Skip to main content

Microbial Biotechnology: A Key to Sustainable Agriculture

  • Chapter
  • First Online:
Phyto-Microbiome in Stress Regulation

Abstract

The exploitive and improper agricultural practices lead to degradative processes such as nutrient depletion, loss in soil fertility, and soil organic matter. These processes contribute to a serious decline in soil productivity. The degraded soils can be restored and rehabilitated by alternative agricultural practices such as use of potential microbial inoculants to provide favorable environment for optimum crop production and protection. The use of bioinoculant is one of the important components of integrated nutrient management as they facilitate a cost-effective renewable source of plant nutrients which supplement chemical fertilizers contributing to sustainable agriculture. Several microorganisms are currently being marketed commercially as biofertilizers for crop plants. Unfortunately, these microorganisms are not always as efficient in the field as they are in laboratory or greenhouse experiments. The use of microbial biotechnology has manipulated the microorganism at their genetic level which leads to increase in their survival and efficiency in soil. The genetically modified microorganisms can be used as potent bioinoculants in agriculture, but their undesirable effects and ethical implications still remain a major problem whether they should be accepted or not. The presence of antibiotic resistance gene, horizontal transfer of genes, and unstable vector in modified microorganism made them unsuitable for environmental application as these characteristics can get transferred to indigenous microorganisms which lead to mutations. More intense research is required to assess the stability of genetically modified microorganism and their effect on indigenous microflora. These studies can open the way to the production of more effective, stable, and reliable recombinant inoculants for maintaining sustainable agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abou-Shanab RA, Delorme TA, Angle JS, Chaney RL, Ghanem K, Moawad H, Ghozlan HA (2003) Phenotypic characterization of microbes in the rhizosphere of Alyssum murale. Int J Phytorem 5:367–379

    Article  CAS  Google Scholar 

  • Aguilar-Barajas PE, Cervantes C, Rensing C (2008) Expression of chromate resistance genes from Shewanella sp. strain ANA-3 in Escherichia coli Esther. FEMS Microbiol Lett 285:97–100

    Article  CAS  PubMed  Google Scholar 

  • Akada R, Shimizu Y, Matsushita Y, Kawahata M, Hoshida H, Nishizawa Y (2002) Use of a YAP1 overexpression cassette conferring specific resistance to cerulenin and cycloheximide as an efficient selectable marker in the yeast Saccharomyces cerevisiae. Yeast 19:17–28

    Article  CAS  PubMed  Google Scholar 

  • Andrews M, Hodge S, Raven JA (2010) Positive plant microbial interactions. Annals Appl Biol 157:317–320

    Article  Google Scholar 

  • Ayub ND, Tribelli PM, López NI (2009) Polyhydroxyalkanoates are essential for maintenance of redox state in the Antarctic bacterium Pseudomonas sp. 14-3 during low temperature adaptation. Extremophiles 13:59–66

    Article  CAS  PubMed  Google Scholar 

  • Babalola OO, Sanni AI, Odhiambo GD, Torto B (2007) Plant growth-promoting rhizobacteria do not pose any deleterious effect on cowpea and detectable amounts of ethylene are produced. World J Microbiol Biotechnol 23(6):747–752

    Article  Google Scholar 

  • Barac T, Taghavi S, Borremans B, Provoost A, Oeyen L, Colpaert JV, Vangronsveld J, van der Lelie D (2004) Engineered endophytic bacteria improve phytoremediation of water soluble, volatile, organic pollutants. Nat Biotechnol 22(5):583–588

    Article  CAS  PubMed  Google Scholar 

  • Barea JM, Azcón R, Azcón-Aguilar C (2004) Mycorrhizal fungi and plant growth promoting rhizobacteria. In: Varma A, Abbott L, Werner D, Hampp R (eds) Plant surface microbiology. Springer-Verlag, Heidelberg, pp 351–371

    Google Scholar 

  • Baudoin E, Lerner A, Mirza MS, Zemrany HE, Combaret CP, Jurkevich E, Spaepen S, Vanderleyden J, Nazaret S, Okon Y, Loccoz YM (2010) Effects of Azospirillum brasilense with genetically modified auxin biosynthesis gene ipdC upon the diversity of the indigenous microbiota of the wheat rhizosphere. Res Microbiol 161:219–226

