Skip to main content
Log in

Photoacclimation capacity in seedling and sapling of Siparuna guianensis (Siparunaeae): Response to irradiance gradient in tropical forest

  • Original Papers
  • Published:
Photosynthetica

Abstract

Light is a limiting factor in plant establishment and growth in the understory of forests. In this paper, we assessed acclimation capacity of Siparuna guianensis, an early secondary successional species. We used seedlings and saplings in three regeneration areas with different irradiance regimes to determine the traits that confer photoplasticity. We examined whether these traits differ at different developmental stages. Anatomical characteristics, photochemical efficiency, photosynthetic capacity, and growth were analyzed. Multivariate component analysis revealed the formation of six clusters: three for seedlings (one for each regeneration area) and three for saplings (following the same pattern of seedlings, considering the area). Increased irradiance favored photosynthetic performance, independently of the developmental stage. The same trend was observed for most data on chlorophyll (Chl) a fluorescence and the ratios of net photosynthetic rate/intercellular CO2 concentration (P N/Ci) and P N/PPFD. No parameter indicated photoinhibition stress. The CO2− and light-response curve data indicated that seedlings were already acclimated to tolerate variation in irradiance. Anatomical adaptations, such as thickness of leaf blade and of adaxial cuticle, were observed in individuals growing in areas with higher irradiation. Thinning of spongy parenchyma and higher investment into a plant height were observed in seedlings, possibly due to the vertical stratification of CO2 and light in the understory; because light is a more limiting resource than CO2 in the lower stratum of the forest. Photoplasticity in S. guianensis is associated with a set of morphological, anatomical, photochemical, and biochemical traits, whereas biochemical performance is best acclimated to variation in irradiance. These traits differed in seedlings and saplings but they were modulated mainly by irradiance in both developmental stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ab:

abaxial surface

ad:

adaxial surface

Car:

carotenoids

CCU:

closed canopy understory

Chl:

chlorophyll

C i :

intercellular CO2 concentration

ct:

cuticle

DGL:

diameter at ground level

DMSO:

dimethylsulfoxide

ETR:

electron transport rate

FV:

final value

Fv/Fm :

maximal quantum yield of PSII

g s :

stomatal conductance

GN:

percentage gain

H:

height

ICU:

intermediate canopy understory

IV:

initial values

Jmax :

maximal electron transport rate

L s :

relative stomatal limitation to photosynthesis

NL:

number of leaves

NPQ:

nonphotochemical quenching

OCU:

open canopy understory

PCA:

principal component analysis

PC1:

first principal component

PC2:

second principal component

P N :

net photosynthetic rate

P Neff :

effective net photosynthetic rate

P NmaxC :

potential net photosynthetic capacity

P Nmax :

maximal net photosynthetic rate

P NmaxL :

maximal net photosynthetic capacity

pp:

palisade parenchyma

LSP:

light-saturation point

qP :

photochemical quenching

RH:

relative humidity

SAC:

shade adjustment coefficient

sp:

spongy parenchyma

T:

temperature

TLA:

total leaf area

TPU:

use of triose-phosphate

Vcmax :

maximal carboxylation speed of Rubisco

VPD:

vapor pressure deficit

ΔG:

delta growth

ΔF/Fm′:

effective quantum yield

References

  • Araújo S.A.C., Deminicis B.B.: [Photosynthesis and photoinhibition: a review.] — Rev. Bras. Biociên. 7: 463–472, 2009. [In Portuguese]

    Google Scholar 

  • Azevedo G.F.C., Marenco R.A.: Growth and physiological changes in saplings of Minquartia guianensis and Swietenia macrophylla during acclimation to full sunlight. — Photosynthetica 50: 86–94, 2012.

    Article  CAS  Google Scholar 

  • Bazzaz F.A.: Physiological ecology of plant succession. — Annu. Rev. Ecol. Syst. 10: 351–371, 1979.

    Article  Google Scholar 

  • Bazzaz F.A., Pickett S.T.A.: Physiological ecology of tropical succession: a comparative review. — Annu. Rev. Ecol. Syst. 11: 287–310, 1980.

