Skip to main content
Log in

Responses of native plants of the Patagonian steppe to reduced solar radiation caused by exotic coniferous plantations: a nursery approach

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

In exotic coniferous plantations established in treeless environments, light availability is drastically reduced, limiting the development of the native herb–shrub layer and consequently ecosystem functions and services. However, plants exhibit different responses to deal with changes in the light environment. Aiming to contribute to management guidelines favoring understory vegetation persistence in forest plantations, we evaluated, under nursery trial, the growth of three representative species of the Patagonian steppe at 20, 60, and 100% irradiance. For each species, we compared, among treatments, total biomass, biomass allocation, and specific leaf area several times during two growing seasons, relative growth rate, net assimilation rate, and leaf area ratio at each time interval, and reproductive structures the second growing season. Berberis microphylla and Adesmia volckmannii maintained their total biomass at 60% irradiance, with A. volckmannii showing a tendency to increase it, whereas Poa ligularis tended to decrease total biomass at irradiances below 60%. For the three species, changes in biomass allocation, generally higher leaf mass fraction, and higher specific leaf area were detected at 20% and sometimes at 60% irradiance. Relative growth rate and net assimilation rate, in general, tended to be higher at 60 and 100% irradiance, whereas leaf area ratio was higher at 20% and sometimes at 60% irradiance. Adesmia volckmannii and P. ligularis had fewer reproductive structures at 20% irradiance. These results suggest that the analyzed species present a certain level of shade tolerance, at least up to 60% irradiance, that may benefit their development in forest plantations with appropriate management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Arena ME, Postemsky P, Curvetto NR (2012) Accumulation patterns of phenolic compounds during fruit growth and ripening of Berberis buxifolia, a native Patagonian species. New Zeal J Bot 50:15–28. https://doi.org/10.1080/0028825X.2011.638644

    Article  Google Scholar 

  • Barbier S, Gosselin F, Balandier P (2008) Influence of tree species on understory vegetation diversity and mechanisms involved-A critical review for temperate and boreal forests. For Ecol Manag 254:1–15. https://doi.org/10.1016/j.foreco.2007.09.038

    Article  Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48. https://doi.org/10.18637/jss.v067.i01

    Article  Google Scholar 

  • Bertiller MB, Bisigato A (1998) Vegetation dynamics under grazing disturbance. the state-and-transition model for the Patagonian steppes. Ecol Austral 8:19–199

    Google Scholar 

  • Bava JO, Loguercio GA, Salvador G (2015) ¿Por qué plantar en Patagonia? Estado actual y el rol futuro de los bosques plantados. Ecol Austral 25:101–111

    Article  Google Scholar 

  • Bava JO, Loguercio GA, Orellana IA, Ríos Campano MF, Davel MM, Gonda HE, Heitzmann L, Gómez M, González MA, Salvador G, Zacconi G (2016) Evaluación Ambiental Estratégica. Una visión sobre dónde y cómo forestar en Patagonia. CIEFAP – FUNDFAEP, Esquel, Argentina

  • Bravo-Monasterio P, Pauchard A, Fajardo A (2016) Pinus contorta invasion into treeless steppe reduces species richness and alters species traits of the local community. Biol Invasions 18:1883–1894. https://doi.org/10.1007/s10530-016-1131-4

    Article  Google Scholar 

  • Bremer LL, Farley KA (2010) Does plantation forestry restore biodiversity or create green deserts? A synthesis of the effects of land-use transitions on plant species richness. Biodivers Conserv 19:3893–3915. https://doi.org/10.1007/s10531-010-9936-4

    Article  Google Scholar 

  • Brouwer R (1962) Nutritive influences on the distribution of dry matter in the plant. Netherlands J Agric Sci 10:399–408. https://doi.org/10.18174/njas.v10i5.17581

    Article  Google Scholar 

  • Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mac EGM, Tilman D, Wardle DA, Kinzig AP, Daily GC, Loreau M, Grace JB, Larigauderie A, Srivastava DS, Naeem S (2012) Biodiversity loss and its impact on humanity. Nature 486:59–67. https://doi.org/10.1038/nature11148

    Article  CAS  PubMed  Google Scholar 

  • Cardoso MB, Ladio AH, Dutrus SM, Lozada M (2015) Preference and calorific value of fuelwood species in rural populations in northwestern Patagonia. Biomass Bioenergy 81:514–520. https://doi.org/10.1016/j.biombioe.2015.08.003

