Skip to main content
Log in

Comparative ecophysiology of seven spring geophytes from an oak-hornbeam forest

  • Published:
Brazilian Journal of Botany Aims and scope Submit manuscript

Abstract

The ecophysiological traits of seven spring forest geophytes (Gagea lutea L., Scilla bifolia L., Ficaria verna L., Corydalis cava (L.) Koerte, Arum maculatum L., Dentaria bulbifera L. Crantz, and Ornithogalum pyrenaicum L.) were compared in terms of photosynthetic performance, chlorophyll content, specific leaf area, and relative water content from early spring to summer under field conditions. Light response curves were measured for each species throughout the continuum of its phenological phases to quantify the photosynthetic photon flux density at light saturation, light-saturated photosynthetic rate and light compensation point. All species showed similar seasonal dynamics of the assessed parameters, but the average seasonal values of photosynthesis, dark respiration and maximum efficiency of the photosystem II, as well as light saturation point and light compensation point, differed significantly. From the ecophysiological parameters that were determined it appears that the investigated species can be grouped in two categories: ‘early-flowering’ spring ephemerals (higher P N, I comp, I sat, R d, lower F v/F m, more shade-avoiding strategy): G. lutea, S. bifolia, F. verna, C. cava and ‘later-flowering’ spring ephemerals (lower P N, I comp, I sat, R d, higher F v/F m, more shade-tolerating strategy): A. maculatum, D. bulbifera, and O. pyrenaicum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson WB, Eickmeier WG (2000) Nutrient resorption in Claytonia virginica L.: implication for deciduous forest nutrient cycling. Can J Bot 78:832–839

    Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Badri MA, Minchin PEH, Lapointe L (2007) Effects of temperature on the growth of spring ephemerals: Crocus vernus. Physiol Plantarum 130:67–76

    Article  CAS  Google Scholar 

  • Barrs HD, Weatherley PE (1962) A re-examination of the relative turgidity technique for estimating water deficit in leaves. Aust J Biol Sci 15:413–428

    Google Scholar 

  • Bernatchez A, Lapointe L (2012) Cooler temperatures favour growth of wild leek (Allium tricoccum), a deciduous forest spring ephemeral. Botany 90:1125–1132

    Article  CAS  Google Scholar 

  • Bjorkman O, Demming-Adams B (1995) Regulation of photosynthetic light energy capture, conversion and dissipation in leaves of higher plants. In: Shulze ED, Caldwell MM (eds) Ecophysiology of plants. Springer-Verlag Springer, Berlin, pp 17–47

    Google Scholar 

  • Bond BJ (2000) Leaf-age related changes in photosynthesis of woody plants. Trends Plant Sci 5:349–353

    Article  CAS  PubMed  Google Scholar 

  • Bratton SP (1976) Resource divisin in an understory herb community: response to temporal and microtophographic gradients. Am Nat 110:679–693

    Article  Google Scholar 

  • Brown RL, Ashmun JW, Pitelka LF (1985) Within- and between-species variation in vegetative phenology in two forest herbs. Ecology 66:251–258

    Article  CAS  Google Scholar 

  • Byerzichudek P (1982) Life histories and demography of shade-tolerant temperate forest herbs: a review. New Phytol 90:757–776

    Article  Google Scholar 

  • Chen L, Tam NFY, Huang J, Zeng X, Meng X, Zhong C, Wong Y-S, Lin G (2008) Comparison of ecophysiological characteristics between introduced and indigenous mangrove species in China. Estuar Coast Shelf Sci 79:644–652

    Article  Google Scholar 

  • Constable JVH, Peffer BJ, DeNicola DM (2007) Temporal and light-based changes in carbon uptake and storage in the spring ephemeral Podophyllum peltatum (Berberidaceae). Environ Exp Bot 60:112–120

    Article  CAS  Google Scholar 

  • Cornelissen JHC, Lavorel S, Garnier E, Diaz S, Buchmann N, Gurvich DE, Reich PB, terSteege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust J Bot 51:335–380

