Skip to main content

Physiology and Biochemistry of Lactic Acid Bacteria

  • Chapter
  • First Online:
Handbook on Sourdough Biotechnology

Abstract

In the past decades, studies on the physiology and biochemistry of sourdough lactic acid bacteria provided insight into the microbial ecology of sourdough as well as the effect of the metabolic activity of lactic acid bacteria on flavor, texture, shelf-life, and nutritional properties of leavened baked goods. Lactic acid bacteria are the dominant microorganisms of sourdough. Their metabolic versatility favors adaptation to the various processing conditions and the metabolic interactions with autochthonous yeasts determine mechanisms of proto-cooperation during sourdough fermentation [1–3]. Lactobacillus species are most frequently found in sourdough fermentations although species belonging to the genera Pediococcus, Enterococcus, Lactococcus, Weissella and Leuconostoc were also identified ([4–6], see Chap. 5). A large number of Lactobacillus species were first identified from sourdoughs or fermentation processes of cereals [5]. This chapter gives an overview of the general growth and stress parameters, carbohydrate and amino acid metabolism, synthesis of exopolysaccharides and antimicrobial compounds, and the conversion of phenolic compounds and lipids of lactic acid bacteria during sourdough fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gobbetti M, De Angelis M, Corsetti A, Di Cagno R (2005) Biochemistry and physiology of sourdough lactic acid bacteria. Trends Food Sci Technol 16:57–69

    Article  CAS  Google Scholar 

  2. Gobbetti M (1998) The sourdough microflora: interactions of lactic acid bacteria and yeast. Trends Food Sci Technol 9:267–274

    Article  CAS  Google Scholar 

  3. Gänzle MG, Vermeulen N, Vogel RF (2007) Carbohydrate, peptide and lipid metabolism of lactic acid bacteria in sourdough. Food Microbiol 24:128–138

    Article  Google Scholar 

  4. Hammes WP, Gänzle MG, Hammes WP, Gänzle MG (1998) Sourdough bread and related products. In: Wood BJB (ed) Microbiology of fermented foods, vol 199. Blackie Academic and Professional, London

    Google Scholar 

  5. Ehrmann MA, Vogel RF (2005) Molecular taxonomy and genetics of sourdough lactic acid bacteria. Trends Food Sci Technol 16:31–42

    Article  CAS  Google Scholar 

  6. De Vuyst L, Neysens P (2005) The sourdough microflora: biodiversity and metabolic ­interactions. Trends Food Sci Technol 16:43–56

    Article  Google Scholar 

  7. Vogel RF, Knorr R, Müller MRA, Steudel U, Gänzle MG, Ehrmann MA, Vogel RF, Knorr R, Müller MRA, Steudel U, Gänzle MG, Ehrmann MA (1999) Non-dairy lactic fermentations. The cereal world. Antonie van Leeuwenhoek 76:403–411

    Article  CAS  Google Scholar 

  8. Meroth CB, Walter J, Hertel C, Brandt MJ, Hammes WP (2003) Monitoring the bacterial population dynamics in sourdough fermentation processes by using PCR- denaturing gradient gel electrophoresis. Appl Environ Microbiol 69:475–482

    Article  CAS  Google Scholar 

  9. Gänzle MG, Ehmann MA, Hammes WP (1998) Modelling of growth of Lactobacillus ­sanfranciscensis and Candida milleri in response to process parameters of the sourdough fermentation. Appl Environ Microbiol 64:2616–2623

    Article  Google Scholar 

  10. Wolfrum G (2003) Wachstum und Physiologie der Mikroflora in Getreidefermentationen. Dissertation, Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt der Technischen Universität München

    Google Scholar 

  11. Messens W, Neysens P, Vansieleghem W, Vanderhoeven J, De Vuyst L (2002) Modeling growth and bacteriocin production by Lactobacillus amylovorus DCE 471 in response to temperature and pH values used for sourdough fermentation. Appl Environ Microbiol 68:1431–1435

    Article  CAS  Google Scholar 

  12. Passos FV, Fleming HP, Ollis DF, Felder RM, McFeeters RF (1994) Kinetics and modeling of lactic acid production by Lactobacillus plantarum. Appl Environ Microbiol 60:2627–2636

    Article  CAS  Google Scholar 

  13. Hammes WP, Vogel RF (1995) The genus Lactobacillus. In: Wood BJB, Holzapfel WH (eds) The genera of lactic acid bacteria. Blackie Academic and Professional, London, p 19

    Chapter  Google Scholar 

  14. Vrancken G, Rimaux T, De Vuyst L, Leroy F (2008) Kinetic analysis of growth and sugar consumption by Lactobacillus fermentum IMDO 130101 reveals adaptation to the acidic sourdough ecosystem. Int J Food Microbiol 128:58–66

    Article  CAS  Google Scholar 

  15. Galle S, Schwab C, Arendt E, Gänzle M (2010) Exopolysaccharide forming Weissella strains as starter cultures for sorghum and wheat sourdoughs. J Agric Food Chem 58:5834–5841

    Article  CAS  Google Scholar 

  16. Korakli M, Vogel RF (2003) Purification and characterization of mannitol dehydrogenase from Lactobacillus sanfranciscensis. FEMS Microbiol Lett 220:281–286

    Article  CAS  Google Scholar 

  17. Liu SQ (2003) Practical implication of lactose and pyruvate metabolism by lactic acid bacteria in food and beverage fermentation. Int J Food Microbiol 83:115–131

    Article  CAS  Google Scholar 

  18. De Angelis M, Gobbetti M (1999) Lactobacillus sanfranciscensis CB1: manganese, oxigen, superoxide dismutase and metabolism. Appl Microbiol Biotechnol 51:358–363

    Article  Google Scholar 

  19. De Angelis M, Gobbetti M (2004) Environmental stress response in Lactobacillus: a review. Proteomics 4:106–122

    Article  Google Scholar 

  20. Zhang C, Gänzle MG (2010) Metabolic pathway of α-ketoglutarate in Lactobacillus sanfranciscensis and Lactobacillus reuteri during sourdough fermentation. J Appl Microbiol 109:1301–1310