    Article  CAS  Google Scholar 

  • Chamorro MF, Ladio A, Molares S (2019) Patagonian Berries. an ethnobotanical approach to exploration of their nutraceutical potential. In: Martinez JL, Munoz-Acevedo A, Rai M (eds) Ethnobotany: local knowledge and traditions. CRC Press

    Google Scholar 

  • Chamorro MF, Reiner G, Theoduloz C, Ladio A, Schmeda-Hirschmann G, Gómez-Alonso S, Jiménez-Aspee F (2019b) Polyphenol composition and (bio)activity of Berberis species and wild strawberry from the Argentinean Patagonia. Molecules 24:1–24. https://doi.org/10.3390/molecules24183331

    Article  CAS  Google Scholar 

  • Cummings J, Reid N (2008) Stand-level management of plantations to improve biodiversity values. Biodivers Conserv 17:1187–1211. https://doi.org/10.1007/s10531-008-9362-z

    Article  Google Scholar 

  • Defossé GE, Bertiller MB, Ares JO (1990) Above-ground phytomass dynamics in a grassland steppe of Patagonia, Argentina. J Range Manag 43:157–160. https://doi.org/10.2307/3899036

    Article  Google Scholar 

  • Dezzotti A, Mortoro A, Medina A, Sbrancia R, Beltrán HA (2019) Plant richness and life form diversity along vegetation and forest use gradients in Northwestern Patagonia of Argentina. Cerne 25(301):313. https://doi.org/10.1590/01047760201925032645

    Article  Google Scholar 

  • Di Benedetto A, Galmarini C, Tognetti J (2015) Exogenous cytokinin promotes Epipremnum aureum L. growth through enhanced dry weight assimilation rather than through changes in partitioning. Am J Exp Agric 5:419–434. https://doi.org/10.9734/ajea/2015/13398

    Article  Google Scholar 

  • Di Benedetto A, Tognetti J (2016) Técnicas de análisis de crecimiento de plantas: su aplicación a cultivos intensivos. Ria 42:258–282. http://www.scielo.org.ar/pdf/ria/v42n3/v42n3a07.pdf

  • Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW (2018) InfoStat. In: Centro de Transferencia InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. http://www.infostat.com.ar

  • Di Rienzo JA, Macchiavelli R, Casanoves F (2017) Modelos Lineales Mixtos Aplicaciones en InfoStat. Grupo Infostat.

  • Etchevere PH (1972) Los suelos de la Región Andino Patagónica. In Dimitri MJ (ed) La Región de los Bosques Andino-Patagónicos, Sinopsis General. Colección científica INTA Buenos Aires Argentina, pp 83–95.

  • Evans JR, Poorter H (2001) Photosynthetic acclimation of plants to growth irradiance: the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. Plant, Cell Environ 24:755–767. https://doi.org/10.1046/j.1365-3040.2001.00724.x

    Article  CAS  Google Scholar 

  • Fernández ME, Gyenge JE, Dalla Salda G, Schlichter TM (2002) Silvopastoral systems in northwestern Patagonia I: growth and photosynthesis of Stipa speciosa under different levels of Pinus ponderosa cover. Agrofor Syst 55:27–35. https://doi.org/10.1023/A:1020238330817

    Article  Google Scholar 

  • Fernández ME, Gyenge JE, Schlichter TM (2004) Shade acclimation in the forage grass Festuca Pallescens: Biomass allocation and foliage orientation. Agrofor Syst 60:159–166. https://doi.org/10.1023/B:AGFO.0000013276.68254.78

    Article  Google Scholar 

  • Fernández ME, Gyenge JE, Schlichter TM (2006a) Growth of Festuca pallescens in silvopastoral systems in Patagonia, part 1: Positive balance between competition and facilitation. Agrofor Syst 66:259–269. https://doi.org/10.1007/s10457-005-0590-x

    Article  Google Scholar 

  • Fernández ME, Gyenge JE, Schlichter TM (2006b) Growth of Festuca pallescens in silvopastoral systems in Patagonia, part 2: parameterization of models of stomatal conductance and leaf photosynthesis. Agrof Syst 66:271–280. https://doi.org/10.1007/s10457-005-0589-3