    Article  Google Scholar 

  • Dahlgren JP, Eriksson O, Bolmgren K, Strindell M, Ehrlen J (2006) Specific leaf area as a superior predictor of changes in field layer abundance during forest succession. J Veg Sci 17:577–582

    Article  Google Scholar 

  • Demmig-Adams B, Adams WW III (2006) Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation. New Phytol 172:11–21

    Article  CAS  PubMed  Google Scholar 

  • Domingues TF, Martinelli LA, Ehleringer JR (2007) Ecophysiological traits of plant functional groups in forest and pasture ecosystems from eastern Amanonia, Brazil. Plant Ecol 193:101–112

    Article  Google Scholar 

  • Đurđević L, Popović Z, Mitrović M, Pavlović P, Jarić S, Lj Oberan, Gajić G (2008) Dynamics of bioavailable soil phenolics and photosynthesis of Arum maculatum L. in a lime-beech forest. Flora 203:590–601

    Article  Google Scholar 

  • Eickmeier WG, Schussler EE (1993) Responses of the spring ephemeral Claytonia virginica to light and nutrient manipulations and implications for the “vernal-dam” hypothesis. Bull Torrey Bot Club 120:157–165

    Article  Google Scholar 

  • Elemans M (2002) Plant traits in forest understory—a modeling study. Dissertation, Utrecht University, Utrecht

  • Endler JA (1993) The color of light in forests and its implications. Ecol Monographs 63:1–27

    Article  Google Scholar 

  • Farrar JF (1996) Sinks—integral parts of a whole-plant. J Exp Bot 47:1273–1279

    Article  CAS  PubMed  Google Scholar 

  • Fichtner K, Koch GW, Mooney HA (1995) Photosynthesis, storage, and allocation. In: Schulze ED, Caldwell MM (eds) Ecophysiology of photosynthesis. Springer, Berlin, pp 133–146

    Chapter  Google Scholar 

  • Field CB (1981) Leaf age effects on the carbon gain of individual leaves in relation to microsite. In: Margaris NS, Mooney HA (eds) Components of productivity of mediterranean-climate regions: basic and applied aspects. Junk, The Hague, pp 41–50

    Chapter  Google Scholar 

  • Field CB, Mooney HA (1983) Leaf age and seasonal effects on light, water, and nitrogen use efficiency in a California shrub. Oecologia 56:348–355

    Article  Google Scholar 

  • Fitter AH, Hay RK (2002) Environmental physiology of plants. Academic Press, San Diego

    Google Scholar 

  • Gilliam F, Roberts M (2003) The Herbaceous layer in forests of eastern North America. Oxford University Press, Oxford

    Google Scholar 

  • Gorishina TK (1969) Ranavesenie efemeroidi lesostepnih dubrav. Leningrad

  • Gutjahr S, Lapointe L (2008) Carbon dioxide enrichment does not reduce leaf longevity of alter accumulation of carbon reserves in the woodland spring ephemeral Erythronium americanum. Ann Bot 102:835–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hiscox JD, Israelstam GF (1979) A method for the extraction of chlorophyll from leaf tissue without maceration. Can J Bot 57:1332–1334

    Article  CAS  Google Scholar 

  • Hull JC (2002) Photosynthetic induction dynamics to sunflecks of four deciduous forest understory herbs with different phenologies. Int J Plant Sci 163:913–924

    Article  Google Scholar 

  • Ida TY, Kudo G (2008) Timing of canopy closure influences carbon translocation and seed production of an understorey herb Trillium apetalon (Trilliaceae). Ann Bot 101:435–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishioka R, Muller O, Hiura T, Kudo G (2013) Responses of leafing phenology and photosynthesis to soil warming in forest-floor plants. Acta Oecol 51:34–41

    Article  Google Scholar 

  • Karadžić B, Popović R, Jovanović Z, Mijović A (1999) RGRP, a database and software for computing relative growth rate of plants. Arch Biol Sci 51:195–204

    Google Scholar 

  • Lapointe L (2001) How phenology influences physiology in deciduous forest spring ephemerals. Physiol Plantarum 113:151–157

