266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gänzle M, Loponen J, Gobbetti M (2008) Proteolysis in sourdough fermentations: mechanisms and potential for improved bread quality. Trends Food Sci Technol 19:513–521

    Article  Google Scholar 

  74. Thiele C, Gänzle MG, Vogel RF (2002) Contribution of sourdough lactobacilli, yeast, and cereal enzymes to the generation of amino acids in dough relevant for bread flavor. Cereal Chem 79:45–51

    Article  CAS  Google Scholar 

  75. Loponen J, Mikola M, Katina K, Sontag-Strohm T, Salovaara H (2004) Degradation of HMW glutenins during wheat sourdough fermentations. Cereal Chem 81:87–93

    Article  CAS  Google Scholar 

  76. Jänsch A, Korakli M, Vogel RFRF, Gänzle MGMG (2007) Glutathione reductase from Lactobacillus sanfranciscensis DSM20451T: Contribution to oxygen tolerance and thiol exchange reactions in wheat sourdoughs. Appl Environ Microbiol 73:4469–4476

    Article  PubMed  PubMed Central  Google Scholar 

  77. Tang KX, Zhao CJ, Gänzle MG (2017) Effect of glutathione on the taste and texture of Type I sourdough bread. J Agric Food Chem 65:4321–4328

    Article  CAS  PubMed  Google Scholar 

  78. Thiele C, Grassl S, Gänzle M (2004) Gluten hydrolysis and depolymerization during sourdough fermentation. J Agric Food Chem 52:1307–1314

    Article  CAS  PubMed  Google Scholar 

  79. Gobbetti M, Smacchi E, Corsetti A (1996) The proteolytic system of Lactobacillus sanfrancisco CB1: purification and characterization of a proteinase, a dipeptidase, and an aminopeptidase. Appl Environ Microbiol 62:3220–3226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Di Cagno R, De Angelis M, Lavermicocca P, De Vincenzi M, Giovannini C, Faccia M, Gobbetti M, Di CR, Angelis MD, Lavermicocca P, Vincenzi MD, Giovannini C, Faccia M, Gobbetti M (2002) Proteolysis by sourdough lactic acid bacteria: Effects on wheat flour protein fractions and gliadin peptides involved in human cereal intolerance. Appl Environ Microbiol 68:623–633

    Article  PubMed  PubMed Central  Google Scholar 

  81. Gallo G, Angelis MD, McSweeney PLH, Corbo MR, Gobbetti M (2005) Partial purification and characterization of an X-prolyl dipeptidyl aminopeptidase from Lactobacillus sanfranciscensis CB1. Food Chem 91:535–544

    Article  CAS  Google Scholar 

  82. Hu Y, Stromeck A, Loponen J, Lopes-Lutz D, Schieber A, Gänzle MG (2011) LC-MS/MS quantification of bioactive angiotensin I-converting enzyme inhibitory peptides in rye malt sourdoughs. J Agric Food Chem 59:11983–11989

    Article  CAS  PubMed  Google Scholar 

  83. Reale A, Di Stasio L, Di Renzo T, De Caro S, Ferranti P, Picariello G, Addeo F, Mamone G (2021) Bacteria do it better! Proteomics suggests the molecular basis for improved digestibility of sourdough products. Food Chem 359:129955

    Article  CAS  PubMed  Google Scholar 

  84. Geisslitz S, Shewry P, Brouns F, America AHP, Caio GPI, Daly M, D’Amico S, De Giorgio R, Gilissen L, Grausgruber H, Huang X, Jonkers D, Keszthelyi D, Larré C, Masci S, Mills C, Møller MS, Sorrells ME, Svensson B, Zevallos VF, Weegels PL (2021) Wheat ATIs: Characteristics and role in human disease. Front Nutr 8:667370

    Article  PubMed  PubMed Central  Google Scholar 

  85. Geisslitz S, Weegels P, Shewry P, Zevallos V, Masci S, Sorrells M, Gregorini A, Colomba M, Jonkers D, Huang X, De Giorgio R, Caio GP, D’Amico S, Larré C, Brouns F (2022) Wheat amylase/trypsin inhibitors (ATIs): occurrence, function and health aspects. Eur J Nutr 1–8

    Google Scholar 

  86. Van Buul VJ, Brouns FJPH (2014) Health effects of wheat lectins: A review. J Cereal Sci 59:112–117. Academic

    Article  Google Scholar 

  87. Huang X, Schuppan D, Rojas Tovar LE, Zevallos VF, Loponen J, Gänzle M (2020) Sourdough fermentation degrades wheat alpha-amylase/trypsin inhibitor (ATI) and reduces pro-inflammatory activity. Foods 9:943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Fraberger V, Ladurner M, Nemec A, Grunwald-Gruber C, Call LM, Hochegger R, Domig KJ, D’Amico S (2020) Insights into the potential of sourdough-related lactic acid bacteria to degrade proteins in wheat. Microorganisms 8:1689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Won S, Curtis J, Gänzle M (2022) LC-MS/MS quantitation of α-amylase/trypsin inhibitor CM3 and glutathione during wheat sourdough breadmaking. J Appl Microbiol 133(1):120–129

    Article  CAS  PubMed  Google Scholar 

  90. Tovar LER, Gänzle MG (2021) Degradation of wheat germ agglutinin during sourdough fermentation. Foods 10:340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wieser H, Vermeulen N, Gaertner F, Vogel RF (2008) Effects of different Lactobacillus and Enterococcus strains and chemical acidification regarding degradation of gluten proteins during sourdough fermentation. Eur Food Res Technol 226:1495–1502

    Article  CAS  Google Scholar 

  92. Xu D, Tang K, Hu Y, Xu X, Gänzle MG (2018) Effect of glutathione dehydrogenase of Lactobacillus sanfranciscensis on gluten properties and bread volume in type I wheat sourdough bread. J Agric Food Chem 66:9770–9776

    Article  CAS  PubMed  Google Scholar 

  93. Zhao CJ, Hu Y, Schieber A, Gänzle M (2013) Fate of ACE-inhibitory peptides during the bread-making process: Quantification of peptides in sourdough, bread crumb, steamed bread and soda crackers. J Cereal Sci 57:514–519