    Article  Google Scholar 

  • Bilger W., Schreiber U., Bock M.: Determination of the quantum efficiency of photosystem II and of non-photochemical quenching of chlorophyll fluorescence in the field. — Oecologia 102: 425–432, 1995.

    Article  Google Scholar 

  • Bolhàr-Nordenkampf H.R., Long S.P., Baker N.R.: Chlorophyll fluorescence as probe of the photosynthetic competence of leaves in the field: a review of current instrument. — Funct. Ecol. 3: 497–514, 1989.

    Article  Google Scholar 

  • Brodersen C.R., Vogelmann T.C.: Do epidermal lens cells facilitate the absorptance of diffuse light? — Am. J. Bot. 94: 1061–1066, 2007.

    Article  PubMed  Google Scholar 

  • Brugnoli E., Björkman O.: Chloroplast movements in leaves: influence on chlorophyll fluorescence and measurements of light-induced absorbance changes related to pH and zeaxanthin formation. — Photosynth. Res. 32: 23–35, 1992.

    Article  CAS  PubMed  Google Scholar 

  • Chazdon R.L., Pearcy R.W., Lee D.W. et al.: Photosynthetic response of tropical forest plants to contrasting light environments. — In: Mulkey S.S., Chazdon R.L., Smith A.P. (ed.): Tropical Forest Plant Ecophysiology. Pp. 5–55. Chapman and Hall, New York 1996.

    Chapter  Google Scholar 

  • de Lucia E.H., Nelson K., Vogelmann T.C. et al.: Contribution of intercellular reflectance to photosynthesis in shade leaves. — Plant Cell Environ. 19: 159–170, 1996.

    Article  Google Scholar 

  • Demmig-Adams B., Adams W.W., Heber U. et al.: Inhibition of zeaxanthin formation and of rapid changes in radiationless energy dissipation by dithiothreitol in spinach leaves and chloroplasts. — Plant Physiol. 92: 293–301, 1990.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Demmig-Adams B., Adams W.W.: The role of xanthophyll cycle carotenoids in the protection of photosynthesis. — Trends Plant Sci. 1: 21–26, 1996.

    Article  Google Scholar 

  • de Pury D.G.G., Farquhar, G.D.: Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models. — Plant Cell Environ. 20: 537–557, 1997.

    Article  Google Scholar 

  • dos Anjos L., Oliva M.A., Kuki K.N.: Fluorescence imaging of light acclimation of brazilian atlantic forest tree species. — Photosynthetica 50: 95–108, 2012.

    Article  CAS  Google Scholar 

  • Evans J.R.: Leaf anatomy enables more equal access to light and CO2 between chloroplasts. — New Phytol. 143: 93–104, 1999.

    Article  Google Scholar 

  • Evaristo V.T., Braga J.M.A., Nascimento M.T.: Atlantic Forest regeneration in abandoned plantations of eucalypt (Corymbia citriodora) in Rio de Janeiro, Brazil. — Interciência 36: 431–436, 2011.

    Google Scholar 

  • Farquhar G.D., Sharkey T.D.: Stomatal conductance and photosynthesis. — Annu. Rev. Plant Phys. 33: 317–345, 1982.

    Article  CAS  Google Scholar 

  • Gandolfi S., Joly C.A., Filho H.F.L.: “Gaps of deciduosness”: cyclical gaps in tropical forests. — Sci. Agr. 66: 280–284, 2009.

    Article  Google Scholar 

  • Genty B., Briantais J.M., Baker N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. — Biochim. Biophys. Acta 990: 87–92, 1989.

    Article  CAS  Google Scholar 

  • Haberlandt G.: Physiological Plant Anatomy (4th Ed). Pp. 807. Macmillan & Co. Ltd. London 1914.

    Google Scholar 

  • Hendry G.A.F., Price A.H.: Stress indicators: chlorophylls and carotenoids. — In: Hendry G.A.F., Grime J.P. (ed.): Methods in comparative Plant Ecology. Pp 148–152. Chapman & Hall, London 1993.