    Article  Google Scholar 

  • Fernández ME, Gyenge J, Licata J, Schlichter T, Bond BJ (2008) Belowground interactions for water between trees and grasses in a temperate semiarid agroforestry system. Agrof Syst 74:185–197. https://doi.org/10.1007/s10457-008-9119-4

    Article  Google Scholar 

  • Flores J, Jurado E (2003) Are nurse-protégé interactions more common among plants from arid environments? J Veg Sci 14:911–916. https://doi.org/10.1111/j.1654-1103.2003.tb02225.x

    Article  Google Scholar 

  • Franzese J, Urrutia J, García RA, Taylor K, Pauchard A (2016) Pine invasion impacts on plant diversity in Patagonia: invader size and invaded habitat matter. Biol Invasions 19:1015–1027. https://doi.org/10.1007/s10530-016-1344-6

    Article  Google Scholar 

  • Gaitán JJ, Bran DE, Oliva GE, Aguiar MR, Buono GG, Ferrante D, Nakamatsu V, Ciari G, Salomone JM, Massara V, Martínez GG, Maestre FT (2017) Aridity and overgrazing have convergent effects on ecosystem structure and functioning in patagonian rangelands. L Degrad Dev 29:210–218

    Article  Google Scholar 

  • Gittins C, Busso C, Becker G, Ghermandi L, Siffredi G (2010) Defoliation frequency affects morphophysiological traits in the bunchgrass Poa ligularis. Phyton 79:55–68

    Article  Google Scholar 

  • Golluscio RA, Irueta R, Cipriotti PA (2014) The elusive quantification of nitrogen fixation in xeric shrubs: the case of Adesmia volckmannii, a Patagonian leguminous shrub. J Arid Environ 111:22–26. https://doi.org/10.1016/j.jaridenv.2014.07.006

    Article  Google Scholar 

  • Golluscio R, Faigón A, Tanke M (2006) Spatial distribution of roots and nodules, and δ15N evidence of nitrogen fixation in Adesmia volckmannii, a Patagonian leguminous shrub. J Arid Environ 67:328–335. https://doi.org/10.1016/j.jaridenv.2006.02.005

    Article  Google Scholar 

  • Gonda H (1998) Height-diameter and volume equations, growth intercept and needle length site quality indicators, and yield equations for young ponderosa pine plantations in Neuquén, Patagonia, Argentina. Doctoral Dissertation. College of Forestry. Forest Resources Department. Oregon State University.

  • Gyenge JE, Fernández ME, Rusch V, Sarasola M, Schlichter TM (2010) Towards Sustainable Forestry Development in Patagonia: Truths and Myths of Environmental Impacts of Plantations with Fast-Growing Conifers. Am J Plant Sci Biotechnol 3:9–22

    Google Scholar 

  • Gyenge JE, Fernández ME, Licata J, Weigandt M, Bond BJ, Schlichter TM (2011) Uso del agua y productividad de los bosques nativos e implantados en el NO de la patagonia: Aproximaciones desde la ecohidrología y la ecofisiología. Ecol Austral 21:271–284

    Google Scholar 

  • Hoffmann WA, Poorter H (2002) Avoiding bias in calculations of relative growth rate. Ann Bot 90:37–42. https://doi.org/10.1093/aob/mcf140

    Article  PubMed  PubMed Central  Google Scholar 

  • Iogna PA (2017) Efectos del viento sobre las relaciones hídricas, arquitectura hidráulica y propiedades mecánicas de arbustos patagónicos mecánicas de arbustos patagónicos. Doctoral Dissertation. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires.

  • Irisarri J, Mendia J (1997) Relaciones suelo-paisaje en la evaluación de la potencialidad forestal de la región central andino-patagónica, Argentina. Bosque 18:21–30

    Article  Google Scholar 

  • Iralu V, Upadhaya K (2018) Relative growth rate, biomass partitioning and nutrient allocation in seedlings of two threatened trees grown under different light conditions. Acta Ecol Sin 38:450–459. https://doi.org/10.1016/j.chnaes.2018.03.001

    Article  Google Scholar 

  • Köppen W, Geiger R (1936) Das geographische System der Klimate. Verlag von Gebrüder Borntraeger

    Google Scholar 

  • Landrum LR (1999) Revision of Berberis (Berberidaceae) in Chile and Adjacent Southern Argentina. Ann Missouri Bot Gard 86:793–834. https://doi.org/10.2307/2666170