    Article  CAS  Google Scholar 

  21. Vermeulen N, Czerny M, Gänzle MG, Schieberle P, Vogel RF (2007) Reduction of (E)-2-nonenal and (E, E)-2,4-decadienal during sourdough fermentation. J Cereal Sci 45:78–87

    Article  CAS  Google Scholar 

  22. Vermeulen N, Kretzer J, Machalitza H, Vogel RF, Gänzle MG (2006) Influence of redox-reactions catalysed by homo- and heterofermentative lactobacilli on gluten in wheat sourdoughs. J Cereal Sci 43:137–143

    Article  CAS  Google Scholar 

  23. Ferain T, Schanck AN, Delcour J (1996) 13 C nuclear magnetic resonance analysis of glucose and citrate end products in an ldhL-ldhD double-knockout strain of Lactobacillus plantarum. J Bacteriol 178:7311–7315

    Article  CAS  Google Scholar 

  24. Hansen Å, Schieberle P (2005) Generation of aroma compounds during sourdough fermentation: applied and fundamental aspects. Trends Food Sci Technol 16:85–94

    Article  CAS  Google Scholar 

  25. Damiani P, Gobbetti M, Cossignani L, Corsetti A, Simonetti MS, Rossi J (1996) The sourdough microflora. Characterization of hetero- and homofermentative lactic acid bacteria, yeast and their interactions on the basis of the volatile compounds produced. Z Lebensm Wiss Technol 29:63–70

    Article  CAS  Google Scholar 

  26. Stolz P, Böcker G, Hammes WP, Vogel RF (1995) Utilization of electron acceptors by ­lactobacilli isolated from sourdough I Lactobacillus sanfrancisco. Z Lebensm Unters Forsch 201:91–96

    Article  CAS  Google Scholar 

  27. Gobbetti M, Corsetti A (1996) Co-metabolism of citrate and maltose by Lactobacillus brevis subsp. lindneri CB1 citrate-negative strain: effect on growth, end-products and sourdough fermentation. Z Lebensm Unters Forsch 203:82–87

    Article  CAS  Google Scholar 

  28. Sekwati-Monang B, Gänzle M (2011) Microbiological and chemical characterisation of ting, a sorghum-based sourdough product from Botswana. Int J Food Microbiol 150:115–121

    Article  CAS  Google Scholar 

  29. Oude Elferink SJWH, Krooneman J, Gottschal JC, Spoelstra SF, Faber F, Driehuis F (2001) Anaerobic conversion of lactic acid to acetic acid and 1,2-propanediol by Lactobacillus buchneri. Appl Environ Microbiol 67:125–132

    Article  CAS  Google Scholar 

  30. Zhang C, Brandt MJ, Schwab C, Gänzle MG (2010) Propionic acid production by cofermentation of Lactobacillus buchneri and Lactobacillus diolivorans in sourdough. Food Microbiol 27:390–395

    Article  CAS  Google Scholar 

  31. Titgemeyer F, Hillen W (2002) Global control of sugar metabolism: a gram-positive solution. Antonie Van Leeuwenhoek 82:59–71

    Article  CAS  Google Scholar 

  32. Leroy F, De Winter T, Adriany T, Neysens P, De Vuyst L (2006) Sugars relevant for sourdough fermentation stimulate growth of and bacteriocin production by Lactobacillus amylovorus DCE 471. Int J Food Microbiol 112:102–111

    Article  CAS  Google Scholar 

  33. Paramithiotis S, Sofou A, Tskalidou E, Kalantzopulos G (2007) Flour carbohydrate catabolism and metabolite production by sourdough lactic acid bacteria. World J Microbiol Biotechnol 23:1417–1423

    Article  CAS  Google Scholar 

  34. Stolz P, Böcker G, Vogel RF, Hammes WP (1993) Utilization of maltose and glucose by lactobacilli isolated from sourdough. FEMS Microbiol Lett 109:237–242

    Article  CAS  Google Scholar 

  35. Schwab C, Walter J, Tannock GW, Vogel RF, Gänzle MG (2007) Sucrose utilization and impact of sucrose on glycosyltransferase expression in Lactobacillus reuteri. Syst Appl Microbiol 30:433–443

    Article  CAS  Google Scholar 

  36. Gobbetti M, Corsetti A, Rossi J (1994) The sourdough microflora. Interactions between lactic acid bacteria and yeasts: metabolism of carbohydrates. Appl Microbiol Biotechnol 41:456–460

    Article  CAS  Google Scholar 

  37. Neubauer H, Glaasker E, Hammes WP, Poolman B, Konings WN (1994) Mechanisms of maltose uptake and glucose excretion in Lactobacillus sanfrancisco. J Bacteriol 176:3007–3012

    Article  CAS  Google Scholar 

  38. De Vuyst L, Schrijvers V, Paramithiotis S, Hoste B, Vancanneyt M, Swingis J, Kalantzopoulos G, Tsakalidou E, Messens W (2002) The biodiversity of lactic acid bacteria in greek traditional wheat sourdoughs is reflected in both composition and metabolite formation. Appl Environ Microbiol 68:6059–6069

    Article  Google Scholar 

  39. Tieking M, Korakli M, Ehrmann MA, Gänzle MG, Vogel RF (2003) In situ production of EPS by intestinal and cereal isolates of lactic acid bacteria during sourdough fermentation. Appl Environ Microbiol 69:945–952

    Article  CAS  Google Scholar 

  40. Teixeira JS, McNeill V, Gänzle MG (2012) Levansucrase and sucrose phoshorylase contribute to raffinose, stachyose, and verbascose metabolism by lactobacilli. Food Microbiol 31:278–284

    Article  CAS  Google Scholar 

  41. De Angelis M, Gallo G, Settanni L, Corbo MR, McSweeney PLH, Gobbetti M (2005) Purification and characterization of an intracellular family 3 β-glucosidase from Lactobacillus sanfranciscensis CB1. Ital J Food Sci 17:131–142