    Article  CAS  Google Scholar 

  94. Coda R, Rizzello CG, Pinto D, Gobbetti M (2012) Selected lactic acid bacteria synthesize antioxidant peptides during sourdough fermentation of cereal flours. Appl Environ Microbiol 78:1087–1096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Loponen J, Kanerva P, Zhang C, Sontag-Strohm T, Salovaara H, Gänzle MG (2009) Prolamin hydrolysis and pentosan solubilization in germinated-rye sourdoughs determined by chromatographic and immunological methods. J Agric Food Chem 57:746–753

    Article  CAS  PubMed  Google Scholar 

  96. Di Cagno R, Barbato M, Di Camillo C, Rizzello CG, De Angelis M, Giuliani G, De Vincenzi M, Gobbetti M, Cucchiara S (2010) Gluten-free sourdough wheat baked goods appear safe for young celiac patients: A pilot study. J Pediatr Gastroenterol Nutr 51:777–783

    Article  PubMed  Google Scholar 

  97. De Angelis M, Cassone A, Rizzello CG, Gagliardi F, Minervini F, Calasso M, Di Cagno R, Francavilla R, Gobbetti M (2010) Mechanism of degradation of immunogenic gluten epitopes from Triticum turgidum L. var. durum by sourdough lactobacilli and fungal proteases. Appl Environ Microbiol 76:508–518

    Article  PubMed  Google Scholar 

  98. De Angelis M, Di Cagno R, Gallo G, Curci M, Siragusa S, Crecchio C, Parente E, Gobbetti M (2007) Molecular and functional characterization of Lactobacillus sanfranciscensis strains isolated from sourdoughs. Int J Food Microbiol 114:69–82

    Article  PubMed  Google Scholar 

  99. Christensen JE, Dudley EG, Pederson JA, Steele JL (1999) Peptidases and amino acid catabolism in lactic acid bacteria. Antonie van Leeuwenhoek 76:217–246

    Article  CAS  PubMed  Google Scholar 

  100. Su MS, Schlicht S, Gänzle MG (2011) Contribution of glutamate decarboxylase in Lactobacillus reuteri to acid resistance and persistence in sourdough fermentation. Microb Cell Fact 10

    Google Scholar 

  101. Fernández M, Zúñiga M (2006) Amino acid catabolic pathways of lactic acid bacteria. Crit Rev Microbiol 32:155–183

    Article  PubMed  Google Scholar 

  102. Pétel C, Onno B, Prost C (2017) Sourdough volatile compounds and their contribution to bread: A review. Trends Food Sci Technol 59:105–123

    Article  Google Scholar 

  103. Tonon T, Bourdineaud JP, Lonvaud-Funel A (2001) The arcABC gene cluster encoding the arginine deiminase pathway of Oenococcus oeni, and arginine induction of a CRP-like gene. Res Microbiol 152:653–661

    Article  CAS  PubMed  Google Scholar 

  104. De Angelis M, Mariotti L, Rossi J, Servili M, Fox PF, Rollán G, Gobbetti M (2002) Arginine catabolism by sourdough lactic acid bacteria: Purification and characterization of the arginine deiminase pathway enzymes from Lactobacillus sanfranciscensis CB1. Appl Environ Microbiol 68:6193–6201

    Article  PubMed  PubMed Central  Google Scholar 

  105. Vrancken G, Rimaux T, Wouters D, Leroy F, De Vuyst L (2009) The arginine deiminase pathway of Lactobacillus fermentum IMDO 130101 responds to growth under stress conditions of both temperature and salt. Food Microbiol 26:720–727

    Article  CAS  PubMed  Google Scholar 

  106. Li Q, Tao Q, Teixeira JS, Su MS, Gänzle MG (2020) Contribution of glutaminases to glutamine metabolism and acid resistance in Lactobacillus reuteri and other vertebrate host adapted lactobacilli. Food Microbiol 86:103343

    Article  CAS  PubMed  Google Scholar 

  107. Vermeulen N, Gänzle MG, Vogel RF (2007) Glutamine deamidation by cereal-associated lactic acid bacteria. J Appl Microbiol 103:1197–1205

    Article  CAS  PubMed  Google Scholar 

  108. Zhao CJ, Kinner M, Wismer W, Gänzle MG (2015) Effect of glutamate accumulation during sourdough fermentation with Lactobacillus reuteri on the taste of bread and sodium-reduced bread. Cereal Chem 92:224–230

    Article  CAS  Google Scholar 

  109. Stromeck A, Hu Y, Chen L, Gäzle MG (2011) Proteolysis and bioconversion of cereal proteins to glutamate and γ-aminobutyrate (GABA) in rye malt sourdoughs. J Agric Food Chem 59:1392–1399

    Article  CAS  PubMed  Google Scholar 

  110. Coda R, Rizzello CG, Gobbetti M (2010) Use of sourdough fermentation and pseudo-cereals and leguminous flours for the making of a functional bread enriched of γ-aminobutyric acid (GABA). Int J Food Microbiol 137:236–245

    Article  CAS  PubMed  Google Scholar 

  111. Teixeira JS, Seeras A, Sanchez-Maldonado AF, Zhang C, Su MSW, Gänzle MG (2014) Glutamine, glutamate, and arginine- based acid resistance in Lactobacillus reuteri. Food Microbiol 42:172–180

    Article  CAS  PubMed  Google Scholar 

  112. Serrazanetti DI, Ndagijimana M, Sado-Kamdem SL, Corsetti A, Vogel RF, Ehrmann M, Guerzoni ME (2011) Acid stress-mediated metabolic shift in Lactobacillus sanfranciscensis LSCE1. Appl Environ Microbiol 77:2656–2666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Vermeulen N, Gánzle MG, Vogel RF (2006) Influence of peptide supply and cosubstrates on phenylalanine metabolism of Lactobacillus sanfranciscensis DSM20451T and Lactobacillus plantarum TMW1.468. J Agric Food Chem 54:3832–3839

    Article  CAS  PubMed  Google Scholar 

  114. Ryan LAM, Dal Bello F, Czerny M, Koehler P, Arendt EK (2009) Quantification of phenyllactic acid in wheat sourdough using high resolution gas chromatography-mass spectrometry. J Agric Food Chem 57:1060–1064

