Skip to main content

Bioremediation and Genetically Modified Organisms

  • Chapter
  • First Online:
Fungi as Bioremediators

Part of the book series: Soil Biology ((SOILBIOL,volume 32))

Abstract

Progressive advances in biotechnology and molecular biology have allowed using the new methods for decontamination and promising an improved substitute for ineffective and costly physicochemical remediation methods. Genetic engineering techniques make the combination of several metabolic aptitudes within microorganisms and plants for impressive degradation of hazardous environmental pollutants. In particular, the engineering and environmental release of genetically modified microorganisms has run into both technical and ethical obstacles, leading to severe constraints for their effective application in pollutant sites. In contrast, phytoremediation by genetically engineered plants for removal of xenobiotics can be an alternate/supplementary method. They may be seen as more environmentally friendly, since these bioremediators will not be intended as human or animal foods, so that food safety, allergenicity, and labeling are not relevant issues. In addition, their solidarity with rhizospheric microorganisms such as mycorrhizal fungi for removing or degrading toxic pollutants and for enhancing the availability of recalcitrant pollutants can open new vistas for getting rid of human from such own-born disasters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abhilash PC, Jamil S, Singh N (2009) Transgenic plants for enhanced biodegradation and phytoremediation of organic xenobiotics. Biotechnol Adv 27:474–488

    Article  PubMed  CAS  Google Scholar 

  • Aken BV (2008) Transgenic plants for phytoremediation: helping nature to clean up environmental pollution. Trends Biotechnol 26:225–227

    Article  PubMed  Google Scholar 

  • Alkorta I, Hernández-Allica J, Becerril JM, Amezaga I, Albizu I, Garbisu C (2004) Recent findings on the phytoremediation of soils contaminated with environmentally toxic heavy metals and metalloids such as zinc, cadmium, lead and arsenic. Rev Environ Sci Biotechnol 3:71–90

    Article  CAS  Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements – a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Banuelos G, Terry N, LeDuc DL, Pilon-Smits EH, Mackey B (2005) Field trial of transgenic Indian mustard plants shows enhanced phytoremediation of selenium-contaminated sediment. Environ Sci Technol 39:1771–1777

    Article  PubMed  CAS  Google Scholar 

  • Bennett LE, Burkhead JL, Hale KL, Terry N, Pilon M, Pilon-Smits EA (2003) Analysis of transgenic Indian mustard plants for phytoremediation of metal-contaminated mine tailings. J Environ Qual 32:432–440

    PubMed  CAS  Google Scholar 

  • Birren B, Fink G, Lander E (2003) Fungal genome initiative: a white paper for fungal comparative genomics. Center for Genome Research, Cambridge, MA

    Google Scholar 

  • Bosma T, Kruzinga E, Bruin EJD, Poelarends GJ, Janssen DB (1999) Utilization of trihalogenated propanes by Agrobacterium radiobacter AD1 through heterologous expression of the haloalkane dehalogenase from Rhodococcus sp. strain M15-3. Appl Environ Microbiol 65:4575–4581

    PubMed  CAS  Google Scholar 

  • Bruhlmann F, Chen W (1999) Tuning biphenyl dioxygenase for extended substrate specificity. Biotechnol Bioeng 63:544–551

    Article  PubMed  CAS  Google Scholar 

  • Chatthai M, Kaukinen KH, Tranbarger TJ, Gupta PK, Misra S (1997) The isolation of a novel metallothionein related cDNA expressed in somatic and zygotic embryos of Douglas fir: regulation of ABA, osmoticum and metal ions. Plant Mol Biol 34:243–254

    Article  PubMed  CAS  Google Scholar 

  • Cherian S, Oliveira MM (2005) Transgenic plants in phytoremediation: recent advances and new possibilities. Environ Sci Technol 39:9377–9390

    Article  PubMed  CAS  Google Scholar 

  • Clemens S, Palmgren M, Kraemer U (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7:309–315

    Article  PubMed  CAS  Google Scholar 

  • Cobbett CS (2000) Phytochelatins and their role in heavy metal detoxification. Plant Physiol 125:825–832