    Google Scholar 

  42. Gobbetti M, Lavermicocca P, Minervini F, De Angelis M, Corsetti A (2000) Arabinose fermentation by Lactobacillus plantarum in sourdough with added pentosans and α-L-arabinofunarosidase: a tool to increase the production of acetic acid. J Appl Microbiol 88:317–324

    Article  CAS  Google Scholar 

  43. Gobbetti M, De Angelis M, Arnault P, Tossut P, Corsetti A, Lavermicocca P (1999) Added pentosans in breadmaking: fermentations of derived pentoses by sourdough lactic acid bacteria. Food Microbiol 16:409–418

    Article  CAS  Google Scholar 

  44. Kunji ER, Mierau I, Hagting A, Poolman B, Konings WN (1996) The proteolytic system of lactic acid bacteria. Antonie Van Leeuwenhoek 70:187–221

    Article  CAS  Google Scholar 

  45. Guèdon E, Renault P, Ehrlich SD, Delorme C (2001) Transcriptional pattern of genes coding for the proteolytic system of Lactococcus lactis and evidence for coordinated regulation of key enzymes by peptide supply. J Bacteriol 183:3614–3622

    Article  Google Scholar 

  46. Vermeulen N, Pavlovic M, Ehrmann MA, Gänzle MG, Vogel RF (2005) Functional characterization of the proteolytic system of Lactobacillus sanfranciscensis DSM20451T during growth in sourdough. Appl Environ Microbiol 71:6260–6266

    Article  CAS  Google Scholar 

  47. Wieser H, Vermeulen N, Gaertner F, Vogel RF (2007) Effect of different Lactobacillus and Enterococcus strains and chemical acidification regarding degradation of gluten proteins during sourdough fermentation. Eur Food Res Technol 226:14

    Google Scholar 

  48. Thiele C, Gänzle MG, Vogel RF (2002) Contribution of sourdough lactobacilli, yeast, and cereal enzymes to the generation of amino acids in dough relevant for bread flavour. Cereal Chem 79:45–51

    Article  CAS  Google Scholar 

  49. Loponen J, Mikola M, Katina K, Sontag-Strohm T, Salovaara H (2004) Degradation of HMW glutenins during wheat sourdough fermentation. Cereal Chem 81:87–93

    Article  CAS  Google Scholar 

  50. Gänzle MG, Loponen J, Gobbetti M (2008) Proteolysis in sourdough fermentations: mechanisms and potential for improved bread quality. Trends Food Sci Technol 19:513–521

    Article  Google Scholar 

  51. Gobbetti M, Smacchi E, Corsetti A (1996) The proteolytic system of Lactobacillus sanfranciscensis CB1: purification and characterization of a proteinase, a dipeptidase, and an aminopeptidase. Appl Environ Microbiol 62:3220–3226

    Article  CAS  Google Scholar 

  52. Di Cagno R, De Angelis M, Lavermicocca P, De Vincenzi M, Giovannini C, Faccia M, Gobbetti M (2002) Proteolysis by sourdough lactic acid bacteria: effects on wheat flour protein fractions and gliadin peptides involved in human cereal intolerance. Appl Environ Microbiol 68:623–633

    Article  Google Scholar 

  53. Pepe O, Villani F, Oliviero D, Greco T, Coppola S (2003) Effect of proteolytic starter cultures as leavening agents of pizza dough. Int J Food Microbiol 84:319–326

    Article  CAS  Google Scholar 

  54. Gallo G, De Angelis M, McSweeney PLH, Corbo MR, Gobbetti M (2005) Partial purification and characterization of an X-prolyl dipeptidyl aminopeptidase from Lactobacillus sanfranciscensis CB1. Food Chem 9:535–544

    Article  Google Scholar 

  55. Hu Y, Stromeck A, Loponen J, Lopes-Lutz D, Schieber A, Gänzle MG (2011) LC-MS/MS quantification of bioactive antiotensin I-converting enzyme inhibitory peptides in rye malt sourdoughs. J Agric Food Chem 59:11983–11989

    Article  CAS  Google Scholar 

  56. Jänsch A, Korakli M, Vogel RF, Gänzle MG (2007) Glutathione reductase from Lactobacillus sanfranciscensis DSM20451T: contribution to oxygen tolerance and thiol-exchange reactions in wheat sourdoughs. Appl Environ Microbiol 73:4469–4476

    Article  Google Scholar 

  57. Coda R, Rizzello CG, Pinto D, Gobbetti M (2012) Selected lactic acid bacteria synthesize antioxidant peptides during sourdough fermentation of cereal flours. Appl Environ Microbiol 78:1087–1096

    Article  CAS  Google Scholar 

  58. Rizzello CG, De Angelis M, Di Cagno R, Camarca A, Silano M, Losito I, De Vincenzi M, De Bari MD, Palmisano F, Maurano F, Gianfrani C, Gobbetti M (2007) Highly efficient gluten degradation by lactobacilli and fungal proteases during food processing: new perspectives for celiac disease. Appl Environ Microbiol 73:4499–4507

    Article  CAS  Google Scholar 

  59. Di Cagno R, Barbato M, Di Camillo C, Rizzello CG, De Angelis M, Giuliani G, De Vincenzi M, Gobbetti M, Cucchiara S (2010) Gluten-free sourdough wheat baked goods appear safe for young celiac patients: a pilot study. J Ped Gastroent Nutr 51:777–783

    Article  Google Scholar 

  60. Greco L, Gobbetti M, Auricchio R, Di Mase R, Landolfo F, Paparo F, Di Cagno R, De Angelis M, Rizzello CG, Cassone A, Terrone G, Timpone L, D’Aniello M, Maglio M, Troncone R, Auricchio S (2011) Safety for patients with celiac disease of baked goods made of wheat flour hydrolyzed during food processing. Clin Gastroenterol Pathol 9:24–29

    Google Scholar 

  61. De Angelis M, Cassone A, Rizzello CG, Gagliardi F, Minervini F, Calasso M, Di Cagno R, Francavilla R, Gobbetti M (2010) Gluten-free pasta made of Triticum turgidum L. var. durum: mechanisms of epitopes hydrolysis by peptidases of sourdough lactobacilli. Appl Environ Microbiol 75:50–518