    Article  CAS  PubMed  Google Scholar 

  115. Tanous C, Kieronczyk A, Helinck S, Chambellon E, Yvon M (2002) Glutamate dehydrogenase activity: a major criterion for the selection of flavour-producing lactic acid bacteria strains. Antonie Van Leeuwenhoek 82:271–278

    Article  CAS  PubMed  Google Scholar 

  116. Curtin ÁC, De Angelis M, Cipriani M, Corbo MR, McSweeney PLH, Gobbetti M (2001) Amino acid catabolism in cheese-related bacteria: selection and study of the effects of pH, temperature and NaCl by quadratic response surface methodology. J Appl Microbiol 91:312–321

    Article  CAS  Google Scholar 

  117. Lo R, Turner MS, Barry DG, Sreekumar R, Walsh TP, Giffard PM (2009) Cystathionine γ-lyase is a component of cystine-mediated oxidative defense in Lactobacillus reuteri BR11. J Bacteriol 191:1827–1837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. De Angelis M, Curtin ÁC, McSweeney PLH, Faccia M, Gobbetti M (2002) Lactobacillus reuteri DSM 20016: purification and characterization of a cystathionine γ-lyase and use as adjunct starter in cheesemaking. J Dairy Res 69:255–267

    Article  PubMed  Google Scholar 

  119. Katina K, Maina NH, Juvonen R, Flander L, Johansson L, Virkki L, Tenkanen M, Laitila A (2009) In situ production and analysis of Weissella confusa dextran in wheat sourdough. Food Microbiol 26:734–743

    Article  CAS  PubMed  Google Scholar 

  120. Zhao CJ, Gänzle MG (2016) Synthesis of taste-active γ-glutamyl dipeptides during sourdough fermentation by Lactobacillus reuteri. J Agric Food Chem 64:7561–7568

    Article  CAS  PubMed  Google Scholar 

  121. Ueda Y, Yonemitsu M, Tsubuku T, Sakaguchi M, Miyajima R (1997) Flavor characteristics of glutathione in raw and cooked foodstuffs. Biosci Biotechnol Biochem 61:1977–1980

    Article  CAS  PubMed  Google Scholar 

  122. Dunkel A, Köster J, Hofmann T (2007) Molecular and sensory characterization of γ-glutamyl peptides as key contributors to the kokumi taste of edible beans (Phaseolus vulgaris L.). J Agric Food Chem 55:6712–6719

    Article  CAS  PubMed  Google Scholar 

  123. Kuroda M, Miyamura N (2015) Mechanism of the perception of “kokumi” substances and the sensory characteristics of the “kokumi” peptide, γ-Glu-Val-Gly. Flavour 4:1–3

    Article  Google Scholar 

  124. Zhao CJ, Schieber A, Gänzle MG (2016) Formation of taste-active amino acids, amino acid derivatives and peptides in food fermentations—a review. Food Res Int 89:39–47

    Article  CAS  PubMed  Google Scholar 

  125. Toelstede S, Dunkel A, Hofmann T (2009) A series of kokumi peptides impart the long-lasting mouthfulness of matured gouda cheese. J Agric Food Chem 57:1440–1448

    Article  CAS  PubMed  Google Scholar 

  126. Yan B, Chen YY, Wang W, Zhao J, Chen W, Gänzle M (2018) γ-Glutamyl cysteine ligase of Lactobacillus reuteri synthesizes γ-glutamyl dipeptides in sourdough. J Agric Food Chem 66:12368–12375

    Article  CAS  PubMed  Google Scholar 

  127. Pophaly SD, Singh R, Pophaly SD, Kaushik JK, Tomar SK (2012) Current status and emerging role of glutathione in food grade lactic acid bacteria. Microb Cell Fact 11:1–14

    Article  Google Scholar 

  128. Xie J, Gänzle MG (2021) Characterization of γ-glutamyl cysteine ligases from Limosilactobacillus reuteri producing kokumi-active γ-glutamyl dipeptides. Appl Microbiol Biotechnol 105:5503–5515

    Article  CAS  PubMed  Google Scholar 

  129. Korakli M, Vogel RF (2006) Structure/function relationship of homopolysaccharide producing glycansucrases and therapeutic potential of their synthesised glycans. Appl Microbiol Biotechnol 71:790–803

    Article  CAS  PubMed  Google Scholar 

  130. van Hijum SAFT, Kralj S, Ozimek LK, Dijkhuizen L, van Geel-Schutten IGH (2006) Structure-function relationships of glucansucrase and fructansucrase enzymes from lactic acid bacteria. Microbiol Mol Biol Rev 70:157–176

    Article  PubMed  PubMed Central  Google Scholar 

  131. Gangoiti J, Pijning T, Dijkhuizen L (2018) Biotechnological potential of novel glycoside hydrolase family 70 enzymes synthesizing α-glucans from starch and sucrose. Biotechnol Adv 36:196–207

    Article  CAS  PubMed  Google Scholar 

  132. De Vuyst L, De Vin F, Vaningelgem F, Degeest B (2001) Recent developments in the biosynthesis and applications of heteropolysaccharides from lactic acid bacteria. Int Dairy J 11:687–707

    Article  Google Scholar 

  133. Boels IC, Kranenburg R v, Hugenholtz J, Kleerebezem M, De Vos WM (2001) Sugar catabolism and its impact on the biosynthesis and engineering of exopolysaccharide production in lactic acid bacteria. Int Dairy J 11:723–732

    Article  CAS  Google Scholar 

  134. Broadbent JR, McMahon DJ, Welker DL, Oberg CJ, Moineau S (2003) Biochemistry, genetics, and applications of exopolysaccharide production in Streptococcus thermophilus: A review. J Dairy Sci 86:407–423

    Article  CAS  PubMed  Google Scholar 

  135. Gruter M, Leeflang BR, Kuiper J, Kamerling JP, Vliegenthart JFG (1992) Structure of the exopolysaccharide produced by Lactococcus lactis subspecies cremoris H414 grown in a defined medium or skimmed milk. Carbohydr Res 231:273–291