    Chapter  Google Scholar 

  • Holloway P.J.: Structure and histochemistry of plant cuticular membranes: an overview. — In: Cutler D.F., Alvin K.L., Price C.E. (ed.): The Plant Cuticle. Pp. 1–32. Academic Press, London 1982.

    Google Scholar 

  • Huang D., Wu L., Chen J.R. et al.: Morphological plasticity, photosynthesis and chlorophyll fluorescence of Athyrium pachyphelebium at different shade levels. — Photosynthetica 49: 611–618, 2011.

    Article  CAS  Google Scholar 

  • IBGE (Instituto Brasileiro de Geografia e Estatística). [Technical Manual of Brazilian Vegetation. Technical Manuals Series in Geosciences n. 1]. Pp 91. IBGE, Rio de Janeiro 1992. [In Portuguese]

    Google Scholar 

  • Ishida A., Yazaki K., Hoe A.L.: Ontogenetic transition of leaf physiology and anatomy from seedlings to mature trees of a rain forest pioneer tree, Macaranga gigantean. — Tree Physiol. 25: 513–522, 2005.

    Article  PubMed  Google Scholar 

  • Johnson D.M., Smith W.K., Vogelmann T.C. et al.: Leaf architecture and direction of incident light influence mesophyll fluorescence profiles. — Am. J. Bot. 92: 1425–1431, 2005.

    Article  PubMed  Google Scholar 

  • Kao W.Y., Chin Y.S., Chen W.H.: Vertical profiles of CO2 concentrations and δ13C values in a subalpine forest of Taiwan. — Bot. Bull. Acad. Sinica 41: 213–218, 2000.

    Google Scholar 

  • Klein D.E., Gomes V.M., Neto S.J.S. et al.: The structure of collecters in several species of Simira (Rubiaceae). — Ann Bot.-London 94: 733–740, 2004.

    Article  Google Scholar 

  • Kitajima K.: Ecophysiology of tropical tree seedlings. — In: Mulkey S. S., Chazdon R. L. Smith A. P. (ed.): Tropical Forest Plant Ecophysiology. Pp. 559–597. Chapman & Hall, New York 1996.

    Chapter  Google Scholar 

  • Kitajima K.: Relative importance of photosynthetic traits an allocation patterns as correlates of seedling shad tolerance of 13 tropical trees. — Oecologia 98: 419–428, 1994.

    Article  Google Scholar 

  • Köppen W.: [Climatology: a Study of the Climates of the Earth.] Pp. 479. Fondo de Cultura Econômica (FCE), México 1948. [In Spanish]

    Google Scholar 

  • Küppers M., Timm H., Orth F. et al.: Effects of light environment and successional status on light fleck use by understorey trees of temperate and tropical forests. — Tree Physiol. 16: 69–80, 1996.

    Article  PubMed  Google Scholar 

  • Lage-Pinto F., Bernini E, Oliveira J.G. et al.: Photosynthetic analyses of two native Atlantic Forest species in regenerative understorey of eucalyptus plantation. — Braz. J. Plant Physiol. 24: 95–106, 2012.

    Article  CAS  Google Scholar 

  • Laisk H., Eichelmann V., Oja B. et al.: Adjustment of leaf photosynthesis to shade in a natural canopy: rate parameters. — Plant Cell Environ. 28: 375–388, 2005.

    Article  CAS  Google Scholar 

  • Lemos J.P., Mendonça C.V.: Seasonal changes in the water status of three woody legumes from the Atlantic forest, Caratinga, Brazil. — J. Trop. Ecol. 16: 21–32, 2000.

    Article  Google Scholar 

  • Long S. P., Bernacchi C.J.: Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. — J. Exp. Bot. 54: 2393–2401, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Marenco R.A., Vieira G.: Specific leaf area e photosynthetic parameters of tree species in the forest understorey as a function of the microsite light environment in Central Amazonia. — J. Trop. For. Sci. 17: 265–278, 2005.