    Article  CAS  PubMed  Google Scholar 

  • Bertrand H, Plassard C, Pinochet X, Touraine B, Normand P, Cleyet- Marel JC (2000) Stimulation of the ionic transport system in Brassica napus by a plant growth-promoting rhizobacterium (Achromobacter sp.). Can J Microbiol 46:229–236

    Article  CAS  PubMed  Google Scholar 

  • Bianco C, Defez R (2010) Improvement of phosphate solubilization and medicago plant yield by an indole-3-acetic acid-overproducing strain of Sinorhizobium meliloti. Appl Environ Microbiol 76(14):4626–4632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boldt TS, Sørensen J, Karlson U, Molin S, Ramos C (2004) Combined use of different Gfp reporters for monitoring single-cell activities of a genetically modified PCB degrader in the rhizosphere of alfalfa. FEMS Microbiol Ecol 48(2):139–148

    Article  CAS  PubMed  Google Scholar 

  • Bruto M, Combaret CP, Muller D, Loccoz YM (2009) Analysis of genes contributing to plant-beneficial functions in plant growth-promoting rhizobacteria and related Proteobacteria. Scientific Rep 4:6261

    Article  CAS  Google Scholar 

  • Carmen B, Roberto D (2012) Soil bacteria support and protect plants against abiotic stresses. Abiotic Stress Plants—Mech Adapt 7:144–170

    Google Scholar 

  • Chen H, Gao K, Kondorosi E, Kondorosi A, Rolfe BG (2005) Functional genomic analysis of global regulator NolR in Sinorhizobium meliloti. Am Phytopathol Soc 18(12):1340–1352

    CAS  Google Scholar 

  • Dale J W, Park SF (2007) Molecular genetics of bacteria. University of Surrey, pp. 137–244

    Google Scholar 

  • Dash HR, Das S (2012) Bioremediation of mercury and importance of bacterial mer genes. Int Biodeterior Biodegra 75:207–213

    Article  CAS  Google Scholar 

  • Davoud F, Naser A, Nemat SB, Bagher Y (2010) Cloning and characterization of a plasmid encoded ACC deaminase from an indigenous Pseudomonas fluorescens FY32. Curr Microbiol 61:37–43

    Article  CAS  Google Scholar 

  • Dzantor EK (2007) Phytoremediation: the state of rhizosphere ‘engineering’ for accelerated rhizodegradation of xenobiotic contaminants. J Chem Technol Biotechnol 82:228–232

    Article  CAS  Google Scholar 

  • EPA (1998) Final rule: Sinorhizobium meliloti strain RMBPC-2: significant new use rule. Fed Regist 63:29646–29648

    Google Scholar 

  • Filonov AE, Akhmetov LI, Puntus IF, ESikova TZ, Gafarov AB, Izmalkova TY, Sokolov SL, Kosheleva IA, Boronin AM (2005) The construction and monitoring of genetically tagged, plasmid-containing, naphthalene- degrading strains in soil. Microbiol 74(4):526–532

    Article  CAS  Google Scholar 

  • Germaine KJ, McGuinness M, Dowling DN (2013) Engineering of microbes for plant and soil systems. In: Gupta VK, Schmoll M, Mazutti MA, Maki M, Tuohy MG (eds) Applications of microbial engineering. CRC Press, Boca Raton, p 494

    Google Scholar 

  • Hedin LO, Brookshire ENJ, Menge DNL, Barron AR (2009) The nitrogen paradox in tropical forest ecosystems. Annual Rev Ecol Evol System 40:613–635

    Article  Google Scholar 

  • Igual JM, Valverde A, Cervantes E, Velázquez E (2001) Phosphate-solubilizing bacteria as inoculants for agriculture: use of updated molecular techniques in their study. Agronomie 21:561–568

    Article  Google Scholar 

  • Jin R, Yang H, Zhang A, Wang J, Liu G (2009) Bioaugmentation on decolorization of C.I. Direct Blue 71 using genetically engineered strain Escherichia coli JM109 (pGEX-AZR). J Hazard Mater 163(2–3):1123–1128

    Article  CAS  PubMed  Google Scholar 

  • Jones DA, Kerr A (1989) Agrobacterium radiobacter strain K1026, a genetically engineered derivative strain of strain K84, for biological control of crown gall. Pl Dis 73:15–18