    Article  CAS  PubMed  Google Scholar 

  136. Dols-Lafargue M, Hyo YL, Le Marrec C, Heyraud A, Chambat G, Lonvaud-Funel A (2008) Characterization of gtf, a glucosyltransferase gene in the genomes of Pediococcus parvulus and Oenococcus oeni, two bacterial species commonly found in wine. Appl Environ Microbiol 74:4079–4090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Van der Meulen R, Grosu-Tudor S, Mozzi F, Vaningelgem F, Zamfir M, Font de Valdez G, De Vuyst L (2007) Screening of lactic acid bacteria isolates from dairy and cereal products for exopolysaccharide production and genes involved. Int J Food Microbiol 118:250–258

    Article  PubMed  Google Scholar 

  138. Bounaix MS, Gabriel V, Morel S, Robert H, Rabier P, Remaud-Siméon M, Gabriel B, Fontagné-Faucher C (2009) Biodiversity of exopolysaccharides produced from sucrose by sourdough lactic acid bacteria. J Agric Food Chem 57:10889–10897

    Article  CAS  PubMed  Google Scholar 

  139. Galle S, Schwab C, Arendt EK, Gänzle MG (2011) Structural and rheological characterisation of heteropolysaccharides produced by lactic acid bacteria in wheat and sorghum sourdough. Food Microbiol 28:547–553

    Article  CAS  PubMed  Google Scholar 

  140. Tieking M, Kaditzky S, Valcheva R, Korakli M, Vogel RF, Gänzle MG (2005) Extracellular homopolysaccharides and oligosaccharides from intestinal lactobacilli. J Appl Microbiol 99:692–702

    Article  CAS  PubMed  Google Scholar 

  141. Chen XY, Levy C, Gänzle M (2016) Structure-function relationships of bacterial and enzymatically produced reuterans and dextran in sourdough bread baking application. Int J Food Microbiol 239:95–102

    Article  CAS  PubMed  Google Scholar 

  142. Galle S, Arendt EK (2014) Exopolysaccharides from sourdough lactic acid bacteria. Crit Rev Food Sci Nutr 54:891–901

    Article  CAS  PubMed  Google Scholar 

  143. Jolly L, Stingele F (2001) Molecular organization and functionality of exopolysaccharide gene clusters in lactic acid bacteria. Int Dairy J 11:733–745

    Article  CAS  Google Scholar 

  144. Tieking M, Kühnl W, Gänzle MG (2005) Evidence for formation of heterooligosaccharides by Lactobacillus sanfranciscensis during growth in wheat sourdough. J Agric Food Chem 53:2456–2461

    Article  CAS  PubMed  Google Scholar 

  145. Beine R, Moraru R, Nimtz M, Na’amnieh S, Pawlowski A, Buchholz K, Seibel J (2008) Synthesis of novel fructooligosaccharides by substrate and enzyme engineering. J Biotechnol 138:33–41

    Article  CAS  PubMed  Google Scholar 

  146. Tieking M, Ehrmann MA, Vogel RF, Gänzle MG (2005) Molecular and functional characterization of a levansucrase from the sourdough isolate Lactobacillus sanfranciscensis TMW 1.392. Appl Microbiol Biotechnol 66:655–663

    Article  CAS  PubMed  Google Scholar 

  147. Hu Y, Winter V, Chen XY, Gänzle MG (2017) Effect of acceptor carbohydrates on oligosaccharide and polysaccharide synthesis by dextransucrase DsrM from Weissella cibaria. Food Res Int 99:603–611

    Article  CAS  PubMed  Google Scholar 

  148. Kralj S, Stripling E, Sanders P, Van Geel-Schutten GH, Dijkhuizen L (2005) Highly hydrolytic reuteransucrase from probiotic Lactobacillus reuteri strain ATCC 55730. Appl Environ Microbiol 71:3942–3950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Seibel J, Buchholz K (2010) Tools in oligosaccharide synthesis: Current research and application. Adv Carbohydr Chem Biochem 63:101–138

    Article  CAS  PubMed  Google Scholar 

  150. Irague R, Rolland-Sabaté A, Tarquis L, Doublier JL, Moulis C, Monsan P, Remaud-Siméon M, Potocki-Véronèse G, Buléon A (2012) Structure and property engineering of α-D-glucans synthesized by dextransucrase mutants. Biomacromolecules 13:187–195

    Article  CAS  PubMed  Google Scholar 

  151. Chen XY, Gänzle MG (2016) Site directed mutagenesis of dextransucrase DsrM from Weissella cibaria: Transformation to a reuteransucrase. J Agric Food Chem 64:6848–6855

    Article  CAS  PubMed  Google Scholar 

  152. Kralj S, Van Leeuwen SS, Valk V, Eeuwema W, Kamerling JP, Dijkhuizen L (2008) Hybrid reuteransucrase enzymes reveal regions important for glucosidic linkage specificity and the transglucosylation/hydrolysis ratio. FEBS J 275:6002–6010

    Article  CAS  PubMed  Google Scholar 

  153. Bechtner J, Hassler V, Wefers D, Vogel RF, Jakob F (2021) Insights into extracellular dextran formation by Liquorilactobacillus nagelii TMW 1.1827 using secretomes obtained in the presence or absence of sucrose. Enzyme Microb Technol 143:109724

    Article  CAS  PubMed  Google Scholar 

  154. Moulis C, André I, Remaud-Simeon M (2016) GH13 amylosucrases and GH70 branching sucrases, atypical enzymes in their respective families. Cell Mol Life Sci 73:2661–2679

    Article  CAS  PubMed  Google Scholar 

  155. Anwar MA, Kralj S, Van Der Maarel MJEC, Dijkhuizen L (2008) The probiotic Lactobacillus johnsonii NCC 533 produces high-molecular-mass inulin from sucrose by using an inulosucrase enzyme. Appl Environ Microbiol 74:3426–3433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Cvitkovitch DG, Li Y-H, Ellen RP (2003) Quorum sensing and biofilm formation in streptococcal infections. J Clin Invest 112:1626–1632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Lin XB, Wang T, Stothard P, Corander J, Wang J, Baines JF, Knowles SCL, Baltrūnaitė L, Tasseva G, Schmaltz R, Tollenaar S, Cody LA, Grenier T, Wu W, Ramer-Tait AE, Walter J (2018) The evolution of ecological facilitation within mixed-species biofilms in the mouse gastrointestinal tract. ISME J 12:2770–2784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Walter J, Schwab C, Loach DM, Gänzle MG, Tannock GW (2008) Glucosyltransferase A (GtfA) and inulosucrase (Inu) of Lactobacillus reuteri TMW1.106 contribute to cell aggregation, in vitro biofilm formation, and colonization of the mouse gastrointestinal tract. Microbiology 154:72–80