    Article  CAS  Google Scholar 

  • Larcher W (1995) Physiological plant ecology. Springer, Berlin

    Book  Google Scholar 

  • Lűttge U, Scarano FB (2007) Synecological comparisons sustained by ecophysiological fingerprinting of intrinsic photosynthetic capacity of plants as assessed by measurements of light response curves. Braz J Bot 30:355–364

    Google Scholar 

  • Mamushina NS, Zubkova EK (1996) Effect of temperature on potential photosynthesis and photosynthetic carbon metabolism in C3 plants with different seasonal patterns of development. Rus J Plant Physiol 43:313–318

    CAS  Google Scholar 

  • Mamushina NS, Voznesenskaya EV, Zubkova EK, Maslova TG, Miroslavov EA (2002) Structural and functional changes of mesophyll cells during leaf growth in two species of spring ephemers. Rus J Plant Physiol 49:194–202

    Article  Google Scholar 

  • Masarovičova E, Eliaš P (1980) Chlorophyll content in leaves of plants in an Oak-Hornbeam forest 1: Herbaceous species. Photosynthetica 14:580–588

    Google Scholar 

  • Masarovičova E, Eliaš P (1986) Photosynthetic rate and water relations in some forest herbs in spring and summer. Photosynthetica 20:187–195

    Google Scholar 

  • Maslova TG, Mamushina NS, Zubkova EK, Voitsekhovskaya OV (2003) Specific features of plastid pigment apparatus and photosynthesis in the leaves of ephemeroid and summer plants as related to photoinhibion. Rus J Plant Physiol 50:52–56

    Article  CAS  Google Scholar 

  • Michell PL, Woodward FI (1988) Responses of three woodland herbs to reduced photosynthetically active radiation and low red to far-red ratio in shade. J Ecol 76:807–825

    Article  Google Scholar 

  • Myers CV, Anderson RC (2003) Seasonal variation in photosynthetic rates influences success of an invasive plant, garlic mustard (Alliaria petiolata). Am Midl Nat 150:231–245

    Article  Google Scholar 

  • Nault A, Gagnon D (1993) Seasonal biomass and nutrient allocation patterns in wild leek (Allium tricoccum Ait), a spring geophyte. Bull Torrey Bot Club 115:45–54

    Article  Google Scholar 

  • Oquist G, Wass R (1988) A portable, microprocessor operated instrument for measuring chlorophyll fluorescence kinetics in stress physiology. Physiol Plantarum 73:211–217

    Article  Google Scholar 

  • Parsons RF (2000) Monocotyledonous geophytes: comparison of California with Victoria, Australia. Aust J Bot 51:39–43

    Article  Google Scholar 

  • Popović Z, Mijović A, Karadžić B (2005) Dry matter distribution patterns and photosynthetic traits of two vernal ephemeroids in a deciduous forest. Period Biol 107:287–292

    Google Scholar 

  • Popović Z, Mijović A, Karadžić B, Mijatović M (2006) Response of growth dynamics to light regime of two spring geophytes in a lime-beech forest. J Integr Plant Biol 48:527–535

    Article  Google Scholar 

  • Powels SB (1984) Photoinhibition of photosynthesis induced by visible light. Annu Rev Plant Physiol 35:15–44

    Article  Google Scholar 

  • Raunkiaer C (1934) The life forms of plants. Clarendon Press, Oxford

    Google Scholar 

  • Republic Hydrometeorological Service of Serbia (2012) Republic Hydrometeorological Annual Report. The Service, Belgrade

  • Ribeiro RV, Souza GM, Oliveira RF, Machado EC (2005) Photosynthetic responses of tropical tree species from different successional groups under contrasting irradiance conditions. Braz J Bot 28:149–161

    Article  Google Scholar 

  • Rogers RS (1982) Early spring herb communities in mesophytic forests of the Great Lakes region. Ecology 63:1050–1063

