Skip to main content
Log in

A hyperbolic system and the cost of the null controllability for the Stokes system

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

This paper is devoted to study the cost of the null controllability for the Stokes system. Using the control transmutation method, we show that the cost of driving the Stokes system to rest at time \(T\) is of order e\(^{C/T}\) when \(T \longrightarrow 0^+\), i.e., the same order of controllability as for the heat equation. For this to be possible, we prove a new exact controllability result for a hyperbolic system with a resistance term, which will be done under assumptions on the control region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ervedoza S, Zuazua E (2011) Sharp observability estimates for heat equations. Arch Rational Mech Anal 202(3):975–1017

    Article  MATH  MathSciNet  Google Scholar 

  • Ervedoza S, Zuazua E (2011) Observability of heat processes by transmutation without geometric restrictions. Math Control Relat Fields 1(2):177–187

    Article  MATH  MathSciNet  Google Scholar 

  • Fernández-Cara E, Guerrero S, Imanuvilov OY, Puel J-P (2004) Local exact controllability of the Navier-Stokes system. J Math Pures Appl 83(12):1501–1542

    Article  MATH  MathSciNet  Google Scholar 

  • Fernández-Cara E, Zuazua E (2000) Null and approximate controllability for weakly blowing up semilinear heat equations. Ann Inst Henri Poincaré 17(5):583–616

  • Fursikov AV, Imanuvilov OY (1996) Controllability of evolution equations. Lectures Notes Series, vol 34. Seoul National University

  • Guenther RB, Thomann EA (2006) The fundamental solution of the linearized Navier–Stokes equations for spinning bodies in three spatial dimensions: time dependent case. J Math Fluid Mech 8(1):77–98

    Article  MATH  MathSciNet  Google Scholar 

  • Guenther RB, Thomann EA (2007) Fundamental solutions of Stokes and Oseen problem in two spatial dimensions. J Math Fluid Mech 9(4):489–505

    Article  MATH  MathSciNet  Google Scholar 

  • Lebeau G, Robbiano L (1995) Controle exact de l’équation de la chaleur. Commun Partial Differ Equ 20:335–356

    Article  MATH  MathSciNet  Google Scholar 

  • Lions JL (1988) Contrôlabilité exacte perturbations et stabilisation de systèmes distribués. Tome I, Research in Applied Mathematics, vol. 8, Masson, Paris

  • Lions JL (1992) On some hyperbolic equations with a pressure term. In: Proceedings of the conference dedicated to Louis Nirenberg, Trento. Pitman Research Notes in Mathematics Series, vol. 269. Longman Scientific and Technical, Harlow, pp 196–208

  • Miller L (2004) Geometric bounds on the growth rate of null-controllability cost for the heat equation in small time. J Differ Equ 204(1):202–226

    Article  MATH  Google Scholar 

  • Miller L (2006) The control transmutation method and the cost of fast controls. SIAM J Control Optim 45(2):762–772

    Article  MathSciNet  Google Scholar 

  • Rocha dos Santos A (1996) Exact controllability in dynamic incompressible materials. Ph.D. Thesis, Instituto de Matemática-UFRJ, Rio de Janeiro

  • Simon J (1999) On the existence of pressure for solutions of the variational Navier–Stokes equations. J Math Fluid Mech 1:225–234

    Article  MATH  MathSciNet  Google Scholar 

  • Solonnikov VA (1964) Estimates for solutions of a non-stationary linearized system of Navier–Stokes equations. Trudy Math Inst Steklov 70:213–317

    MATH  MathSciNet  Google Scholar 

  • Temam R (1977) Navier–Stokes equations: theory and numerical analysis. Studies in mathematical appllication vol 2. North-Holland, Amsterdam

  • Tenenbaum G, Tucsnak M (2007) New blow-up rates for fast controls of Schrödinger and heat equations. J Differ Equ 243(1):70–100

    Article  MATH  MathSciNet  Google Scholar 

  • Tucsnack M, Weiss G (2009) Observation and control for semigroups operators. Birkhauser advanced texts

  • Zuazua E (1995) Controllability of the linear system of thermoelasticity. J Math Pures Appl 74:291–315

    MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The author thanks D. A. Souza, J.-P. Puel and E. Zuazua for valuable discussions and comments related to this paper. This work was partially supported by the Grant BFI-2011-424 of the Basque Government and partially supported by the Grant MTM2011-29306-C02-00 of the MICINN, Spain, the ERC Advanced Grant FP7-246775 NUMERIWAVES, ESF Research Networking Programme OPTPDE and the Grant PI2010-04 of the Basque Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. W. Chaves-Silva.

Additional information

Communicated by Maria do Rosario de Pinho.

Appendix: boundary observability for the hyperbolic system

Appendix: boundary observability for the hyperbolic system

This section is devoted to prove the following result.

Theorem 5.1

If we take \(T > 2R_0\) then, for every solution of (4.4) with initial data \((\phi ^0,\phi ^1) \in V \times H\), the following estimate holds:

$$\begin{aligned} |\phi ^1|_H^2 + ||\phi ^0||_V^2 \le \frac{R_0}{2(T-2R_0)} \int \!\!\!\!\int _{\Sigma }\biggl ( \frac{\partial \phi }{\partial \nu }\biggl )^2d\Sigma . \end{aligned}$$
(5.1)

For the proof of Theorem 5.1, we need the following two lemmas.