    Article  Google Scholar 

  • Crameri A, Dawes G, Rodriguez E, Silver S, Stemmer WP (1997) Molecular evolution of an arsenate detoxification pathway by DNA shuffling. Nat Biotechnol 15:436–438

    Article  PubMed  CAS  Google Scholar 

  • Davison J (2005) Risk mitigation of genetically modified bacteria and plants designed for bioremediation. J Ind Microbiol Biotechnol 32:639–650

    Article  PubMed  CAS  Google Scholar 

  • Doty SL (2008) Enhancing phytoremediation through the use of transgenic plants and entophytes. New Phytol 179:318–333

    Article  PubMed  CAS  Google Scholar 

  • Doty SL, Shang QT, Wilson AM, Moore AL, Newman LA, Strand SE, Gordon MP (2000) Enhanced metabolism of halogenated hydrocarbons in transgenic plants contain mammalian P450 2E1. Proc Natal Acad Sci USA 97:6287–6291

    Article  CAS  Google Scholar 

  • Dua M, Singh A, Sethunathan N, Johri AK (2002) Biotechnology and bioremediation: successes and limitations. Appl Microbiol Biotechnol 59:143–152

    Article  PubMed  CAS  Google Scholar 

  • Dujon B (1996) The yeast genome project: What did we learn? Trends Genet 12:263–270

    Article  PubMed  CAS  Google Scholar 

  • Eapen S, Singh S, D’Souza SF (2007) Advances in development of transgenic plants for remediation of xenobiotic pollutants. Biotechnol Adv 25:442–451

    Article  PubMed  CAS  Google Scholar 

  • Evans KM, Gatehouse JA, Lindsay WP, Shi J, Tommey AM, Robinson NJ (1992) Expression of the pea metallothionein like gene Ps MTA in Escherichia coli and Arabidopsis thaliana and analysis of trace metal ion accumulation:implications of Ps MTA function. Plant Mol Biol 20:1019–1028

    Article  PubMed  CAS  Google Scholar 

  • French CJ, Rosser SJ, Davies GJ, Nicklin S, Bruce NC (1999) Biodegradation of explosives by transgenic plants expressing pentaerythritol tetranitrate reductase. Nat Biotechnol 17:491–494

    Article  PubMed  CAS  Google Scholar 

  • Furukawa K, Hirose J, Hayashida S, Nakamura K (1994) Efficient degradation of trichloroethylene by a hybrid aromatic ring dioxygenase. J Bacteriol 176:2121–2123

    PubMed  CAS  Google Scholar 

  • Gadd GM (2007) Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res 11:3–49

    Article  Google Scholar 

  • Galagan JE, Calvo SE, Borkovich KA et al (2003) The genome sequence of the filamentous fungus Neurospora crassa. Nature 422:859–868

    Article  PubMed  CAS  Google Scholar 

  • Gallardo ME, Ferrandez A, de Lorenzo V, Garcia JL, Diaz E (1997) Designing recombinant Pseudomonas strains to enhance biodesulfurization. J Bacteriol 179:7156–7160

    PubMed  CAS  Google Scholar 

  • Gandia-Herrero F, Lorenz A, Larson T, Graham IA, Bowles J, Rylott EL (2008) Detoxification of the explosive 2,4,6- trinitrotoluene in Arabidopsis: discovery of bi-functional O and C-glucosyltransferases. Plant J 56:963–974

    Article  PubMed  CAS  Google Scholar 

  • Gao D, Du L, Yang J, Wu WM, Liang H (2010) A critical review of the application of white rot fungus to environmental pollution control. Crit Rev Biotechnol 30:70–77

    Article  PubMed  CAS  Google Scholar 

  • Garbisu C, Hernandez-Allica J, Barrutia O, Alkorta I, Becerril JM (2002) Phytoremediation: a technology using green plants to remove contaminants from polluted areas. Rev Environ Health 17:173–188

    Article  PubMed  CAS  Google Scholar 

  • Gisbert C, Ros R, De Haro A, Walker DJ, Pilar Bernal M, Serrano R (2003) A plant genetically modified that accumulates Pb is especially promising for phytoremediation. Biochem Biophys Res Commun 303:440–445

