Skip to main content
Log in

Exploitation of genetically modified inoculants for industrial ecology applications

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The major growth seen in the biotechnology industry in recent decades has largely been driven by the exploitation of genetic engineering techniques. The initial benefits have been predominantly in the biomedical area, with products such as vaccines and hormones that have received broad public approval. In the environmental biotechnology and industrial ecology sectors, biotechnology has the potential to make significant advances through the use of genetically modified (GM) microbial inoculants that can reduce agri-chemical usage or remediate polluted environments. Although many GM inoculants have been developed and tested under laboratory conditions, commercial exploitation has lagged behind. Here, we review scientific and regulatory requirements that must be satisfied as part of that exploitation process. Particular attention is paid to new European Union (EU) regulations (Directives) that govern the testing and release of genetically modified organisms and microbial plant protection inoculants in the EU. With regard to the release of GM inoculants, the impact of the inoculant and the fate of modified genes are important concerns. Long term monitoring of release sites is necessary to address these issues. Data are reported from the monitoring of a site 6 years after release of GM Sinorhizobium meliloti strains. It was found that despite the absence of a host plant, the GM strains persisted in the soil for at least 6 years. Horizontal transfer and microevolution of a GM plasmid between S. meliloti strains was also observed. These data illustrate the importance of assessing the long-term persistence of GM inoculants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aarons S, Abbas A, Adams C, Fenton A & O'Gara F (2000) A regulatory RNA (PrrB RNA) modulates expression of secondary metabolite genes in Pseudomonas fluorescens F113. J. Bacteriol. 182: 3913–3919.

    Article  PubMed  CAS  Google Scholar 

  • Bloemberg GV & Lugtenberg BJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr. Opin. Plant. Biol. 4: 343–350.

    Article  PubMed  CAS  Google Scholar 

  • de Lipthay JR, Barkay T & Sorensen SJ (2001) Enhanced degradation of phenoxyacetic acid in soil by horizontal transfer of the tfdA gene encoding a 2,4-dichlorophenoxyacetic acid dioxygenase. FEMS Microbiol. Ecol. 35: 75–84.

    PubMed  CAS  Google Scholar 

  • de Leij FAAM, Sutton EJ, Whipps JM, Fenlon JS & Lynch JM (1995) Impact of field release of genetically modified Pseudomonas fluorescens on indigenous microbial populations of wheat. Appl. Environ. Microbiol. 61: 3443–3453.

    PubMed  CAS  Google Scholar 

  • de Lorenzo V (2001) The potential for genetically modified bacteria to break down toxic pollutants in the environment. EMBO Reports 2: 357–359.

    PubMed  CAS  Google Scholar 

  • Delany I, Sheehan MM, Fenton A, Bardin S, Aarons S & O'Gara F (2000) Regulation of production of the antifungal metabolite 2,4-diacetylphloroglucinol in Pseudomonas fluorescens F113: genetic analysis of phlF as a transcriptional repressor. Microbiology 146: 537–543.

    PubMed  CAS  Google Scholar 

  • DiGiovanni GD, Neilson JW, Pepper IL & Sinclair NA (1996) Gene transfer of Alcaligenes eutrophus JMP134 plasmid pJP4 to indigenous soil recipients. Appl. Environ. Microbiol. 62: 2521–2526.

    PubMed  CAS  Google Scholar 

  • Droge M, Pühler A & Selbitschka W (1998) Horizontal gene transfer as a biosafety issue: a natural phenomenon of public concern. J. Biotechnol. 64: 75–90.

    Article  PubMed  CAS  Google Scholar 

  • Gadd GM (2000) Bioremedial potential of microbial mechanisms of metal mobilization and immobilization. Curr. Opin. Biotechnol. 11: 271–279.

    Article  PubMed  CAS  Google Scholar 

  • Geniaux E & Amarger N (1993) Diversity and stability of plasmid transfer in isolates from a single field population of Rhizobium leguminosarum bv. viceae. FEMS Microbiol. Ecol. 102: 251–260.

    Article  CAS  Google Scholar 

  • Gilbert GS, Parke JL, Clayton MK & Handelsman J (1993) Effects of an introduced bacterium on bacterial communities on roots. Ecology 74: 840–854.

    Article  Google Scholar 

  • Glandorf DC, Verheggen P, Jansen T, Jorritsma JW, Smit E, Leeflang P, Wernars K, Thomashow LS, Laureijs E, Thomas-Oates JE, Bakker PA & van Loon LC (2001) Effect of genetically modified Pseudomonas putida WCS358r on the fungal rhizosphere microflora of field-grown wheat. Appl. Environ. Microbiol. 67: 3371–3378.

    Article  PubMed  CAS  Google Scholar 

  • Haas D, Blumer C & Keel C (2000) Biocontrol ability of fluorescent pseudomonads genetically dissected: importance of positive feedback regulation. Curr. Opin. Biotechnol. 11: 290–297.

    Article  PubMed  CAS  Google Scholar 

  • Herrick JB, Stuart-Keil KG, Ghiorse WC & Madsen EL (1997) Natural horizontal transfer of a naphthalene dioxygenase gene between bacteria native to a coal tar-contaminated field site. Appl. Environ. Microbiol. 63: 2330–2337.

    PubMed  CAS  Google Scholar 

  • Hirsch PR (1996) Population dynamics of indigenous and genetically modified rhizobia in the field. New Phytol. 133: 159–171.

    Article  Google Scholar 

  • Lottmann J, Heuer H, de Vries J, Mahn A, Düring K, Wackernagel W, Smalla K & Berg G (2000) Establishment of introduced antagonistic bacteria in the rhizosphere of transgenic potatoes and their effect on the bacterial community. FEMS Microbiol. Ecol. 33: 41–49.