    Google Scholar 

  62. De Angelis M, Di Cagno R, Gallo G, Curci M, Siragusa S, Crecchio C, Parente E, Gobbetti M (2007) Molecular and functional characterization of Lactobacillus sanfranciscensis strains isolated from sourdoughs. Int J Food Microbiol 114:69–82

    Article  Google Scholar 

  63. Christensen JF, Dudley EG, Pederson JA, Steele JL (1999) Peptidases and amino acid ­catabolism in lactic acid bacteria. Antonie Van Leeuwenhoek 76:217–246

    Article  CAS  Google Scholar 

  64. Su MSW, Schlicht S, Gänzle MG (2011) Contribution of glutamate decarboxylase in Lactobacillus reuteri to acid resistance and persistence in sourdough fermentation. Microb Cell Factories 10(suppl1):S8

    Article  Google Scholar 

  65. Fernandez M, Zuniga M (2006) Amino acid catabolic pathoways of lactic acid bacteria. Crit Rev Microbiol 32:155–183

    Article  CAS  Google Scholar 

  66. Kieronczyk A, Skeie S, Olsen K, Langsrud T (2001) Metabolism of amino acids by resting cells of non-starter lactobacilli in relation to flavour development in cheese. Int Dairy J 11:217–224

    Article  CAS  Google Scholar 

  67. Tonon T, Bourdineaud JP, Lonvaud-Funel A (2001) The arcABC gene cluster encoding the arginine deiminase pathway of Oenococcus oeni, and arginine induction of a CRP-like gene. Res Microbiol 152:653–661

    Article  CAS  Google Scholar 

  68. Hammes WP, Hertel C (2006) The genera Lactobacillus and Carnobacterium. Prokaryotes 4:320–403

    Article  Google Scholar 

  69. De Angelis M, Mariotti L, Rossi J, Servili M, Fox PF, Rollàn G, Gobbetti M (2002) Arginine catabolism by sourdough lactic acid bacteria: Purification and characterization of the arginine deiminase (ADI) pathway enzymes from Lactobacillus sanfranciscensis CB1. Appl Environ Microbiol 68:6193–6201

    Article  Google Scholar 

  70. Vrancken G, Rimaux T, Wouters D, Leroy F, De Vuyst L (2009) The arginine deiminase pathway of Lactobacillus fermentum IMDO 130101 responds to growth under stress conditions of both temperature and salt. Food Microbiol 26:720–727

    Article  CAS  Google Scholar 

  71. Vermeulen N, Gänzle MG, Vogel RF (2007) Glutamine deamidation by cereal-associated lactic acid bacteria. J Appl Microbiol 103:1197–1205

    Article  CAS  Google Scholar 

  72. Weingand-Ziadé A, Gerber-Dé Combay C, Affolter M (2003) Functional characterization of a salt- and thermotolerant glutaminase from Lactobacillus rhamnosus. Enzyme Microb Technol 32:862–867

    Article  Google Scholar 

  73. Tanous C, Kieronczyk A, Helinck S, Chambellon E, Yvon M (2002) Glutamate dehydrogenase activity: a major criterion for the selection of flavour-producing lactic acid bacteria strains. Antonie Van Leeuwenhoek 82:271–278

    Article  CAS  Google Scholar 

  74. Vermeulen N, Gänzle MG, Vogel RF (2006) nfluence of peptide supply and co-substrates on phenylalanine metabolism of Lactobacillus sanfranciscensis DSM20451T and Lactobacillus plantarum TMW1.468. J Agric Food Chem 54:3832–3839

    Article  CAS  Google Scholar 

  75. Coda R, Rizzello CG, Gobbetti M (2010) Use of sourdough fermentation and pseudo-cereals and leguminous flours for the making of a functional bread enriched of γ-aminobutyric acid (GABA). Int J Food Microbiol 37:236–245

    Article  Google Scholar 

  76. Stromeck A, Hu Y, Chen L, Gänzle MG (2011) Proteolysis and bioconversion of cereal proteins to glutamate and γ aminobutyrate in rye malt sourdoughs. J Agric Food Chem 59:1392–1399

    Article  CAS  Google Scholar 

  77. Serrazanetti DI, Ndagijimana M, Sado-Kamdem SL, Corsetti A, Vogel RF, Ehrmann M, Guerzoni ME (2011) Acid-stress mediated metabolic shift in Lactobacillus sanfranciscensis LSCE1. Appl Environ Microbiol 77:2659–2666

    Article  Google Scholar 

  78. Curtin ÁC, De Angelis M, Cipriani M, Corbo MR, McSweeney PLH, Gobbetti M (2001) Amino acid catabolism in cheese-related bacteria: selection and study of the effects of pH, temperature and NaCl by quadratic response surface methodology. J Appl Microbiol 91:312–321

    Article  CAS  Google Scholar 

  79. De Angelis M, Curtin ÁC, McSweeney PLH, Faccia M, Gobbetti M (2002) Lactobacillus reuteri DSM 20016: purification and characterization of a cystathionine γ-lyase and use as adjunct starter in cheese-making. J Dairy Res 69:255–267

    Article  Google Scholar 

  80. Korakli M, Vogel RF (2006) Structure/function relationship of homopolysaccharide producing glycansucrases and therapeutic potential of their synthesised glycans. Appl Microbiol Biotechnol 71:790–803

    Article  CAS  Google Scholar 

  81. van Hijum SAFT, Kralj S, Ozimek LK, Kijkhuizen L, van Geel-Schutten IGH (2006) ­Structure-function relationships of glucansucrase and fructansucrase enzymes from lactic acid bacteria. Microbiol Molec Biol Rev 70:157–176

    Article  Google Scholar 

  82. de Vuyst L, de Vin F, Vaningelem F, Degeest B (2001) Recent development in the ­biosynthesis and applications of heteropolysaccharides from lactic acid bacteria. Int Dairy J 11:687–708