    Article  CAS  PubMed  Google Scholar 

  159. Waldherr FW, Doll VM, Meißner D, Vogel RF (2010) Identification and characterization of a glucan-producing enzyme from Lactobacillus hilgardii TMW 1.828 involved in granule formation of water kefir. Food Microbiol 27:672–678

    Article  CAS  PubMed  Google Scholar 

  160. Bechtner J, Wefers D, Schmid J, Vogel RF, Jakob F (2019) Identification and comparison of two closely related dextransucrases released by water kefir borne Lactobacillus hordei TMW 1.1822 and Lactobacillus nagelii TMW 1.1827. Microbiology 165:956–966

    Article  CAS  PubMed  Google Scholar 

  161. Kaditzky S, Seitter M, Hertel C, Vogel RF (2008) Performance of Lactobacillus sanfranciscensis TMW 1.392 and its levansucrase deletion mutant in wheat dough and comparison of their impact on bread quality. Eur Food Res Technol 227:433–442

    Article  CAS  Google Scholar 

  162. Müller DC, Nguyen H, Li Q, Schönlechner R, Miescher Schwenninger S, Wismer W, Gänzle M (2021) Enzymatic and microbial conversions to achieve sugar reduction in bread. Food Res Int 143:110296

    Article  PubMed  Google Scholar 

  163. Galle S, Schwab C, Dal Bello F, Coffey A, Gänzle MG, Arendt EK (2012) Influence of in-situ synthesized exopolysaccharides on the quality of gluten-free sorghum sourdough bread. Int J Food Microbiol 155:105–112

    Article  CAS  PubMed  Google Scholar 

  164. Schwab C, Mastrangelo M, Corsetti A, Gänzle M (2008) Formation of oligosaccharides and polysaccharides by Lactobacillus reuteri LTH5448 and Weissella cibaria 10M in Sorghum Sourdoughs. Cereal Chem 85:679–684

    Article  CAS  Google Scholar 

  165. Kaditzky SB, Behr J, Stocker A, Kaden P, Gänzle MG, Vogel RF (2008) Influence of pH on the formation of glucan by Lactobacillus reuteri TMW 1.106 exerting a protective function against extreme pH values. Food Biotechnol 22:398–418

    Article  CAS  Google Scholar 

  166. Schwab C, Vogel R, Gänzle MGMG (2007) Influence of oligosaccharides on the viability and membrane properties of Lactobacillus reuteri TMW1.106 during freeze-drying. Cryobiology 55:108–114

    Article  CAS  PubMed  Google Scholar 

  167. Vereyken IJ, Chupin V, Demel RA, Smeekens SCM, De Kruijff B (2001) Fructans insert between the headgroups of phospholipids. Biochim Biophys Acta Biomembr 1510:307–320

    Article  CAS  Google Scholar 

  168. Dong-Shik K, Thomas S, Fogler HS (2000) Effects of pH and trace minerals on long-term starvation of Leuconostoc mesenteroides. Appl Environ Microbiol 66:976–981

    Article  Google Scholar 

  169. Yan M, Han J, Xu X, Liu L, Gao C, Zheng H, Chen Y, Tao Y, Zhou H, Li Y, Wu Z (2016) Gsy, a novel glucansucrase from Leuconostoc mesenteroides, mediates the formation of cell aggregates in response to oxidative stress. Sci Rep 6

    Google Scholar 

  170. Galle S, Schwab C, Bello FD, Coffey A, Gänzle M, Arendt E (2012) Comparison of the impact of dextran and reuteran on the quality of wheat sourdough bread. J Cereal Sci 56:531–537

    Article  Google Scholar 

  171. Hu Y, Gänzle MG (2018) Effect of temperature on production of oligosaccharides and dextran by Weissella cibaria 10 M. Int J Food Microbiol 280:27–34

    Article  CAS  PubMed  Google Scholar 

  172. Kaditzky S, Vogel RF (2008) Optimization of exopolysaccharide yields in sourdoughs fermented by lactobacilli. Eur Food Res Technol 228:291–299

    Article  CAS  Google Scholar 

  173. Waldherr FW, Meissner D, Vogel RF (2008) Genetic and functional characterization of Lactobacillus panis levansucrase. Arch Microbiol 190:497–505

    Article  CAS  PubMed  Google Scholar 

  174. Rodrigues S, Lona LMF, Franco TT (2005) The effect of maltose on dextran yield and molecular weight distribution. Bioprocess Biosyst Eng 28:9–14

    Article  CAS  PubMed  Google Scholar 

  175. Dols M, Simeon MR, Willemot RM, Vignon MR, Monsan PF (1997) Structural characterization of the maltose acceptor-products synthesized by Leuconostoc mesenteroides NRRL B-1299 dextransucrase. Carbohydr Res 305:549–559

    Article  CAS  PubMed  Google Scholar 

  176. Decock P, Cappelle S (2005) Bread technology and sourdough technology. Trends Food Sci Technol 16:113–120

    Article  CAS  Google Scholar 

  177. Dal Bello F, Walter J, Hertel C, Hammes WP (2001) In vitro study of prebiotic properties of levan-type exopolysaccharides from lactobacilli and non-digestible carbohydrates using denaturing gradient gel electrophoresis. Syst Appl Microbiol 24:232–237

    Article  CAS  Google Scholar 

  178. Gänzle MG, Zhang C, Monang B-S, Lee V, Schwab C (2009) Novel metabolites from cereal-associated lactobacilli—novel functionalities for cereal products? Food Microbiol 26:712–719

    Article  PubMed  Google Scholar 

  179. Su MS-W, Oh PL, Walter J, Gänzle MG (2012) Intestinal origin of sourdough Lactobacillus reuteri isolates as revealed by phylogenetic, genetic, and physiological analysis. Appl Environ Microbiol 78:6777–6780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Liang N, Neužil-Bunešová V, Tejnecký V, Gänzle M, Schwab C (2021) 3-Hydroxypropionic acid contributes to the antibacterial activity of glycerol metabolism by the food microbe Limosilactobacillus reuteri. Food Microbiol 98:103720