    Google Scholar 

  • Merzlyak M.N., Solovchenko A.E.: Photostability of pigments in ripening apple fruit: a possible photoprotective role of carotenoids during plant senescence. — Plant Sci. 163: 881–888, 2002.

    Article  CAS  Google Scholar 

  • Miyashita A., Sugiura D., Sawakami K. et al.: Long-term, shortinterval measurements of the frequency distributions of the photosynthetically active photon flux density and net assimilation rates of leaves in a cool-temperate forest. — Agr. Forest Meteorol. 152: 1–10, 2012.

    Article  Google Scholar 

  • Monteiro J.A.F., Prado C.H.B.A.: Apparent carboxylation efficiency and relative stomatal and mesophyll limitations of photosynthesis in an evergreen cerrado species during water stress. — Photosynthetica 44: 39–45, 2006.

    Article  CAS  Google Scholar 

  • Montgomery R.A, Givnish T.J.: Adaptive radiation of photosynthetic physiology in the Hawaiian lobeliads: dynamic photosynthetic responses. — Oecologia 155: 455–467, 2008.

    Article  PubMed  Google Scholar 

  • Montgomery R.A.: Relative importance of photosynthetic physiology and biomass allocation for tree seedling growth across a broad light gradient. — Tree Physiol. 24: 155–167, 2004.

    Article  PubMed  Google Scholar 

  • Montgomery R.A., Chazdon R.L.: Light gradient partitioning by tropical tree seedlings in the absence of canopy gaps. — Oecologia 131: 165–174, 2002.

    Article  Google Scholar 

  • Mott K.A., Woodrow I.E.: Effects of O2 and CO2 on non steady state photosynthesis. — Plant Physiol. 102: 859–866, 1993.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Myers N., Mittermeier R.A., Mittermeier C.G. et al.: Biodiversity hotspots for conservation priorities. — Nature 403: 853–858, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Nascimento H.C.S, Marenco R.A.: Mesophyll conductance variations in response to diurnal environmental factors in Myrcia paivae and Minquartia guianensis in Central Amazonia. — Photosynthetica 51: 457–464, 2013.

    Article  CAS  Google Scholar 

  • O’Brien T.P., Feder N., McCully M.E.: Polychromatic staining of plant cell walls by toluidine blue O. — Protoplasma 59: 368–373, 1964.

    Article  Google Scholar 

  • Oguchi R., Hikosaka K., Hirose T.: Does the photosynthetic lightacclimation need change in leaf anatomy? — Plant Cell Environ. 26: 505–512, 2003.

    Article  Google Scholar 

  • Pandey S., Kushwaha R.: Leaf anatomy and photosynthetic acclimation in Valeriana jatamansi L. grown under high and low irradiance. — Photosynthetica 43: 85–90, 2005.

    Article  Google Scholar 

  • Pearcy R.W., Chazdon R.L., Gross L.J. et al.: Photosynthetic utilization of sunflecks: a temporally patchy resource on a time scale of seconds to minutes. — In: Caldwell M.M., Pearcy R.W. (ed.): Exploitation of Environmental Heterogeneity by Plants: Ecophysiology Processes Above and Below Ground. Pp. 175–208. Academic Press, New York 1994.

    Chapter  Google Scholar 

  • Poorter H., Pothmann P.: Growth and carbon economy of a fast growing and a slow-growing grass species as dependent on ontogeny. — New Phytol. 120: 159–166, 1992.

    Article  Google Scholar 

  • Poorter L.: Growth responses of 15 rainforest tree species to a light gradient: the relative importance of morphological and physiological traits. — Funct. Ecol. 13: 396–410, 1999.

    Article  Google Scholar 

  • Portes M.T., Damineli D.S.C., Ribeiro R.V. et al.: Evidence of higher photosynthetic plasticity in the early successional Guazuma ulmifolia Lam. compared to the late successional Hymenaea courbaril L. grown in contrasting light environments. — Braz. J. Biol. 70: 75–83, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Prado C.H.B.A., Moraes J.A.P.V.: Photosynthetic capacity and specific leaf mass in twenty woody species of cerrado vegetation under field conditions. — Photosynthetica 33: 103–112, 1997.