    Article  Google Scholar 

  • Lantschner MV, Rusch V, Peyrou C (2008) Bird assemblages in pine plantations replacing native ecosystems in NW Patagonia. Biodivers Conserv 17:969–989. https://doi.org/10.1007/s10531-007-9243-x

    Article  Google Scholar 

  • Liu Y, Dawson W, Prati D, Haeuser E, Feng Y, Van Kleunen M (2016) Does greater specific leaf area plasticity help plants to maintain a high performance when shaded? Ann Bot 118:1329–1336. https://doi.org/10.1093/aob/mcw180

    Article  PubMed  PubMed Central  Google Scholar 

  • Ochoa JJ, Moncunill ELN, Puntieri JG, Güenuleo BS, Stefe SE, Cardozo ML, Neranzi Barriga F, Martinez EE, Torrego S, Naon S (2019) Saberes locales y frutos comestibles de plantas nativas en la Comarca Andina Del Paralelo 42° (Patagonia, Argentina). Ethnoscientia 4:1–9. https://doi.org/10.22276/ethnoscientia.v4i1.247

    Article  Google Scholar 

  • Oliva GE, García G, Ferrante D, Massara V, Rimoldi P, Díaz B, Paredes P, Gaitán J (2017) Estado de los recursos naturales renovables en la Patagonia Sur extra andina. INTA Centro Regional Patagonia Sur, Trelew

  • Oyarzabal M, Clavijo J, Oakley L, Biganzoli F, Tognetti P, Barberis I, Maturo HM, Aragón R, Campanello PI, Prado D, Oesterheld M, León RJC (2018) Unidades de vegetación de la Argentina. Ecol Austral 28:040–063. https://doi.org/10.25260/ea.18.28.1.0.399

    Article  Google Scholar 

  • Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, Ray P, Enrico L, Pausas JG, De Vos AC, Cornelissen JHC (2013) New handbook for standardised measurement of plant functional traits worldwide. Aust J Bot 61:167–234. https://doi.org/10.1071/BT12225

    Article  Google Scholar 

  • Peri PL, Arena M, Martínez Pastur G, Lencinas MV (2011) Photosynthetic response to different light intensities, water status and leaf age of two Berberis species (Berberidaceae) of Patagonian steppe, Argentina. J Arid Environ 75:1218–1222. https://doi.org/10.1016/j.jaridenv.2011.06.003

    Article  Google Scholar 

  • Pinheiro JC, Bates DM (2004) Mixed-effects models in S and S-PLUS. Springer

    Google Scholar 

  • Pons TL (1977) An ecophysiological study in the field layer of ash coppice II experiments with Geum urbanum and Cirsium palustre in different light intensities. Acta Bot Neerl 26:29–42. https://doi.org/10.1111/j.1438-8677.1977.tb01093.x

    Article  Google Scholar 

  • Poorter H, Nagel O (2000) The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: a quantitative review. Aust J Plant Physiol 27:595–607

    CAS  Google Scholar 

  • Poorter H, Niinemets Ü, Ntagkas N, Siebenkäs A, Mäenpää M, Matsubara S, Pons TL (2019) A meta-analysis of plant responses to light intensity for 70 traits ranging from molecules to whole plant performance. New Phytol 223:1073–1105. https://doi.org/10.1111/nph.15754

    Article  CAS  PubMed  Google Scholar 

  • R Core Team (2018) R: A language and environment for statistical computing. R Foundation for Statistical Computing. (3.5.2). https://www.r-project.orgRaffaele E, Schlichter T (2000) Efectos de las plantaciones de pino ponderosa sobre la heterogeneidad de micrositios en estepas del noroeste patagónico. Ecol Austral 10:151–158.