    Article  PubMed  CAS  Google Scholar 

  • Gressel J, Al-Ahmad H (2005) Assessing and managing biological risks of plants used for bioremediation, including risks of transgene flow. Z Naturforsch C 60:154–165

    PubMed  CAS  Google Scholar 

  • Guerinot ML (2000) The ZIP family of metal transporters. Biochim Biophys Acta 1465:190–198

    Article  PubMed  CAS  Google Scholar 

  • Hannink N, Rosser SJ, French CE, Basran A, Murray JAH, Nicklin S, Bruce NC (2001) Phytodetoxification of TNT by transgenic plants expressing a bacterial nitroreductase. Nat Biotechnol 19:1168–1172

    Article  PubMed  CAS  Google Scholar 

  • Hannink NK, Rosser SJ, Bruce NC (2002) Phytoremediation of explosives. CRC Crit Rev Plant Sci 21:511–538

    Article  CAS  Google Scholar 

  • Hannink NK, Subramanian M, Rosser SJ, Basran A, Murray JAH, Shanks JV, Bruce NC (2007) Enhanced transformation of TNT by tobacco plants expressing a bacterial nitroreductase. Int J Phytoremediation 9:385–401

    Article  PubMed  CAS  Google Scholar 

  • Harayama S (1998) Artificial evolution by DNA shuffling. Trends Biotechnol 16:76–82

    Article  PubMed  CAS  Google Scholar 

  • Harbhajan S (2006) Mycoremediation: fungal bioremediation. Wiley, Hoboken, NJ, pp 1–592

    Google Scholar 

  • Hirschi KD, Korenkov V, Wilganowski N, Wagner G (2000) Expression of Arabidopsis CAX2 in tobacco: altered metal accumulation and increased manganese tolerance. Plant Physiol 124:125–133

    Article  PubMed  CAS  Google Scholar 

  • Holmes A, Govan J, Goldstein R (1998) Agricultural use of Burkholderia (Pseudomonas) epacia: a threat to human health? Emerg Infect Dis 4:221–227

    Article  PubMed  CAS  Google Scholar 

  • Hsieh JL, Chen CY, Chiu MH, Chein MF, Chang JS, Endo G, Huang CC (2009) Expressing a bacterial mercuric ion binding protein in plant for phytoremediation of heavy metals. J Hazard Mater 161:920–925

    Article  PubMed  CAS  Google Scholar 

  • Iimura Y, Ikeda S, Sonoki T, Hayakawa T, Kajita S, Kimbara K, Tatsumi K, Katayama Y (2002) Expression of a gene for Mn peroxidase from Coriolus versicolor in transgenic tobacco generates potential tools for phytoremediation. Appl Microbiol Biotechnol 59:246–251

    Article  PubMed  CAS  Google Scholar 

  • Inui H, Ohkawa H (2005) Herbicide resistance in transgenic plants with mammalian P450 monooxygenase genes. Pest Manag Sci 61:286–291

    Article  PubMed  CAS  Google Scholar 

  • Iwamoto T, Nasu M (2001) Current bioremediation practice and perspective. J Biosci Bioeng 92:1–8

    PubMed  CAS  Google Scholar 

  • Jackson EG, Rylott EL, Fournier D, Hawari J, Bruce NC (2007) Exploring the biochemical properties and remediation applications of the unusual explosive-degrading P450 system XplA/B. Proc Natl Acad Sci USA 104:16822–16827

    Article  PubMed  CAS  Google Scholar 

  • Karavangeli M, Labrou NE, Clonis YD, Tsaftaris A (2005) Development of transgenic tobacco plants overexpressing maize glutathione S-transferase I for chloroacetanilide herbicides phytoremediation. Biomol Eng 22:121–128

    Article  PubMed  CAS  Google Scholar 

  • Kawahigashi H (2009) Transgenic plants for phytoremediation of herbicides. Curr Opin Biotechnol 20:225–230