    Article  PubMed  Google Scholar 

  • Mahaffee WF & Kloepper JW (1997) Bacterial communities of the rhizosphere and endorhiza associated with field-grown cucumber plants inoculated with a plant growth-promoting rhizobacterium or its genetically modified derivative. Can. J. Microbiol. 43: 344–353.

    Article  PubMed  CAS  Google Scholar 

  • Moënne-Loccoz Y, Tichy H-V, O'Donnell A, Simon R & O'Gara F (2001) Impact of 2,4-diacetylphloroglucinol-producing biocontrol strain Pseudomonas fluorescens F113 on intraspecific diversity of resident culturable fluorescent pseudomonads associated with the root of field-grown sugarbeet seedlings. Appl. Environ. Microbiol. 67: 3418–3425.

    Article  PubMed  Google Scholar 

  • Naseby DC, Moënne-Loccoz Y, Powell J, O'Gara F & Lynch JM (1998) Soil enzyme activities in the rhizosphere of field-grown sugar beet inoculated with the biocontrol agent Pseudomonas fluorescens F113. Biol. Fertil. Soils 27: 39–43.

    Article  CAS  Google Scholar 

  • Natsch A, Keel C, Hebecker N, Laasik E & Défago G (1997) Influence of the biocontrol strain of Pseudomonas fluorescens and its antibiotic overproducing derivative on the diversity of resident root colonizing pseudomonads. FEMS Microbiol. Ecol. 23: 341–352.

    Article  CAS  Google Scholar 

  • O'Flaherty S, Moënne-Loccoz Y, Boesten B, Higgins P, Dowling DN, Condon S & O'Gara F (1995) Greenhouse and field evaluations of an autoselective system based on an essential thymidylate synthase gene for improved maintenance of plasmid vectors in modified Rhizobium meliloti. Appl. Environ. Microbiol. 61: 4051–4056.

    PubMed  Google Scholar 

  • Pieper DH & Reineke W(2000) Engineering bacteria for bioremediation. Curr. Opin. Biotechnol. 11: 262–270.

    Article  PubMed  CAS  Google Scholar 

  • Poelarends GJ, Kulakov LA, Larkin MJ, van Hylckama Vlieg JE & Janssen DB (2000) Roles of horizontal gene transfer and gene integration in evolution of 1,3-dichloropropene-and 1,2-dibromoethane-degradative pathways. J. Bacteriol. 182: 2191–2199.

    Article  PubMed  CAS  Google Scholar 

  • Ripp S, Nivens DE, Ahn Y, Werner C, Jarrell J, Easter JP, Cox CD, Burlage RS & Sayler GS (2000) Controlled field release of a genetically engineered microorganism for bioremediation process monitoring and control. Environ. Sci. Technol. 34: 846–853.

    Article  CAS  Google Scholar 

  • Robleto EA, Borneman J & Triplett EW (1998) Effects of bacterial antibiotic production on rhizosphere microbial communities from a culture-independent perspective. Appl. Environ. Microbiol. 64: 5020–5022.

    PubMed  CAS  Google Scholar 

  • Sayler GS & Ripp S (2000) Field applications of genetically engineered microorganisms for bioremediation processes. Curr. Opin. Biotechnol. 11: 286–289.

    Article  PubMed  CAS  Google Scholar 

  • Schofield PR, Gibson AH, Dudman WF & Watson JM (1987) Evidence for genetic exchange and recombination of Rhizobium symbiotic plasmids in a soil population. Appl. Environ. Microbiol. 53: 2942–2947.

    PubMed  Google Scholar 

  • Steenhoudt O & Vanderleyden J (2000) Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol. Rev. 24: 487–506.

    Article  PubMed  CAS  Google Scholar 

  • Timmis KN & Pieper DH (1999) Bacteria designed for bioremediation. Trends Biotechnol. 17: 200–204.

    Article  PubMed  CAS  Google Scholar 

  • Top EM, Van Daele P, De Saeyer N & Forney LJ (1998) Enhancement of 2,4-dichlorophenoxyacetic acid (2,4-D) degradation in soil by dissemination of catabolic plasmids. Antonie Van Leeuwenhoek 73: 87–94.

    Article  PubMed  CAS  Google Scholar 

  • van Overbeek LS, van Veen JA & van Elsas JD (1997) Induced reporter activity, enhanced stress resistance, and competitive ability of a genetically modified Pseudomonas fluorescens strain released into a field planted with wheat. Appl. Environ. Microbiol. 63: 1965–1973.

    PubMed  CAS  Google Scholar 

  • van Veen JA, van Overbeek LS & van Elsas JD (1997) Fate and activity of microorganisms introduced into soil. Microbiol. Mol. Biol. Rev. 61: 121–135.

    PubMed  CAS  Google Scholar 

  • Vance CP (2001) Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world of declining renewable resources. Plant Physiol. 127: 390–397.

    Article  PubMed  CAS  Google Scholar 

  • Walsh UF, Morrissey JP & O'Gara F (2001) Pseudomonas for biocontrol of phytopathogens: from functional genomics to commercial exploitation. Curr. Opin. Biotechnol. 12: 289–295.

    Article  PubMed  CAS  Google Scholar 

  • Ye X, Al-Babili S, Kloti A, Zhang J, Lucca P, Beyer P & Potrykus I (2000) Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287: 303–305.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fergal O'Gara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morrissey, J.P., Walsh, U.F., O'Donnell, A. et al. Exploitation of genetically modified inoculants for industrial ecology applications. Antonie Van Leeuwenhoek 81, 599–606 (2002). https://doi.org/10.1023/A:1020522025374

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020522025374

Navigation