    Article  Google Scholar 

  • Rabelo G.R., Klein D.E., da Cunha M.: Does selective logging affect the leaf structure of a late successional species? — Rodriguesia 63: 419–427, 2012.

    Article  Google Scholar 

  • Rabelo R.G., Vitória A.P., da Silva M.V.A. et al.: Structural and ecophysiological adaptations to forest gaps. — Trees-Struct. Funct. 27: 259–272, 2013.

    Article  Google Scholar 

  • Renner S.S., Hausner G.: Monograph of Siparunaceae. — In: New York Botanical Garden: Flora Neotropica 95. Pp. 256. Hafner Publ. Co., New York 2005.

    Google Scholar 

  • Ribeiro R.F., Souza G.M., Oliveira R.F. et al: Photosynthetic responses of tropical tree species from different successional groups under contrasting irradiance conditions. — Rev. Bras. Bot. 28: 149–161, 2005.

    Article  Google Scholar 

  • Ronquim C.C., Prado C.H.B.A., Paula N.F.: Growth and photosynthetic capacity in two woody species of cerrado vegetation under different radiation availability. — Braz. Arch. Biol. Techn. 46: 243–252, 2003.

    Article  Google Scholar 

  • Rosevear M.J., Young A.J., Johnson G.N.: Growth conditions are more important than species origin in determining leaf pigment content of British plant species. — Funct. Ecol. 15: 474–480, 2001.

    Article  Google Scholar 

  • Rozema J., Chardonnens A., Tossermams M. et al.: Leaf thickness and UV-B absorbing pigments of plants in relation to an elevational gradient along the Blue Montains, Jamaica. — Plant Ecol. 128: 150–159, 1997.

    Google Scholar 

  • Santiago L.S., Dawson T.E.: Light use efficiency of California redwood understorey plants along a moisture gradient. — Oecologia 174: 351–363, 2014.

    Article  PubMed  Google Scholar 

  • Sassenrath-Cole G.F., Pearcy R.W.: The role of ribulose-1,5-bisphosphate regeneration in the induction requirement of photosynthetic CO2 exchange under transient light conditions. — Plant Physiol. 99: 227–234, 1992.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sharkey T.D.: Estimating the rate of photorespiration in leaves. — Physiol. Plantarum 73: 147–152, 1988.

    Article  CAS  Google Scholar 

  • Sharkey T.D., Bernacchi C.J., Farquhar G.D. et al.: Fitting photosynthetic carbon dioxide response curves for C3 leaves. — Plant Cell Environ. 30: 1035–1040, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Silva A.S., Oliveira J.G., da Cunha M. et al.: Photosynthetic performance and anatomical adaptations in Byrsonima sericea DC. under contrasting light conditions in a remnant of the Atlantic forest. — Braz. J. Plant. Physiol. 22: 245–254, 2010.

    Article  Google Scholar 

  • Silvestrini M., Válio I.F.M., Mattos E.A.: Photosynthesis and carbon gain under contrasting light levels in seedlings of a pioneer and a climax tree from a Brazilian semideciduous Tropical Forest. — Rev. Bras. Bot. 30: 463–474, 2007

    Article  Google Scholar 

  • Smith H.: Light quality, photoreception, and plant strategy. — Annu. Rev. Plant Phys. 33: 481–518, 1982.

    Article  CAS  Google Scholar 

  • Souza G.M., Balmant B.D., Vítolo H.F. et al.: [Light utilization strategies and developmental stability of Cordia superba Cham. (Boraginaceae) seedlings grown in different light environments.] — Acta Bot. Bras. 23: 474–485. 2009. [In Portuguese]

    Article  Google Scholar 

  • Souza G.M., Ribeiro R.V., Sato A.M. et al.: Diurnal and seasonal carbon balance of four tropical tree species differing in successional status. — Braz. J. Biol. 68: 781–793, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Strauss-Debenedetti S., Bazzaz F.A.: Photosynthetic characteristics of tropical trees along sucessional gradients. — In: Mulkey S.S., Chazdon R.L, Smith A.P. (ed.): Tropical Forest Plant Ecophysiology. Pp.162–186. Chapman & Hall, New York 1996.