    Article  PubMed  CAS  Google Scholar 

  • Kawahigashi H, Hirose S, Inui H, Ohkawa H, Ohkawa Y (2005) Enhanced herbicide cross-tolerance in transgenic rice plants coexpressing human CYP1A1, CYP2B6, and CYP2C19. Plant Sci 168:773–781

    Article  CAS  Google Scholar 

  • Kawahigashi H, Hirose S, Ohkawa H, Ohkawa Y (2006) Phytoremediation of herbicide atrazine and metolachlor by transgenic rice plants expressing human CYP1A1, CYP2B6 and CYP2C19. J Agric Food Chem 54:2985–2991

    Article  PubMed  CAS  Google Scholar 

  • Kawahigashi H, Hirose S, Ohkawa H, Ohkawa Y (2008) Transgenic rice plants expressing human P450 genes involved in xenobiotic metabolism for phytoremediation. J Mol Microbiol Biotechnol 15:212–219

    Article  PubMed  CAS  Google Scholar 

  • Kimura N, Nishi A, Goto M, Furukawa K (1997) Functional analyses of a variety of chimeric dioxygenases constructed from two biphenyl dioxygenases that are similar structurally but different functionally. J Bacteriol 179:3936–3943

    PubMed  CAS  Google Scholar 

  • Kotrba P, Najmanova J, Macek T, Ruml T, Mackova M (2009) Genetically modified plants in phytoremediation of heavy metal and metalloid soil and sediment pollution. Biotechnol Adv 27:799–810

    Article  PubMed  CAS  Google Scholar 

  • Kramer U (2005) Phytoremediation: novel approaches to cleaning up polluted soils. Curr Opin Biotechnol 16:133–141

    Article  PubMed  Google Scholar 

  • Kumamaru T, Suenaga H, Mitsuoka M, Watanabe T, Furukawa H (1998) Enhanced degradation of polychlorinated biphenyls by directed evolution of biphenyl dioxygenase. Nat Biotechnol 16:663–666

    Article  PubMed  CAS  Google Scholar 

  • Kurumata M, Takahashi M, Sakamoto A, Ramos JL, Nepovim A, Vanek T, Hirata T, Morikawa H (2005) Tolerance to, and uptake and degradation of 2,4,6-trinitrotoluene (TNT) are enhanced by the expression of a bacterial nitroreductase gene in Arabidopsis thaliana. Z Naturforsch C 60:272–278

    PubMed  CAS  Google Scholar 

  • Lan WS, Gu JD, Zhang JL, Shen BC, Jiang H, Mulchandani A, Chen W, Qiao CL (2006) Coexpression of two detoxifying pesticide-degrading enzymes in a genetically engineered bacterium. Int Biodeterior Biodegrad 58:70–76

    Article  CAS  Google Scholar 

  • Macek T, Kotrba P, Svatos A, Novakova M, Demnerova K, Mackova M (2008) Novel roles for genetically modified plants in environmental protection. Trends Biotechnol 26:146–152

    Article  PubMed  CAS  Google Scholar 

  • Martinez M, Bernal P, Almela C, Velez D, Garcia-Agustin P, Serrano R (2006) An engineered plant that accumulates higher levels of heavy metals than Thlaspi caerulescens, with yields of 100 times more biomass in mine soils. Chemosphere 64:478–485

    Article  PubMed  CAS  Google Scholar 

  • Menn FM, Easter JP, Sayler GS (2008) Genetically engineered microorganisms and bioremediation. In: Rehm HJ, Reed B (eds) Biotechnology set. Wiley, Hoboken, NJ, pp 441–463

    Google Scholar 

  • Misra S, Gedamu L (1989) Heavy metal tolerant transgenic Brassica napus L. and Nicotiana tabacum L. plants. Theor Appl Genet 78:161–168

    Article  CAS  Google Scholar 

  • Nam JM, Fujita Y, Arai T, Kondo A, Morikawa Y, Okada H, Ueda M, Tanaka A (2002) Construction of engineered yeast with the ability of binding to cellulose. J Mol Catal B Enzym 17:197–202