    Article  CAS  PubMed  Google Scholar 

  181. Axel C, Zannini E, Arendt EK (2017) Mold spoilage of bread and its biopreservation: a review of current strategies for bread shelf life extension. Crit Rev Food Sci Nutr 57:3528–3542

    Article  CAS  PubMed  Google Scholar 

  182. Schnürer J, Magnusson J (2005) Antifungal lactic acid bacteria as biopreservatives. Trends Food Sci Technol 16:70–78

    Article  Google Scholar 

  183. Dal Bello F, Clarke CI, Ryan LAM, Ulmer H, Schober TJ, Ström K, Sjögren J, van Sinderen D, Schnürer J, Arendt EK (2007) Improvement of the quality and shelf life of wheat bread by fermentation with the antifungal strain Lactobacillus plantarum FST 1.7. J Cereal Sci 45:309–318

    Article  CAS  Google Scholar 

  184. Ryan LAM, Dal Bello F, Arendt EK (2008) The use of sourdough fermented by antifungal LAB to reduce the amount of calcium propionate in bread. Int J Food Microbiol 125:274–278

    Article  CAS  PubMed  Google Scholar 

  185. Debonne E, Van Schoors F, Maene P, Van Bockstaele F, Vermeir P, Verwaeren J, Eeckhout M, Devlieghere F (2020) Comparison of the antifungal effect of undissociated lactic and acetic acid in sourdough bread and in chemically acidified wheat bread. Int J Food Microbiol 321:108551

    Article  CAS  PubMed  Google Scholar 

  186. Lavermicocca P, Valerio F, Evidente A, Lazzaroni S, Corsetti A, Gobbetti M (2000) Purification and characterization of novel antifungal compounds from the sourdough Lactobacillus plantarum strain 21B. Appl Environ Microbiol 66:4084–4090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Lavermicocca P, Valerio F, Visconti A (2003) Antifungal activity of phenyllactic acid against molds isolated from bakery products. Appl Environ Microbiol 69:634–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Ryan LAM, Fabio DB, Arendt EK, Koehler P (2009) Detection and quantitation of 2,5-diketopiperazines in wheat sourdough and bread. J Agric Food Chem 57:9563–9568

    Article  CAS  PubMed  Google Scholar 

  189. Gerez CL, Torino MI, Rollán G, Font de Valdez G (2009) Prevention of bread mould spoilage by using lactic acid bacteria with antifungal properties. Food Control 20:144–148

    Article  CAS  Google Scholar 

  190. Black BA, Zannini E, Curtis JM, Gänzle MG (2013) Antifungal hydroxy fatty acids produced during sourdough fermentation: Microbial and enzymatic pathways, and antifungal activity in bread. Appl Environ Microbiol 79:1866–1873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Chen YY, Liang NY, Curtis JM, Gänzle MG (2016) Characterization of linoleate 10-hydratase of Lactobacillus plantarum and novel antifungal metabolites. Front Microbiol 7:1561

    Article  PubMed  PubMed Central  Google Scholar 

  192. Ryan LAM, Zannini E, Dal Bello F, Pawlowska A, Koehler P, Arendt EK (2011) Lactobacillus amylovorus DSM 19280 as a novel food-grade antifungal agent for bakery products. Int J Food Microbiol 146:276–283

    Article  PubMed  Google Scholar 

  193. Nionelli L, Pontonio E, Gobbetti M, Rizzello CG (2018) Use of hop extract as antifungal ingredient for bread making and selection of autochthonous resistant starters for sourdough fermentation. Int J Food Microbiol 266:173–182

    Article  CAS  PubMed  Google Scholar 

  194. Coda R, Rizzello CG, Nigro F, De Angelis M, Arnault P, Gobbetti M (2008) Long-term fungal inhibitory activity of water-soluble extracts of Phaseolus vulgaris cv. Pinto and sourdough lactic acid bacteria during bread storage. Appl Environ Microbiol 74:7391–7398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Rizzello CG, Cassone A, Coda R, Gobbetti M (2011) Antifungal activity of sourdough fermented wheat germ used as an ingredient for bread making. Food Chem 127:952–959

    Article  CAS  PubMed  Google Scholar 

  196. Giuseppe Rizzello C, Coda R, De Angelis M, Di Cagno R, Carnevali P, Gobbetti M (2009) Long-term fungal inhibitory activity of water-soluble extract from Amaranthus spp. seeds during storage of gluten-free and wheat flour breads. Int J Food Microbiol 131:189–196

    Article  PubMed  Google Scholar 

  197. Coda R, Cassone A, Rizzello CG, Nionelli L, Cardinali G, Gobbetti M (2011) Antifungal activity of Wickerhamomyces anomalus and Lactobacillus plantarum during sourdough fermentation: Identification of novel compounds and long-term effect during storage of wheat bread. Appl Environ Microbiol 77:3484–3492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Lin XB, Lohans CT, Duar R, Zheng J, Vederas JC, Walter J, Gänzle M (2015) Genetic determinants of reutericyclin biosynthesis in Lactobacillus reuteri. Appl Environ Microbiol 81:2032–2041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Gänzle M, Höltzel A, Walter J, Jung G, Hammes WP (2000) Characterization of reutericyclin produced by Lactobacillus reuteri LTH2584. Appl Environ Microbiol 66:4325–4333

    Article  PubMed  PubMed Central  Google Scholar 

  200. Li Z, Siepmann FB, Rojas Tovar LE, Chen X, Gänzle M (2020) Effect of copy number of the spoVA2mob operon, sourdough and reutericyclin on ropy bread spoilage caused by Bacillus spp. Food Microbiol 91:103507

    Article  CAS  PubMed  Google Scholar 

  201. Bailey CP, von Holy A (1993) Bacillus spore contamination associated with commercial bread manufacture. Food Microbiol 10:287–294

    Article  Google Scholar 

  202. Valerio F, De Bellis P, Di Biase M, Lonigro SLL, Giussani B, Visconti A, Lavermicocca P, Sisto A (2012) Diversity of spore-forming bacteria and identification of Bacillus amyloliquefaciens as a species frequently associated with the ropy spoilage of bread. Int J Food Microbiol 156:278–285