Lemma 5.2

Let \(\overline{q} = \overline{q}(x) \) be in \( C^1(\bar{\Omega })^N\), then, for every regular solution \(u\) of (4.2), the following identity holds:

$$\begin{aligned} \frac{1}{2}\int \! \! \! \int _{\Sigma }\overline{q}_k(x) \nu _k(x)\biggl (\frac{\partial u}{\partial \nu }\biggl )^2d\Sigma&= (u_t(t), \overline{q}(x)\nabla u(t))\bigl |_0^T +\int \! \! \! \int _{Q}\frac{\partial \overline{q}_k}{\partial x_j}\frac{\partial u^i}{\partial x_k}\frac{\partial u^i}{\partial x_j}\mathrm{d}x\mathrm{d}t \nonumber \\&+ \frac{1}{2} \int \! \! \! \int _{Q}\frac{\partial \overline{q}_k}{\partial x_k} \bigl ( |u_t|^2 - |\nabla u|^2 \bigl )\mathrm{d}x\mathrm{d}t \nonumber \\&+\int \! \! \! \int _{Q}\frac{\partial p}{\partial x_i} \overline{q}_k\frac{\partial u^i}{\partial x_k}\mathrm{d}x\mathrm{d}t +\int \! \! \! \int _{Q} h^i \overline{q}_k\frac{\partial u^i}{\partial x_k}\mathrm{d}x\mathrm{d}t. \end{aligned}$$
(5.2)

The proof of Lemma 5.2 is the same as in the case of a single-wave equation, the difference being that here we see the pressure as a force term in the right-hand side.

Lemma 5.3

Let \((u^0, u^1, h) \in V\times H \times L^2(Q)^N\), then the weak solution of (4.2) satisfies:

$$\begin{aligned} \int \! \! \! \int _{\Sigma } \biggl ( \frac{\partial u}{\partial \nu }\biggl )^2 d\Sigma \le C\bigl (|u^1|^2_H + ||u^0||^2_V + ||h||^2_{L^2(Q)^N}\bigl ). \end{aligned}$$

Proof

The proof is obtained exactly as in the case of the wave equation, first showing the result for regular solutions. Indeed, in this case we must take the vector field \(\overline{q}\) in Lemma 5.2 to be the vector field \(\overline{q}(x) = x\) and use the fact that

$$\begin{aligned} \int \! \! \! \int _{Q}\frac{\partial p}{\partial x_i} \overline{q}_k\frac{\partial u^i}{\partial x_k}\mathrm{d}x\mathrm{d}t = 0. \end{aligned}$$

\(\square \)

Proof of Lemma 5.1

Without loss of generality, we assume that \(\phi \) is regular and then work with the equivalent problem (4.6). Using Lemma 5.2, with \(\overline{q}\) being the vector field \(m(x) = x\), we have

$$\begin{aligned}&\frac{1}{2}\int \! \! \! \int _{\Sigma }m\cdot \nu \biggl (\frac{\partial \phi }{\partial \nu }\biggl )^2d\Sigma = (\phi _t(.), m(x) \nabla \phi (.))\bigl |_0^T \\&\quad + \int \! \! \! \int _{Q}|\nabla \phi |^2\mathrm{d}x\mathrm{d}t + \frac{N}{2} \int \! \! \! \int _{Q}\bigl ( |\phi _t|^2 - |\nabla \phi |^2 \bigl )\mathrm{d}x\mathrm{d}t. \end{aligned}$$

Next, multiplying (4.6)\(_1\) by \(\phi \) and integrating by parts, we easily see that

$$\begin{aligned} (\phi _t(.),\phi (.))\bigl |_0^T = \int \! \! \! \int _{Q} |\phi _t|^2\mathrm{d}x\mathrm{d}t - \int \! \! \! \int _{Q} |\nabla \phi |^2\mathrm{d}x\mathrm{d}t. \end{aligned}$$

Then, using this last identity and the fact that

$$\begin{aligned} |\phi _t(t)|_H^2 + ||\phi (t)||_V^2 = |\phi ^1|_H^2 + ||\phi ^0||_V^2 \ \ \ \forall t \in [0,T], \end{aligned}$$

we obtain

$$\begin{aligned} (\phi _t(.),m\nabla u(.) +\frac{N-1}{2}u(.))\bigl |_0^T + T \bigl ( |\phi ^1|_H^2 + ||\phi ^0||_V^2 \bigl ) = \frac{1}{2} \int \! \! \! \int _{\Sigma }m\cdot \nu \biggl (\frac{\partial \phi }{\partial \nu }\biggl )^2d\Sigma . \end{aligned}$$

We also have

$$\begin{aligned} \bigl | m\nabla u(t) +\frac{N-1}{2}u(t) \bigl |^2 \le R_0 |\nabla \phi (t) |^2 \ \ \ \forall t \in [0,T], \end{aligned}$$

which implies, by Gronwall inequality, that

$$\begin{aligned} \biggl | \bigl ( \phi _t(.),m \nabla \phi (.) +\frac{N-1}{2} \phi (.) ) \bigl |_0^T \biggl | \le 2R_0 \bigl (|\phi ^1|_H^2 + ||\phi ^0||_V^2\bigl ). \end{aligned}$$

Finally, combining all the above estimates, we conclude that

$$\begin{aligned} \bigl (T-2R_0\bigl )\bigl (|\phi ^1|_H^2 + ||\phi ^0||_V^2\bigl ) \le \frac{R_0}{2} \ \!\!\!\!\int _{\Sigma }\biggl (\frac{\partial \phi }{\partial \nu }\biggl )^2d\Sigma , \end{aligned}$$

which is exactly (5.1). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaves-Silva, F.W. A hyperbolic system and the cost of the null controllability for the Stokes system. Comp. Appl. Math. 34, 1057–1074 (2015). https://doi.org/10.1007/s40314-014-0165-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40314-014-0165-4

Keywords

Mathematics Subject Classification (2010)

Navigation