    Article  Google Scholar 

  • Rothstein D, Zak D (2001) Photosynthetic adaptation and acclimation to exploit seasonal periods of direct irradiance in three temperate, deciduous-forest herbs. Funct Ecol 15:722–731

    Article  Google Scholar 

  • Sawada S, Harada A, Asari Y, Asano S, Kuninaka M, Kawamura J, Kasai M (1999) Effects of micro-environmental factors on photosynthetic CO2 uptake and carbon fixation metabolism in a spring ephemeral, Erythronium japonicum, growing in native and open habitats. Ecol Res 14:119–130

    Article  CAS  Google Scholar 

  • Schemske DW, Willson MF, Melampy MN, Miller LJ, Verner L, Shemske KM, Best LB (1978) Flowering ecology of some spring woodland herbs. Ecology 59:351–366

    Article  Google Scholar 

  • Schulze ED (1982) Plant life forms and their carbon, water and nutrient relations. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Encyclopedia of plant physiology 12B. Springer, Berlin, pp 181–230

    Google Scholar 

  • Smith TM, Shugart HH, Woodward FI (1997) Plant functional types: their relevance to ecosystem properties and global change. Cambridge University Press, Cambridge

    Google Scholar 

  • Sparling JH (1967) Assimilation rates of some woodland herbs in Ontario. Bot Gaz 128:160–168

    Article  Google Scholar 

  • Sunmonu N, Ida TY, Kudo G (2013) Photosynthetic compensation by the reproductive structures in the spring ephemeral Gagea lutea. Plant Ecol 214:175–188

    Article  Google Scholar 

  • Taylor RJ, Pearcy RW (1976) Seasonal patterns of the CO2 exchange characteristics of understory plants from a deciduous forest. Can J Bot 54:1094–1103

    Article  CAS  Google Scholar 

  • Terashima I, Hirosaka K (1995) Comparative ecophysiology of leaf and canopy photosynthesis. Plant Cell Environ 18:1111–1128

    Article  Google Scholar 

  • Tessier JT, Raynal DJ (2003) Vernal nitrogen and phosphorous retention by forest understory and soil microbes. Plant Soil 256:443–453

    Article  CAS  Google Scholar 

  • Usuda H, Shimogawara K (1998) The effects of increased atmospheric carbon dioxide on growth, carbohydrates, and photosynthesis in radish, Raphanus sativus L. Plant Cell Physiol 39:1–7

    Article  CAS  Google Scholar 

  • Vezina PE, Grandtner MM (1965) Phenological observations of spring geophytes in Quebec. Ecology 46:869–872

    Article  Google Scholar 

  • Whigham DF (2004) Ecology of woodland herbs in temperate deciduous forests. Annu Rev Ecol Evol Syst 35:583–621

    Article  Google Scholar 

  • Wilson PJ, Thompson K, Hodgson JG (1999) Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. New Phytol 143:155–162

    Article  Google Scholar 

  • Wyka TP, Oleksyn J, Žytowiak R, Karolewski P, Jagodziński AM, Reich PB (2012) Responses of leaf structure and photosynthetic properties to intra-canopy light gradient: a common garden test with four broadleaf deciduous angiosperm and seven conifer tree species. Oecologia 170:11–24

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoshie F, Fukuda T (1994) Effects of growth temperature and winter duration on leaf phenology of Erythronium japonicum, a forest spring geophyte. Oecologia 97:366–368

    Article  Google Scholar 

  • Zubkova EK, Mamushina NS, Voitsekhovskaya OV, Filippova LA (1997) Respiratory metabolism of monocot ephemers under photosynthetic conditions in light. Rus J Plant Physiol 44:158–165

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Education, Science and Technology of Serbia, Grant 173011. We thank four anonymous reviewers for helpful comments on earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zorica Popović.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popović, Z., Bojović, S., Matić, R. et al. Comparative ecophysiology of seven spring geophytes from an oak-hornbeam forest. Braz. J. Bot 39, 29–40 (2016). https://doi.org/10.1007/s40415-015-0204-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40415-015-0204-4

Keywords

Navigation