    Article  CAS  Google Scholar 

  • Obire OE, Anyanwu C, Okigbo RN (2008) Saprophytic and crude oil-degrading fungi from cow dung and poultry droppings as bioremediating agents. Int J Agric Technol 4:81–89

    Google Scholar 

  • Pandey G, Paul D, Jain RK (2005) Conceptualizing “suicidal genetically engineered microorganisms” for bioremediation applications. Biochem Biophys Res Commun 327:637–639

    Article  PubMed  CAS  Google Scholar 

  • Parales RE, Haddock JD (2004) Biocatalytic degradation of pollutants. Curr Opin Biotechnol 15:374–379

    Article  PubMed  CAS  Google Scholar 

  • Parrilli E, Papa R, Tutino ML, Sannia G (2010) Engineering of a psychrophilic bacterium for the bioremediation of aromatic compounds. Bioeng Bugs 1:213–216

    Article  PubMed  Google Scholar 

  • Paul D, Pandey G, Pandey J, Jain RK (2005) Accessing microbial diversity for bioremediation and environmental restoration. Trends Biotechnol 23:135–142

    Article  PubMed  CAS  Google Scholar 

  • Pearce F (2003) Arsenics fatal legacy grows. New Sci 179:4–5

    Google Scholar 

  • Pieper DH, Reineke W (2000) Engineering bacteria for bioremediation. Curr Opin Biotechnol 11:262–270

    Article  PubMed  CAS  Google Scholar 

  • Pilon-Smits E, Pilon M (2002) Phytoremediation of metals using transgenic plants. Crit Rev Plant Sci 21:439–456

    Article  CAS  Google Scholar 

  • Ramos JL, Gonzalez-Perez MM, Caballero A, van Dillewijn P (2005) Bioremediation of polynitrated aromatic compounds: plants and microbes put up a fight. Curr Opin Biotechnol 16:275–281

    Article  PubMed  CAS  Google Scholar 

  • Rosser SJ, French CE, Bruce NC (2001) Engineering plants for the phytoremediation of explosives. In Vitro Cell Dev Biol Plant 37:330–333

    CAS  Google Scholar 

  • Rugh CL, Wilde D, Stack NM, Thompson DM, Summer AO, Meagher RB (1996) Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene. Proc Natl Acad Sci USA 93:3182–3187

    Article  PubMed  CAS  Google Scholar 

  • Rylott EL, Bruce NC (2009) Plants disarm soil: engineering plants for the phytoremediation of explosives. Trends Biotechnol 27:73–81

    Article  PubMed  CAS  Google Scholar 

  • Rylott EL, Jackson RG, Edwards J, Womack GL, Seth-Smith HMB, Rathbone DA, Strand SE, Bruce NC (2006) An explosive-degrading cytochrome P450 activity and its targeted application for the phytoremediation of RDX. Nat Biotechnol 24:216–219

    Article  PubMed  CAS  Google Scholar 

  • Samanta SK, Singh OV, Jain RK (2002) Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends Biotechnol 20:243–248

    Article  PubMed  CAS  Google Scholar 

  • Sayler GS, Sayre P (1995) Risk assessment for recombination Pseudomonas released into the environment for hazardous waste degradation. In: Bioremediation: The Tokyo ‘94 Workshop. OECD Documents, Paris, pp 263–272

    Google Scholar 

  • Schanstra JP, Ridder IS, Heimeriks GJ, Rink R, Poelarends GJ, Kalk KH, Dijkstra BW, Janssen DB (1996) Kinetics of halide release of haloalkane dehalogenase with higher catalytic activity and modified substrate range. Biochemistry 35:13186–13195

    Article  PubMed  CAS  Google Scholar 

  • Seth-Smith HMB, Rosser SJ, Basran A, Travis ER, Dabbs ER, Nicklin S, Bruce NC (2002) Cloning, sequencing, and characterization of the hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine degradation gene cluster from Rhodococcus rhodochrous. Appl Environ Microbiol 68:4764–4771