    Article  CAS  PubMed  Google Scholar 

  203. Vaičiulytė-Funk L, Žvirdauskienė R, Šalomskienė J, Šarkinas A (2015) The effect of wheat bread contamination by the Bacillus genus bacteria on the quality and safety of bread. Zemdirbyste Agric 102:351–358

    Article  Google Scholar 

  204. Rosenquist H, Hansen Å (1998) The antimicrobial effect of organic acids, sour dough and nisin against Bacillus subtilis and B. licheniformis isolated from wheat bread. J Appl Microbiol 85:621–631

    Article  CAS  Google Scholar 

  205. Katina K, Sauri M, Alakomi HL, Mattila-Sandholm T (2002) Potential of lactic acid bacteria to inhibit rope spoilage in wheat sourdough bread. LWT Food Sci Technol 35:38–45

    Article  CAS  Google Scholar 

  206. Pepe O, Blaiotta G, Moschetti G, Greco T, Villani F (2003) Rope-producing strains of Bacillus spp. from wheat bread and strategy for their control by lactic acid bacteria. Appl Environ Microbiol 69:2321–2329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Messens W, De Vuyst L (2002) Inhibitory substances produced by Lactobacilli isolated from sourdoughs—a review. Int J Food Microbiol 72:31–43

    Article  CAS  PubMed  Google Scholar 

  208. Settanni L, Corsetti A (2008) Application of bacteriocins in vegetable food biopreservation. Int J Food Microbiol 121:123–138

    Article  CAS  PubMed  Google Scholar 

  209. Hartnett DJ, Vaughan A, Van Sinderen D (2002) Antimicrobial-producing lactic acid bacteria Isolated from raw barley and sorghum. J Inst Brew 108:169–177

    Article  CAS  Google Scholar 

  210. Leroy F, De Winter T, Moreno MRF, De Vuyst L (2007) The bacteriocin producer Lactobacillus amylovorus DCE 471 is a competitive starter culture for type II sourdough fermentations. J Sci Food Agric 87:1726–1736

    Article  CAS  Google Scholar 

  211. Corsetti A, Settanni L, Van Sinderen D (2004) Characterization of bacteriocin-like inhibitory substances (BLIS) from sourdough lactic acid bacteria and evaluation of their in vitro and in situ activity. J Appl Microbiol 96:521–534

    Article  CAS  PubMed  Google Scholar 

  212. Gänzle MG (2004) Reutericyclin: biological activity, mode of action, and potential applications. Appl Microbiol Biotechnol 64:326–332

    Article  PubMed  Google Scholar 

  213. Gänzle M, Vogel RF (2003) Contribution of reutericyclin production to the stable persistence of Lactobacillus reuteri in an industrial sourdough fermentation. Int J Food Microbiol 80:31–45

    Article  PubMed  Google Scholar 

  214. Tang X, Kudo Y, Baker JL, Labonte S, Jordan PA, McKinnie SMK, Guo J, Huan T, Moore BS, Edlund A (2020) Cariogenic Streptococcus mutans produces tetramic acid strain-specific antibiotics that impair commensal colonization. ACS Infect Dis 6:563–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Shewry PR, Piironen V, Lampi AM, Edelmann M, Kariluoto S, Nurmi T, Fernandez-Orozco R, Andersson AAM, Åman P, Fraś A, Boros D, Gebruers K, Dornez E, Courtin CM, Delcour JA, Ravel C, Charmet G, Rakszegi M, Bedo Z, Ward JL (2010) Effects of genotype and environment on the content and composition of phytochemicals and dietary fiber components in rye in the HEALTHGRAIN diversity screen. J Agric Food Chem 58:9372–9383

    Article  CAS  PubMed  Google Scholar 

  216. Andreasen MF, Christensen LP, Meyer AS, Hansen Å (2000) Content of phenolic acids and ferulic acid dehydrodimers in 17 rye (Secale cereale L.) varieties. J Agric Food Chem 48:2837–2842

    Article  CAS  PubMed  Google Scholar 

  217. Boskov Hansen H, Andreasen MF, Nielsen MM, Larsen LM, Bach Knudsen KE, Meyer AS, Christensen LP, Hansen A (2002) Changes in dietary fibre, phenolic acids and activity of endogenous enzymes during rye bread-making. Eur Food Res Technol 214:33–42

    Article  Google Scholar 

  218. Piber M, Koehler P (2005) Identification of dehydro-ferulic acid-tyrosine in rye and wheat: Evidence for a covalent cross-link between arabinoxylans and proteins. J Agric Food Chem 53:5276–5284

    Article  CAS  PubMed  Google Scholar 

  219. Kobue-Lekalake RI, Taylor JRN, de Kock HL (2007) Effects of phenolics in sorghum grain on its bitterness, astringency and other sensory properties. J Sci Food Agric 87:1940–1948

    Article  CAS  Google Scholar 

  220. Dykes L, Rooney LW (2006) Sorghum and millet phenols and antioxidants. J Cereal Sci 44:236–251

    Article  CAS  Google Scholar 

  221. Svensson L, Sekwati-Monang B, Lutz DL, Schieber R, Gänzle MG (2010) Phenolic acids and flavonoids in nonfermented and fermented red sorghum (Sorghum bicolor (L.) Moench). J Agric Food Chem 58:9214–9220

    Article  CAS  PubMed  Google Scholar 

  222. Wu Y, Guo T, Mu Q, Wang J, Li X, Wu Y, Tian B, Wang ML, Bai G, Perumal R, Trick HN, Bean SR, Dweikat IM, Tuinstra MR, Morris G, Tesso TT, Yu J, Li X (2019) Allelochemicals targeted to balance competing selections in African agroecosystems. Nat Plants 5:1229–1236