    Article  Google Scholar 

  • Jones DA, Ryder MH, Clare BG, Farrand SK, Kerr A (1988) Construction of a Tra- deletion mutant of pAgK84 to safeguard the biological control of crown gall. Mol Gen Genet 212:207–214

    Article  CAS  Google Scholar 

  • Kasai Y, Kishira H, Harayama S (2002) Bacteria belonging to the genus Cycloclasticus play a primary role in the degradation of aromatic hydrocarbons released in a marine environment. Appl Environ Microbiol 68:5625–5633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumamaru T, Suenaga H, Mitsuoka H, Watannabe T, Furukawa H (1998) Enhanced degradation of polychlorinated biphenyls by direct evolution of biphenyl dioxygenase. Nat Biotechnol 16:663–666

    Article  CAS  PubMed  Google Scholar 

  • Lehrbach PR, Zeyer J, Reineke W, Knackmuss HJ, Timmis KN (1984) Enzyme recruitment in vitro: use of cloned gene to extend the range of haloaromatics degraded by Pseudomonas sp. strain B13. J Bacteriol 158:1025–1032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long HH, Schmidt DD, Baldwin IT (2008) Native bacterial endophytes promote host growth in a species-specific manner, phytohormone manipulations do not result in common growth responses. PLoS One 3(7):e2702. https://doi.org/10.1371/journal.pone.0002702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsui T, Saeki H, Shinzato N, Matsuda H (2006) Characterization of Rhodococcus– E. coli shuttle vector pNC9501 constructed from the cryptic plasmid of a propene-degrading bacterium. Curr Microbiol 52(6):445–448

    Article  CAS  PubMed  Google Scholar 

  • Menn FM, Easter JP, Sayler GS (2009) Genetically engineered microorganism and bioremediation. In: Rehn HJ, Reed B (eds) Biotechnology set. Wiley, Hoboken, NJ, pp 441–463

    Google Scholar 

  • Noble AD, Ruaysoongnern S (2010) The nature of sustainable agriculture. In: Dixon R, Tilston E (eds) Soil microbiology and sustainable crop production. Springer Science and Business Media B.V, Berlin, Heidelberg, pp 1–25

    Google Scholar 

  • Ohno M, Kataoka S, Yamamoto-Tamura K, Akutsu TK, Hasebe A (2011) Biological control of Rhizoctonia damping-off of cucumber by a transformed Pseudomonas putida strain expressing a chitinase from a marine bacterium. JARC 45:91–98

    CAS  Google Scholar 

  • Orikasa Y, Nodasaka Y, Ohyama T, Okuyama H, Ichise N, Yumoto I, Morita N, Wei M, Ohwada T (2010) Enhancement of the nitrogen fixation efficiency of genetically- engineered Rhizobium with high catalase activity. J Biosci Bioeng 110:397–402

    Article  CAS  PubMed  Google Scholar 

  • Ouyang SP, Sun SY, Liu Q, Chen J, Chen GQ (2007) Microbial transformation of benzene to cis-3,5-cyclohexadien-1,2-diols by recombinant bacteria harboring toluene dioxygenase gene tod. Appl Microbiol Biotechnol 74(1):43–49

    Article  CAS  PubMed  Google Scholar 

  • Panetta JD (1993) Engineered Microbes, the Cellcap system. In: Kim L (ed) Advanced engineered pesticides. Marcel Dekker, New York

    Google Scholar 

  • Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11:789–799

    Article  CAS  PubMed  Google Scholar 

  • Potters G, Pasternak TP, Guisez Y, Jansen MAK (2009) Different stresses, similar morphogenic responses: integrating a plethora of pathways. Pl Cell Environ 32:158–169

    Article  Google Scholar 

  • Richardson AE, Hadobas PA, Hayes JE, O_Hara CP, Simpson RJ (2001) Utilization of phosphorus by pasture plants supplied with myo-inositol hexaphosphate is enhanced by the presence of soil micro-organisms. Pl Soil 229:47–56

    Article  CAS  Google Scholar 

  • Rodrigues JLM, Kachel A, Aiello MR, Quensen JF, Maltseva OV, Tsio TV, Tiedje (2006) Degradation of Aroclor 1242 dechlorination products in sediments by Burkholderia xenovorans LB400 (ohb) and Rhodococcus sp. strain RHA1 (fcb). Appl Environ Microbiol 72(4):2476–2482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez H, Gonzalez T, Selman G (2000) Expression of a mineral phosphate solubilizing gene from Erwinia herbicola in two rhizobacterial strains. J Biotechnol 84:155–161