    Article  Google Scholar 

  83. Boels IC, van Kranenburgt R, Hugenholtz J, Kleerebezem M, de Vos WM (2001) Sugar catabolism and its impact on the biosynthesis and engineering of exopolysaccharide production in lactic acid bacteria. Int Dairy J 11:723–732

    Article  CAS  Google Scholar 

  84. Broadbent JR, McMahon DJ, Welker DL, Oberg CJ, Moineau S (2003) Biochemistry, k genetics, and applications of exopolysaccharide production from Streptococcus thermophilus: a review. J Dairy Sci 86:407–423

    Article  CAS  Google Scholar 

  85. Gruter M, Leeflang BR, Kuiper J, Kamerling JP, Vliegenthart JF (1992) Structure of the exopolysaccharide produced by Lactococcus lactis subspecies cremoris H414 grown in a defined medium or skimmed milk. Carbohydr Res 231:273–291

    Article  CAS  Google Scholar 

  86. Dols-Lafargue M, Lee HY, le Marrec C, Heyraud A, Chambat GP, Lonvaud-Funel A (2008) Characgterization of gtf, a glucosyltransferase gene in the genomes of Pediococcus parvulus and Oenococcus oeni, two bacterial species commonly found in wine. Appl Environ Microbiol 74:4079–4090

    Article  CAS  Google Scholar 

  87. Van der Meulen R, Grosu-Tudor S, Mozzi F, Vaningelgem F, Zamfir M, Font de Valdez G, De Vuyst L (2007) Screening of lactic acid bacteria isolates from dairy and cereal products for exoplysaccharide production and genes involved. Int J Food Microbiol 118:250–258

    Article  Google Scholar 

  88. Bunaix M-S, Gabriel V, Morel S, Robert H, Rabier P, Remaud-Siméon M, Gabriel B, Fontagné-Faucher C (2009) Biodiversity of exopolysaccharides produced from sucrose by sourdough lactic acid bacteria. J Agric Food Chem 57:10889–10897

    Article  Google Scholar 

  89. Palomba S, Cavella S, Torrieri E, Piccolo A, Mazzei P, Blaiotta G, Ventorino V, Pepe O (2012) Polyphasic screening, homopolysaccharide composition, and viscoelastic behavior of wheat sourdough from a Leuconostoc lactis and Lactobacillus curvatus exopolysaccharide-producing starter culture. Appl Environ Microbiol 78:2737–2747

    Article  CAS  Google Scholar 

  90. Galle S, Schwab C, Arendt EK, Gänzle MG (2011) Structural and rheological characterisation of heteropolysaccharides produced by lactic acid bacteria in wheat and sorghum sourdough. Food Microbiol 28:547–553

    Article  CAS  Google Scholar 

  91. Di Cagno R, De Angelis M, Limitone A, Minervini F, Carnevali P, Corsetti A, Gänzle M, Ciati R, Gobbetti M (2006) Glucan and fructan production by sourdough Weisella cibaria and Lactobacillus plantarum and their effect on bread texture. J Agric Food Chem 54:9873–9881

    Article  Google Scholar 

  92. Schwab C, Mastrangelo M, Corsetti A, Gänzle MG (2008) Formation of oligosaccharides and polysaccharides by Lactobacillus reuteri LTH5448 and Weissella cibaria 10 M in sorghum sourdoughs. Cereal Chem 85:679–684

    Article  CAS  Google Scholar 

  93. Galle S, Arendt EK Exopolysaccharides from sourdough lactic acid bacteria. A review. Crit Rev Food Sci Nutr (in press)

    Google Scholar 

  94. Jolly L, Stingele F (2001) Molecular organization and functionality of exopolysaccharide gene clusters in lactic acid bacteria. Int Dairy J 11:733–746

    Article  CAS  Google Scholar 

  95. Tieking M, Kühnl W, Gänzle MG (2005) Evidence for formation of heterooligosaccharides by Lactobacillus sanfranciscensis during growth in wheat sourdough. J Agric Food Chem 53:2456–2461

    Article  CAS  Google Scholar 

  96. Beine R, Moraru R, Nimtz M, Na’amineh S, Pawlowski A, Buchholz K, Seibel J (2008) Synthesis of novel fructooligosaccharides by substrate and enzyme engineering. J Biotechnol 138:33–41

    Article  CAS  Google Scholar 

  97. Dols M, Remaud Simeon M, Willemot R-M, Vignon MR, Monsan PF (1998) Structural characterization of the maltose acceptor-products synthesized by Leuconostoc mesenteroides NRRL B-1299 dextransucrase. Carbohydr Res 305:549–559

    Article  Google Scholar 

  98. Tieking M, Ehrmann MA, Vogel RF, Gänzle MG (2005) Molecular and functional characterization of a levansucrase from Lactobacillus sanfranciscensis. Appl Microbiol Biotechnol 66:655–663

    Article  CAS  Google Scholar 

  99. Kralj S, Stripling E, Sanders P, van Geel-Schutten GH, Dijkhuizen L (2005) Highly ­hydrolytic reuteransucrase from probiotic Lactobacillus reuteri strain ATCC 55730. Appl Environ Microbiol 71:3942–3950

    Article  CAS  Google Scholar 

  100. Seibel J, Buchholz K (2010) Tools in oligosaccharide synthesis: current research and application. Adv Carbohydr Chem Biochem 63:101–138

    Article  CAS  Google Scholar 

  101. Kralj S, van Leeuwen SS, Valk V, Eeuwema W, Kamerling JP, Dijkhuizen L (2008) Hybrid reuteransurase enzymes reveal regions important for glucosidic linkage specificity and the transglucosylation/hydrolysis ratio. FEBS J 275:6002–6010

    Article  CAS  Google Scholar 

  102. Irague R, Rolland-Sabaté A, Laurence Tarpuis L, Doublier JLO, Moulis C, Monsan P, Remeaud-Siméon M, Potocki-Véronèse G, Buléon A (2011) Structure and property engineering of α–D–glucans synthesized by dextransucrase mutants. Biomacromolecules 13:187–195