    Article  CAS  PubMed  Google Scholar 

  223. Park C-M, Kim G-M, Cha G-S (2021) Biotransformation of flavonoids by newly isolated and characterized Lactobacillus pentosus NGI01 strain from kimchi. Microorganisms 9:1075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Beekwilder J, Marcozzi D, Vecchi S, de Vos R, Janssen P, Francke C, van Hylckama VJ, Hall RD (2009) Characterization of rhamnosidases from Lactobacillus plantarum and Lactobacillus acidophilus. Appl Environ Microbiol 75:3447–3454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Brochet S, Quinn A, Mars RAT, Neuschwander N, Sauer U, Engel P (2021) Niche partitioning facilitates coexistence of closely related gut bacteria. Elife 10

    Google Scholar 

  226. Gaur G, Gänzle MG (2023). Conversion of (poly)phenolic compounds in food fermentations by lactic acid bacteria: novel insights into metabolic pathways and functional metabolites. Curr Res Food Sci 6:100448. https://doi.org/10.1016/j.crfs.2023.100448

  227. Jiménez N, Esteban-Torres M, Mancheño JM, De las Rivas B, Muñoza R (2014) Tannin degradation by a novel tannase enzyme present in some Lactobacillus plantarum strains. Appl Environ Microbiol 80:2991–2997

    Article  PubMed  PubMed Central  Google Scholar 

  228. Reverón I, Jiménez N, Curiel JA, Peñas E, de Felipe FL, de las Rivas B, Muñoz R (2017) Differential gene expression by Lactobacillus plantarum WCFS1 in response to phenolic compounds reveals new genes involved in tannin degradation. Appl Environ Microbiol 83:e03387-16

    Article  PubMed  PubMed Central  Google Scholar 

  229. Esteban-Torres M, Reverón I, Mancheño JM, De las Rivas B, Muñoz R (2013) Characterization of a feruloyl esterase from Lactobacillus plantarum. Appl Environ Microbiol 79:5130–5136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Lai KK, Lorca GL, Gonzalez CF (2009) Biochemical properties of two cinnamoyl esterases purified from a Lactobacillus johnsonii strain isolated from stool samples of diabetes-resistant rats. Appl Environ Microbiol 75:5018–5024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Landete JM, Rodríguez H, Curiel JA, de las Rivas B, Mancheño JM, Muñoz R (2010) Gene cloning, expression, and characterization of phenolic acid decarboxylase from Lactobacillus brevis RM84. J Ind Microbiol Biotechnol 37:617–624

    Article  CAS  PubMed  Google Scholar 

  232. Santamaría L, Reverón I, de Felipe FL, de las Rivas B, Muñoz R (2018) Ethylphenol formation by Lactobacillus plantarum: Identification of the enzyme involved in the reduction of vinylphenols. Appl Environ Microbiol 84:e01064-18

    Article  PubMed  PubMed Central  Google Scholar 

  233. Santamaría L, Reverón I, de Felipe FL, de las Rivas B, Muñoz R (2018) Unravelling the reduction pathway as an alternative metabolic route to hydroxycinnamate decarboxylation in Lactobacillus plantarum. Appl Environ Microbiol 84:e01123-18

    Article  PubMed  PubMed Central  Google Scholar 

  234. Gaur G, Oh JH, Filannino P, Gobbetti M, van Pijkeren JP, Gänzle MG (2020) Genetic determinants of hydroxycinnamic acid metabolism in heterofermentative lactobacilli. Appl Environ Microbiol 86:e02461-19

    Article  PubMed  PubMed Central  Google Scholar 

  235. Joseph N, Fouaguim A, Mirelle R, Patrice DN, Josaphat N (2016) Evaluation of the antimicrobial activity of tannin extracted from the barks of Erythrophleum guineensis (Caesalpiniaceae). J Pharmacogn Phytochem 5:287–291

    Google Scholar 

  236. Engels C, Schieber A, Gänzle MG (2011) Inhibitory spectra and modes of antimicrobial action of gallotannins from mango kernels (Mangifera indica L.). Appl Environ Microbiol 77:2215–2223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Campos FM, Couto JA, Figueiredo AR, Tóth IV, Rangel AOSS, Hogg TA (2009) Cell membrane damage induced by phenolic acids on wine lactic acid bacteria. Int J Food Microbiol 135:144–151

    Article  CAS  PubMed  Google Scholar 

  238. Boudaoud S, Aouf C, Devillers H, Sicard D, Segond D (2021) Sourdough yeast-bacteria interactions can change ferulic acid metabolism during fermentation. Food Microbiol 98:103790

    Article  CAS  PubMed  Google Scholar 

  239. Liu H, Zhao H, Lyu L, Huang Z, Fan S, Wu W, Li W (2019) Synergistic effect of natural antifungal agents for postharvest diseases of blackberry fruits. J Sci Food Agric 99:3343–3349

    Article  CAS  PubMed  Google Scholar 

  240. Axel C, Brosnan B, Zannini E, Peyer LC, Furey A, Coffey A, Arendt EK (2016) Antifungal activities of three different Lactobacillus species and their production of antifungal carboxylic acids in wheat sourdough. Appl Microbiol Biotechnol 100:1701–1711

    Article  CAS  PubMed  Google Scholar 

  241. Bai Y, Findlay B, Sanchez Maldonado AF, Schieber A, Vederas JC, Gänzle MG (2014) Novel pyrano and vinylphenol adducts of deoxyanthocyanidins in sorghum sourdough. J Agric Food Chem 62:11536–11546

    Article  CAS  PubMed  Google Scholar 

  242. Liang N, Dacko A, Tan AK, Xiang S, Curtis JM, Gänzle MG (2020) Structure-function relationships of antifungal monohydroxy unsaturated fatty acids (HUFA) of plant and bacterial origin. Food Res Int 134:109237

    Article  CAS  PubMed  Google Scholar 

  243. Calabrese FM, Ameur H, Nikoloudaki O, Celano G, Vacca M, Lemos Junior WJF, Manzari C, Vertè F, Di Cagno R, Pesole G, De Angelis M, Gobbetti M (2022) Metabolic framework of spontaneous and synthetic sourdough metacommunities to reveal microbial players responsible for resilience and performance. Microbiome 10:148

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Gänzle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gänzle, M., Gobbetti, M. (2023). Physiology and Biochemistry of Sourdough Lactic Acid Bacteria and Their impact on Bread Quality. In: Gobbetti, M., Gänzle, M. (eds) Handbook on Sourdough Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-031-23084-4_8

Download citation

Publish with us

Policies and ethics