    Chapter  Google Scholar 

  • Strauss-Debenedetti S., Berlyn G.P.: Leaf anatomical responses to light in five tropical Moraceae of different successional status. — Am. J. Bot. 81: 1582–1591, 1994.

    Article  Google Scholar 

  • Sultan S.E.: Phenotypic plasticity in plants: A case study in ecological development. — Evol. Dev. 5: 25–33, 2003.

    Article  PubMed  Google Scholar 

  • Terashima I., Miyazawa S.I., Hanba Y.T.: Why are sun leaves thicker than shade leaves? Consideration based on analyses of CO2 diffusion in the leaf. — J. Plant Res. 114: 93–105, 2001.

    Article  CAS  Google Scholar 

  • Unwin D.M.: Microclimate Measurement for Ecologists. Pp. 97. Academic Press, New York 1980.

    Google Scholar 

  • Valentini C.M.A., Rodrigues-Ortiz C.E., Coelho M.F.B.: [Siparuna guianensis Aublet (negramina): a review.] — Rev. Bras. Plantas Med. 12: 96–104, 2010. [In Portuguese]

    Article  Google Scholar 

  • Valladares F., Allen M.T., Pearcy R.W.: Photosynthetic responses to dynamic light under field conditions in six tropical rainforest shrubs occurring along a light gradient. — Oecologia 111: 505–514, 1997.

    Article  Google Scholar 

  • Valladares F., Wright S.J., Lasso E. et al.: Plastic phenotypic response to light of 16 congeneric shrubs from a Panamanian rainforest. — Ecology 81: 1925–1936, 2000.

    Article  Google Scholar 

  • Vieira T.O., Lage-Pinto F., Ribeiro D.R. et al.: [Photostress in Cariniana legalis, Lecythidaceae seedlings: monitoring of photosynthetic acclimation capacity under two irradiance regimes.] — Vértices 13: 129–142, 2011. [In Portuguese]

    Article  Google Scholar 

  • Vogelmann T.C., Nishio J.N., Smith W.K. et al.: Leaves and light capture: light propagation and gradients of carbon fixation within leaves. — Trends Plant Sci. 1: 65–70, 1996.

    Article  Google Scholar 

  • Vogelmann T.C., Martin G.: The functional significance of palisade tissue: Penetration of directional vs. diffuse light. — Plant Cell Environ. 16: 65–72, 1993.

    Article  Google Scholar 

  • Way D.A., Pearcy R.W.: Sunflecks in trees and forests: from photosynthetic physiology to global change biology. — Tree Physiol. 32: 1066–1081, 2012.

    Article  PubMed  Google Scholar 

  • Wellburn A. R.: The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. — J. Plant Physiol. 144: 307–313, 1994.

    Article  CAS  Google Scholar 

  • Yanhong T., Hiroshi K., Mitsumasa S. et al.: Characteristics of transient photosynthesis in Quercus serrata seedlings grown under lightfleck and constant light regimes. — Oecologia 100: 463–469, 1994.

    Article  Google Scholar 

  • Zhou S.B., Liu K., Zhang D. et al.: Photosynthetic performance of Lycoris radiata var. radiata to shade treatments. — Photosynthetica 48: 241–248, 2010.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Vitória.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vieira, T.O., Degli-Esposti, M.S.O., Souza, G.M. et al. Photoacclimation capacity in seedling and sapling of Siparuna guianensis (Siparunaeae): Response to irradiance gradient in tropical forest. Photosynthetica 53, 11–22 (2015). https://doi.org/10.1007/s11099-015-0073-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-015-0073-x

Additional key words

Navigation