    Article  Google Scholar 

  103. Kaditzki SJ, Behr J, Stocker A, Kaden P, Gänzle MG, Vogel RF (2008) Influence of pH on the formation of glucan by Lactobacillus reuteri TMW 1.106 exerting a protective function against extreme pH values. Food Biotechnol 22:398–418

    Article  Google Scholar 

  104. Anwar MA, Kralj S, van der Maarel MJEC, Dijkhuizen L (2008) The probiotic Lactobacillus johnsonii NCC533 produces high-molecular-mass inulin from sucrose by using an inulosucrase enzyme. Appl Environ Microbiol 74:3426–3433

    Article  CAS  Google Scholar 

  105. Cvitkovitch DG, LI YH, Ellen RP (2003) Quorum sensing and biofilm formation in streptococcal infections. J Clin Invest 112:1626–1632

    Article  CAS  Google Scholar 

  106. Walter J, Schwab C, Loach DM, Gänzle MG, Tannock GW (2008) Glucosyltransferase A (GtfA) and inulosucrase (Inu) of Lactobacillus reuteri TMW1.106 contribute to cell aggregation, in vitro biofilm formation, and colonization of the mouse gastrointestinal tract. Microbiology 154:72–80

    Article  CAS  Google Scholar 

  107. Kaditzky S, Seitter M, Hertel C, Vogel RF (2008) Performance of Lactobacillus sanfranciscensis TMW1.392 and its levansucrase deletion mutant in wheat dough and comparison of their impact on bread quality. Eur Food Res Technol 227:433–442

    Article  CAS  Google Scholar 

  108. Galle S, Schwab C, Dal Bello F, Coffey A, Gänzle M, Arendt E (2012) Influence of in situ synthesised exopolysaccharides on the quality of gluten-free sorghum sourdough bread. Int J Food Microbiol 155:105–112

    Article  CAS  Google Scholar 

  109. Schwab C, Vogel RF, Gänzle MG (2007) nfluence of oligosaccharides on the viability and membrane properties of Lactobacillus reuteri TMW1.106 during freeze-drying. Cryobiology 55:108–114

    Article  CAS  Google Scholar 

  110. Vereyken IJ, Chupin V, Demel RA, Smeekens SCM, De Kruijff B (2003) Fructans insert between the headgroups of phospholipids. Biochim Biophys Acta 1510:307–320

    Article  Google Scholar 

  111. Kim D-S, Thomas S, Fogler HS (2000) Effects of pH and trace minerals on long-term starvation of Leuconostoc mesenteroides. Appl Environ Microbiol 66:976–981

    Article  CAS  Google Scholar 

  112. Katina K, Maina NH, Juvonen R, Flander F, Johansson L, Virkki L, Genkanen M, Laitila A (2009) In situ production and analysis of Weissella confusa dextran in wheat sourdough. Food Microbiol 26:734–743

    Article  CAS  Google Scholar 

  113. Kaditzky S, Vogel RF (2008) Optimization of exopolysaccharide yields in sourdoughs fermented by lactobacilli. Eur Food Res Technol 228:291–299

    Article  CAS  Google Scholar 

  114. Waldherr FW, Meissner D, Vogel RF (2008) Genetic and functional characterization of Lactobacillus panis levansucrase. Arch Microbiol 190:497–505

    Article  CAS  Google Scholar 

  115. Rodrigues S, Lona LMF, Franco TT (2005) The effect of maltose on dextran yield and molecular weight distribution. Bioprocess Biosyst Eng 28:9–14

    Article  CAS  Google Scholar 

  116. Decock P, Capelle S (2005) Bread Technology and sourdough technology. Trends Food Sci 16:113–120

    Article  CAS  Google Scholar 

  117. Wang Y, Gänzle MG, Schwab C (2010) EPS synthesized by Lactobacillus reuteri decreases binding ability of enterotoxigenic Escherichia coli to porcine erythrocytes. Appl Environ Microbiol 76:4863–4866

    Article  CAS  Google Scholar 

  118. Bello FD, Walter J, Hertel C, Hammes WP (2001) In vitro study of prebiotic properties of levan-type exopolysaccharides from lactobacilli and non-digestible carbohydrates using denaturing gradient gel electrophoresis. Syst Appl Microbiol 24:232–237

    Article  CAS  Google Scholar 

  119. Gänzle MG, Zhang C, Sekwati-Monang B, Lee V, Schwab C (2009) Novel metabolites from cereal-associated lactobacilli – Novel functionalities for cereal products? Food Microbiol 26:712–719

    Article  Google Scholar 

  120. Schnürer J, Magnusson J (2005) Antifungal lactic acid bacteria as preservatives. Trends Food Sci Technol 16:70–78

    Article  Google Scholar 

  121. Dal Bello F, Clarke CI, Ryan LAM, Ulmer H, Schober TJ, Ström K, Sjörgen J, van Sinderen D, Schnürer J, Arendt EK (2007) Improvement of the quality and shelf life of wheat bread by fermentation with the antifungal strain Lactobacillus plantarum FST1.7. J Cereal Sci 45:309–218

    Article  CAS  Google Scholar 

  122. Ryan LAM, Dal Bello F, Arendt EK (2008) The use of sourdough fermented by anifungal LAB to reduce the amount of calcium propionate in bread. Int J Food Microbiol 125:274–278

    Article  CAS  Google Scholar 

  123. Drews E (1959) Der Einfluß gesteigerter Essigsäurebildung auf die Haltbarkeit des Schrotbrotes. Brot Gebäck 13:113–114

    Google Scholar 

  124. Lavermicocca P, Valerio F, Evidente A, Lazzaroni S, Corsetti A, Gobbetti M (2000) Purification and characterization of novel antifungal compounds from the sourdough Lactobacillus plantarum strain 21B. Appl Environ Microbiol 66:4084–4090

    Article  CAS  Google Scholar 

  125. Lavermicocca P, Valerio F, Visconti A (2003) Antifungal activity of phenyllactic acid against moulds isolated from bakery products. Appl Environ Microbiol 69:634–640

    Article  CAS  Google Scholar 

  126. Ryan LAM, Dal Bello F, Czerny M, Koehler P, Arendt EK (2009) Quantification of phenyllactic acid in wheat sourdough using high resolution gas chromatography – mass spectrometry. J Agric Food Chem 57:1060–1064