  • Rago MM, Urretavizcaya MF, Orellana IA, Defossé GE (2020a) Strategies to persist in the community: soil seed bank and above-ground vegetation in Patagonian pine plantations. Appl Veg Sci 23:254–265. https://doi.org/10.1111/avsc.12482

    Article  Google Scholar 

  • Rago MM, Urretavizcaya MF, Lederer NS, Defosse GE (2020b) Plant community response to forest fuel management in Patagonian pine plantations. Front for Glob Chang 3:1–20. https://doi.org/10.3389/ffgc.2020.00055

    Article  Google Scholar 

  • Rago MM, Urretavizcaya MF, Defossé GE (2021) Relationships among forest structure, solar radiation, and plant community in ponderosa pine plantations in the Patagonian steppe. For Ecol Manage 502:119749. https://doi.org/10.1016/j.foreco.2021.119749

    Article  Google Scholar 

  • Rueden C, Dietz C, Horn M, Schindelin J, Northan B, Berthold M, Eliceiri K (2016) ImageJ Ops

  • Rusch V, Sarasola M, Corley J, Schlichter T (2004) Sustentabilidad de las Plantaciones de Coníferas Introducidas en la región Andino Patagónica: Biodiversiad e Invasión. Reporte final PIA 01/00. Bariloche, Argentina.

  • Rusch V, Vila A, Marques B, Lantschner V (2015) Conservación de la biodiversidad en sistemas productivos. Fundamentos y practicas aplicadas a forestaciones del noroeste de la Patagonia. MINAGRI-UCAR, Buenos Aires, Argentina.

  • Soriano A (1956) Los distritos florísticos de la Provincia Patagónica. Rev Investig Agrícolas 10:323–348

    Google Scholar 

  • Sultan ES (2000) Phenotypic plasticity for plant development, function and life history. Trends Plant Sci 5:537–542. http://www.ncbi.nlm.nih.gov/pubmed/11120476

  • Trentini CP, Campanello PI, Villagra M, Ritter L, Ares A, Goldstein G (2017) Thinning of loblolly pine plantations in subtropical Argentina: impact on microclimate and understory vegetation. For Ecol Manag 384:236–247. https://doi.org/10.1016/j.foreco.2016.10.040

    Article  Google Scholar 

  • Ulibarri EA (1987) Las especies de Adesmia de la serie Microphyllae (Leguminosae-Papilionoideae). Darwiniana 27:315–388

    Google Scholar 

  • Valladares F, Aranda I, Sánchez-Gómez D (2004) La luz como factor ecológico y evolutivo para las plantas y su interacción con el agua. In: Valladares F (ed) Ecologia del bosque mediterráneo en un mundo cambiante. Ministerio de Medio Ambiente EGRAF SA

    Google Scholar 

  • Valladares F, Niinemets Ü (2008) Shade tolerance, a key plant feature of complex nature and consequences. Annu Rev Ecol Evol Syst 39:237–257. https://doi.org/10.1146/annurev.ecolsys.39.110707.173506

    Article  Google Scholar 

  • van Rensburg T, Mill G (2010) Biodiversity conservation in managed landscapes. In: Lovett J, Ockwell D (Eds) A handbook of environmental management. University of Sussex, UK.

  • Villar R, Ruiz-Robleto J, Quero JL, Poorter H, Valladares F, Marañón T (2004) Tasas de crecimiento en especies leñosas: aspectos funcionales e implicaciones ecológicas. In: Valladares F (ed) Ecologia del bosque mediterráneo en un mundo cambiante. Ministerio de Medio Ambiente EGRAF SA

    Google Scholar 

  • Wright SJ, Muller-Landau HC, Condit R, Hubbell SP (2003) Gap-dependent recruitment, realized vital rates, and size distributions of tropical trees. Ecology 84:3174–3185

    Article  Google Scholar 

Download references

Acknowledgements

We thank Stefano Gianolini, Melanie Paz, and Cristian Huisca for their assistance with the trial preparation and plant measurements. We are very grateful to Eduardo Tambussi and Liliana Contardi for their advice during the trial and data analyses.

Funding

This work was supported by the National Scientific and Technical Research Council of Argentina [CONICET, PUE 4116/16].

Author information

Authors and Affiliations

Authors

Contributions

MMR, MFU, GED were involved in conceptualization and writing – review & editing; MMR, MFU contributed to methodology and visualization; MMR was involved in formal analysis, writing — original draft and investigation; MFU, GED contributed to resources;; MFU was involved in supervision; GED contributed to funding acquisition.

Corresponding author

Correspondence to María Melisa Rago.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Communicated by Peter Annighöfer.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rago, M.M., Urretavizcaya, M.F. & Defossé, G.E. Responses of native plants of the Patagonian steppe to reduced solar radiation caused by exotic coniferous plantations: a nursery approach. Eur J Forest Res 142, 301–315 (2023). https://doi.org/10.1007/s10342-022-01523-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-022-01523-y

Keywords

Navigation