    Article  CAS  Google Scholar 

  • Sashidhar B, Rao PA (2009) Transgenic expression of glucose dehydrogenase in Azotobacter vinelandii enhances mineral phosphate solubilization and growth of sorghum seedlings. Microbial Biotechnol 2(4):521–529

    Article  CAS  Google Scholar 

  • Sayler GS, Ripp S (2000) Field applications of genetically engineered microorganisms for bioremediation processes. Curr Opin Biotechnol 11(3):286–289

    Article  CAS  PubMed  Google Scholar 

  • Schwin U, Schmidt E (1982) Improved degradation of mono chlorophenol by a constructed strain. Appl Environ Microbiol 44(1):33–39

    Article  Google Scholar 

  • Selvaratnam S, Schoedel BA, McFarland BL, Kulpa CF (1997) Application of the polymerase chain reaction (PCR) and reverse transcriptase/PCR for determining the fate of phenoldegrading Pseudomonas putida ATCC 11172 in bioaugmented sequencing batch reactor. Appl Microbiol Biotechnol 47:236–240

    Article  CAS  Google Scholar 

  • Setten L, Soto G, Mozzicafreddo M, Fox AR, Lisi C et al (2013) Engineering Pseudomonas protegens Pf-5 for nitrogen fixation and its application to improve plant growth under nitrogen-deficient conditions. PLoS One 8(5):e63666. https://doi.org/10.1371/journal.pone.0063666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh JS, Pandey VC, Singh DP (2011) Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agric Ecosys Environ. 140:339–353

    Article  Google Scholar 

  • Soares G G, Quick T C (1990) MVP, A novel bioinsecticide for control of the Diamondback Moth. Chapter 15: In: Proceedings of the second international workshop, 10–14 Dec., Taiwan

    Google Scholar 

  • Sosio M, Guisino F, Cappellano C, Bossi E, Puglia AM, Donadio S (2000) Artificial chromosomes for antibiotic-producing actinomycetes. Nat Biotechnol 18:343–345

    Article  CAS  PubMed  Google Scholar 

  • Strong LC, McTavish H, Sadowsky MJ, Wackett LP (2000) Field-scale remediation of atrazine-contaminated soil using recombinant Escherichia coli expressing atrazine chlorohydrolase. Environ Microbiol 1:91–98

    Article  Google Scholar 

  • Taghavi S, Barac T, Greenberg B, Borremans B, Vangronsveld J, van der Lelie D (2005) Horizontal gene transfer to endogenous endophytic bacteria from poplar improves phytoremediation of toluene. Appl Environ Microbiol 71(12):8500–8505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomasino SF, Liester RT, Dimock MB, Breach RM, Kelly JL (1995) Field performance of Clavibacter xyli subsp. cynodontis expressing the insecticidal protein gene crylA (c) of Bacillus thuringiensis against European corn borer in field corn. Biol Control 5:442–448

    Article  Google Scholar 

  • Tripura CB, Podile AR (2007) Properties of chimeric glucose dehydrogenase improved by site-directed mutagenesis. J Biotechnol 131:197–204

    Article  CAS  PubMed  Google Scholar 

  • UN Convention on Biological Diversity, Art. 2. Retrieved on January 3, 2017.

    Google Scholar 

  • Viebahn M, Glandorf DCM, Ouwens TWM, Smit E, Leeflang P, Wernars K, Thomashow LS, van Loon LC, Bakker AHM (2003) Repeated introduction of genetically modified Pseudomonas putida WCS358r without intensified effects on the indigenous microflora of field-grown wheat. Appl Environ Microbiol 69(6):3110–3118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou H, Wei H, Liu X, Wang Y, Zhang L, Tang W (2005) Improving biocontrol activity of Pseudomonas fluorescens through chromosomal integration of 2,4-diacetylphloroglucinol biosynthesis genes. Chinese Sci Bull 50:777–781

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gosal, S.K., Kaur, J., Kaur, J. (2020). Microbial Biotechnology: A Key to Sustainable Agriculture. In: Kumar, M., Kumar, V., Prasad, R. (eds) Phyto-Microbiome in Stress Regulation. Environmental and Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-15-2576-6_11

Download citation

Publish with us

Policies and ethics