    Article  CAS  Google Scholar 

  127. Ryan LAM, Dal Bello F, Arendt EK, Koehler P (2009) Detection and quantitation of 2,5-diketopeperazines in wheat sourdough bread. J Agric Food Chem 57:9563–9568

    Article  CAS  Google Scholar 

  128. Gerez CL, Torino MI, Rollán G, de Valdez GF (2009) Prevention of bread mould spoilage by using lactic acid bacteria with antifungal properties. Food Control 20:144–148

    Article  CAS  Google Scholar 

  129. Ryan LAM, Zannini E, Dal Bello F, Pawlosksa A, Koehler P, Arendt EK (2011) Lactobacillus amylovorus DSM19280 as a novel food-grade antifungal agent for bakery products. Int J Food Microbiol 146:276–283

    Article  Google Scholar 

  130. Coda R, Rizzello CG, Nigro F, De Angelis M, Arnault P, Gobbetti M (2008) Long-term fungal inhibitory Activity of water-soluble extracts of Phaseolus vulgaris cv. Pinto and sourdough lactic acid bacteria during bread storage. Appl Environ Microbiol 74:7391–7398

    Article  CAS  Google Scholar 

  131. Rizzello CG, Cassone A, Coda R, Gobbetti M (2011) Antifungal activity of sourdough fermented wheat germ used as an ingredient for bread making. Food Chem 127:952–959

    Article  CAS  Google Scholar 

  132. Rizzello CG, Coda R, De Angelis M, Di Cagno R, Carnevali P, Gobbetti M (2009) Long-term fungal inhibitory activity of water-soluble extract from Amaranthus spp. seeds during storage of gluten-free and wheat flour breads. Int J Food Microbiol 131:189–196

    Article  CAS  Google Scholar 

  133. Coda R, Cassone A, Rizzello CG, Nionelli L, Cardinali G, Gobbetti M (2011) Antifungal activity of Wickerhamomyces anomalus and Lactobacillus plantarum during sourdough fermentation: identification of novel compounds and long-term effect during storage of wheat bread. Appl Environ Microbiol 77:3484–3492

    Article  CAS  Google Scholar 

  134. Rosenquist H, Hansen A (1998) The antimicrobial effect of organic acids, sour dough and nisin against Bacillus subtilis and B. Licheniformis isolated from wheat bread. J Appl Microbiol 85:621–631

    Article  CAS  Google Scholar 

  135. Katina K, Sauri M, Alakomi H-L, Mattila-Sandholm T (2002) Potential of lactic acid bacgteria to inhibit rope spoilage in wheat sourdough bread. Lebensm Wiss u-Technol 35:38–45

    Article  CAS  Google Scholar 

  136. Pepe O, Blaiotta G, Moschetti G, Greco T, Villani F (2003) Rope-producing strains of Bacillus spp. from wheat bread and strategy for their control by lactic acid bacteria. Appl Environ Microbiol 69:2321–2329

    Article  CAS  Google Scholar 

  137. Messens W, De Vuyst L (2002) Inhibitory substances produced by Lactobacilli isolated from sourdoughs – a review. Int J Food Microbiol 72:31–43

    Article  CAS  Google Scholar 

  138. Settanni L, Corsetti A (2008) Application of bacteriocins in vegetable food biopreservation. Int J Food Microbiol 121:123–138

    Article  CAS  Google Scholar 

  139. Hartnett DJ, Vaughan A, van Sinderen D (2002) Antimicrobial-producing lactic acid bacteria isolated from raw barley and sorghum. J Inst Brew 108:169–177

    Article  CAS  Google Scholar 

  140. Leroy F, De Winter T, Foulquié Moreno MR, De Vuyst L (2007) The bacteriocin producer Lactobacillus amylovorus DCE 471 is a competitive starter culture for type II sourdough fermentations. J Sci Food Agric 87:1726–1736

    Article  CAS  Google Scholar 

  141. Corsetti A, Settanni L, Van Sinderen D (2004) Characterization of bacteriocin-like inhibitory substances (BLIS) from sourdough lactic acid bacteria and evaluation of their in vitro and in situ activity. J Appl Microbiol 96:521–534

    Article  CAS  Google Scholar 

  142. Gänzle MG, Höltzel A, Walter J, Jung G, Hammes WP (2000) Characterization of reutericyclin produced by Lactobacillus reuteri LTH2584. Appl Environ Microbiol 66:4325–4333

    Article  Google Scholar 

  143. Hurdle JG, Heathcott AE, Yan B, Lee RE (2011) Reuter;icyclin and related analogues kill stationary phase Clostridium difficile at achievable colonic concentrations. J Antimicrob Chemother 66:1773–1776

    Article  CAS  Google Scholar 

  144. Gänzle MG (2004) Reutericyclin: biological activity, mode of action, and potential application. Appl Microbiol Biotechnol 64:326–332

    Article  Google Scholar 

  145. Andreasen MF, Christensen LP, Meyer AS, Hansen A (2000) Content of phenolic acids and ferulic acid dehydrodimers in 17 rye (Secale cereale L.) varieties. J Agric Food Chem 48:2837–2842

    Article  CAS  Google Scholar 

  146. Piber M, Koehler P (2005) Identification of dehydro-ferulic acid-tyrosine in rye and wheat: evidence for a covalent cross-link between arabinoxylans and proteins. J Agric Food Chem 53:5276–5284

    Article  CAS  Google Scholar 

  147. Boskov Hansen H, Andreasen MS, Nielsen MM, Larsen LM, Bach Knudsen KE, Meyer AS, Cristensen LP, Hansen A (2002) Changes in dietary fibre, phenolic acids, and activity of endodenous enzymes during rye bread-making. Eur Food Res Technol 214:33–42