    Article  PubMed  CAS  Google Scholar 

  • Singh OV, Ghai S, Paul D, Jain RK (2006) Genetically modified crops: success, safety assessment, and public concern. Appl Microbiol Biotechnol 71:598–607

    Article  PubMed  CAS  Google Scholar 

  • Singh A, Kuhad RC, Ward OP (2009) Biological remediation of soil: an overview of global market and available technologies. In: Singh A et al (eds) Advances in applied bioremediation. Springer, Heidelberg, pp 1–19

    Chapter  Google Scholar 

  • Sitohy MZ, Rashad MM, Sharobeem SF, Mahmoud AE, Nooman MU, Al Kashef AS (2010) Bioconversion of soy processing waste for production of surfactants. Afr J Microbiol Re 4:2811–2821

    CAS  Google Scholar 

  • Stefanov I, Frank J, Gedamu L, Mishra S (1997) Effect of cadmium treatment on the expression of chimeric genes in transgenic seedlings and calli. Plant Cell Rep 16:291–294

    CAS  Google Scholar 

  • Stratford J, Wright MA, Reineke W, Mokross H, Havel J, Knowles CJ, Robinson GK (1996) Influence of chlorobenzoates on the utilisation of chlorobiphenyls and chlorobenzoate mixtures by chlorobiphenyl/chlorobenzoate-mineralising hybrid bacterial strains. Arch Microbiol 165:213–218

    Article  PubMed  CAS  Google Scholar 

  • Sullivan ER (1998) Molecular genetics of biosurfactant production. Curr Opin Biotechnol 9:263–269

    Article  PubMed  CAS  Google Scholar 

  • Suresh B, Ravishankar GA (2004) Phytoremediation – a novel and promising approach for environmental clean-up. Crit Rev Biotechnol 24:97–124

    Article  PubMed  CAS  Google Scholar 

  • Talmage SS, Opresko DM, Maxwell CJ, Welsh CJ, Cretella FM, Reno PH, Daniel FB (1999) Nitroaromatic munitions compounds: environmental effects and screening values. Rev Environ Contam Toxicol 161:1–156

    PubMed  CAS  Google Scholar 

  • Timmis KN, Pieper DH (1999) Bacteria designed for bioremediation. Trends Biotechnol 17:201–204

    Article  CAS  Google Scholar 

  • Van Dillewijn P, Couselo JL, Corredoira E, Delgado E, Wittich RM, Ballester A (2008) Bioremediation of 2, 4, 6-trinitrotoluene by bacterial nitroreductase expressing transgenic aspen. Environ Sci Technol 42:7405–7410

    Article  PubMed  Google Scholar 

  • Wang L, Samac DA, Shapir N, Wackett LP, Vance CP, Olszewski NE, Sadowsky MJ (2005) Biodegradation of atrazine in transgenic plants expressing a modified bacterial atrazine chlorohydrolase (atzA) gene. Plant Biotechnol J 3:475–486

    Article  PubMed  CAS  Google Scholar 

  • Wood V, Gwilliam R, Rajandream MA et al (2002) The genome sequence of Schizosaccharomyces pombe. Nature 415:871–880

    Article  PubMed  CAS  Google Scholar 

  • Yang C, Song C, Mulchandani A, Qiao C (2010) Genetic engineering of Stenotrophomonas strain YC-1 to possess a broader substrate range for organophosphates. J Agric Food Chem 58:6762–6766

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Pilon-Smits EA, Tarun AS, Weber SU, Jouanin L, Terry N (1999a) Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing g-glutamylcysteine synthetase. Plant Physiol 121:1169–1177

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Pilon-Smits EAH, Jouanin L, Terry N (1999b) Overexpression of glutathione synthetase in Brassica juncea enhances cadmium tolerance and accumulation. Plant Physiol 119:73–79

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morad Jafari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jafari, M., Danesh, Y.R., Goltapeh, E.M., Varma, A. (2013). Bioremediation and Genetically Modified Organisms. In: Goltapeh, E., Danesh, Y., Varma, A. (eds) Fungi as Bioremediators. Soil Biology, vol 32. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33811-3_19

Download citation

Publish with us

Policies and ethics