    Article  Google Scholar 

  148. Taylor JR, Schober TJ, Bean S (2006) Novel and non-food uses for sorghum and millets. J Cereal Sci 44:252–271

    Article  CAS  Google Scholar 

  149. Dykes L, Rooney LW (2006) Sorghum and millet phenols and antioxidants. J Cereal Sci 44:236–251

    Article  CAS  Google Scholar 

  150. Svensson L, Sekwati Monang B, Lopez-Lutz D, Schieber A, Gänzle MG (2010) Phenolic acids and flavonoids in non-fermented and fermented red sorghum (Sorghum bicolor (L.) Moench). J Agric Food Chem 58:9214–9220

    Article  CAS  Google Scholar 

  151. Rodriguez H, Curiel JA, Landete JM, de las Rivas B, de Felipe FL, Gómez-Cordovés C, Mancheno JM, Munoz R (2009) Food phenolics and lactic acid bacteria. Int J Food Microbiol 132:79–90

    Article  CAS  Google Scholar 

  152. Marazza JA, Garro MS, de Giori GS (2009) Aglycone production by Lactobacillus rhamnosus CRL981 during soymilk fermentation. Food Microbiol 26:333–339

    Article  CAS  Google Scholar 

  153. Avila M, Jaquet M, Moine D, Requena T, Pelaez C, Arigoni F, Jankovic J (2009) Physiological and biochemical characterization of the two α-L-rhamnosidases of Lactobacillus plantarum NCC245. Microbiology 155:2739–2749

    Article  CAS  Google Scholar 

  154. Curiel JA, Rodriguez H, Acebron I, Mancheno JM, delas Rivas B, Munoz R (2009) Pdoruction and physiochemical properties of recombinant Lactobacillus plantarum tannase. J Agric Food Chem 57:6224–6230

    Article  CAS  Google Scholar 

  155. De las Rivas B, Rodriguez H, Curiel JA, Landete JM, Munoz R (2009) Meolcular screening of wine lactic acid bacteria degrading hydroxycinnamic acids. J Agric Food Chem 57:490–494

    Article  Google Scholar 

  156. Van Beek S, Priest FG (2000) Decarboxylation of substituted cinnamic acids by lactic acid bacteria isolated during malt whisky fermentation. Appl Environ Microbiol 66:5322–5328

    Article  Google Scholar 

  157. Sanchez-Maldonado AF, Schieber A, Gänzle MG (2011) Structure-function relationships of the antibacterial activity of phenolic acids and their metabolism by lactic acid bacteria. J Appl Microbiol 111:1176–1184

    Article  CAS  Google Scholar 

  158. Campos FM, Couto JA, Figueiredo AR, Toth IV, Rangel AOSS, Hogg T (2009) Cell membrane damage induced by phenolic acids on wine lactic acid bacteria. Int J Food Microbiol 135:144–151

    Article  CAS  Google Scholar 

  159. Moroni AV, Dal Bello F, Arendt EK (2009) Sourdough in gluten-free bread-making: an acient technology to solve a novel issue? Food Microbiol 26:676–684

    Article  CAS  Google Scholar 

  160. Elshof MBW, Veldink GA, Vliegenthart JFG (1998) Biocatalytic hydroxylation of linoleic acid in a double-fed batch system with lipoxygenase and cysteine. Fett-Lipid 246251

    Google Scholar 

  161. Fuqua C, Winans SC, Greenberg EP (1996) Census and consensus in bacterial ecosystems: the LuxR-LuxI family of quorum-sensing transcriptional regulators. Ann Rev Microbiol 50:727–751

    Article  CAS  Google Scholar 

  162. Fuqua C, Parsek MR, Greenberg EP (2001) Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Ann Rev Genet 35:439–68

    Article  CAS  Google Scholar 

  163. Nakayama J, Cao Y, Horii T, Sakuda S, Akkermans AD, de Vos WM, Nagasawa H (2001) Gelatinase biosynthesis-activating pheromone: a peptide lactone that mediates a quorum sensing in Enterococcus faecalis. Mol Microbiol 41:145–154

    Article  CAS  Google Scholar 

  164. Gobbetti M, De Angelis M, Di Cagno R, Minervini F, Limitone A (2007) Cell–cell ­communication in food related bacteria. Int J Food Microbiol 120:34–45

    Article  CAS  Google Scholar 

  165. Di Cagno R, De Angelis M, Limitone A, Minervini F, Simonetti MC, Buchin S, Gobbetti M (2007) Cell-cell communication in sourdough lactic acid bacteria: a protomic study in Lactobacillus sanfranciscensis CB1. Proteomics 7:2430–2446

    Article  Google Scholar 

  166. Di Cagno R, De Angelis M, Coda R, Gobbetti M (2009) Molecular adaptation of sourdough Lactobacillus plantarum DC400 under co-cultivation with other lactobacilli. Res Microbiol 20:1–9

    Google Scholar 

  167. Di Cagno R, De Angelis M, Calasso M, Vicentini O, Vernocchi P, Ndagijimana M, De Vincenzi M, Dessì MR, Guerzoni ME, Gobbetti M (2010) Quorum sensing in sourdough Lactobacillus plantarum DC400: induction of plantaricin A (PlnA) under co-cultivation with other lactic acid bacteria and effect of PlnA on bacterial and Caco-2 cells. Proteomics 10:2175–2190

    Article  Google Scholar 

  168. Siragusa S, Di Cagno R, Ercolini D, Minervini F, Gobbetti M (2009) Taxonomic structure and monitoring of the dominant population of lactic acid bacteria during wheat flour sourdough type I propagation using Lactobacillus sanfranciscensis starters. Appl Environ Microbiol 75:1099–1109

    Article  CAS  Google Scholar 

  169. Gobbetti M, De Angelis M, Di Cagno R, Rizzello CG (2007) The relative contributions of starter cultures and non-starter bacteria to the flavour of chees. In: Weimer BC (ed) Improving the flavour of cheese. Woodhead publishing limited, Cambridge, England, pp 121–156

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Gänzle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gänzle, M., Gobbetti, M. (2013). Physiology and Biochemistry of Lactic Acid Bacteria. In: Gobbetti, M., Gänzle, M. (eds) Handbook on Sourdough Biotechnology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5425-0_7

Download citation

Publish with us

Policies and ethics