Skip to main content
Log in

On the stabilization of a hyperbolic Stokes system under geometric control condition

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this article, we study the stabilization problem for a hyperbolic-type Stokes system posed on a bounded domain. We show that when the damping effects are restricted to a subdomain satisfying the geometric control condition, the energy of the system decays exponentially. The result is a consequence of a new quasi-mode estimate for the Stokes system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alinhac, S., Gérard, P.: Opérateurs pseudo-différentiels et théorème de Nash-Moser. EDP Sciences (1991)

  2. Bardos, C., Lebeau, G., Rauch, J.: Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J. Control Optim. 30(5), 1024–1065 (1992)

    Article  MathSciNet  Google Scholar 

  3. Burq, N.: Semi-classical estimates for the resolvent in nontrapping geometries. Int. Math. Res. Not. 5, 221–241 (2002)

    Article  MathSciNet  Google Scholar 

  4. Burq, N., Gérard, P.: Stabilisation of wave equations on the torus with rough dampings. arXiv:1801.00983

  5. Burq, N., Lebeau, G.: Mesures de défaut de compacité, application au système de Lamé, Ann. Scient. Éc. Norm. Sup., \(4^{e}\) série, t.34, 817–870 (2001)

  6. Chaves-Silva, F.W.: A hyperbolic system and the cost of the null controllability for the Stokes system. Comput. Appl. Math. 34(3), 1057–1074 (2015)

    Article  MathSciNet  Google Scholar 

  7. Chaves-Silva, F.W., Lebeau, G.: Spectral inequality and optimal cost of controllability for the Stokes system. Control Optim. Calcul. Var. 22(4), 1137–1162 (2016)

    Article  MathSciNet  Google Scholar 

  8. Dehman, B., Le Rousseau, J., Léautaud, M.: Controllability of two coupled wave equations on a compact manifold. Arch. Rat. Mech. Anal. 211(1), 113–187 (2014)

    Article  MathSciNet  Google Scholar 

  9. Gérard, P., Leichtnam, E.: Ergodic properties of eigenfunctions for the Dirichlet problem. Duke. Math. J. 71(2), 559–607 (1993)

    Article  MathSciNet  Google Scholar 

  10. Gérard, P.: Microlocal defect measures. Commun. Partial Differ. Equ. 10, 1347–1382 (1985)

    Article  Google Scholar 

  11. Gearhart, L.: Spectral theory for contraction semigroups on Hilbert space. Trans. Am. Math. Soc. 236, 385–394 (1978)

    Article  MathSciNet  Google Scholar 

  12. Hörmander, L.: Analysis of Linear Differential Operators, vol. 3. Springer, Berlin

  13. Lebeau, G.: Équation des ondes amorties. Boutet de Monvel, A. (Eds.), Algebraic and Geometric Methods in Mathematical Physics. Kluwer Academic, Dordrecht, pp. 73–109 (1996)

  14. Lions, J.L.: On some hyperbolic equations with a pressure term. In: Proceedings of the Conference Dedicated to Louis Nirenberg, Trento. Pitman Research Notes in Mathematics Series, vol. 269. Longman Scientific and Technical, Harlow, pp. 196–208

  15. Medeiros, L.A., Miranda, M.M., Lourêdo, A.T.: Introduction to Exact Control Theory, Method HUM, eduepb (2013)

  16. Melrose, R.B., Sjöstrand, J.: Singularities of boundary value problems I, II. Comm. Pure Appl. Math. 31, 593–617 (1978)

    Article  MathSciNet  Google Scholar 

  17. Rudin, W.: Real and Complex Analysis, 3rd edn. McGraw-Hill, New York (1987)

    MATH  Google Scholar 

  18. Tartar, L.: H-measures: a new approach for studying homogenization, oscillations and concentration effects in partial differential equations. Proc. R. Soc. Edinb. Sect. A 115, 193–230 (1990)

    Article  Google Scholar 

  19. Rauch, J., Taylor, M.: Exponential decay of solutions to hyperbolic equations in bounded domains. Indiana Univ. Math. J. 24, 79–86 (1974)

    Article  MathSciNet  Google Scholar 

  20. Sun, C.: Semi-classical propagation of singularities for the Stokes system. Commun. Partial Differ. Equ. 45(8), 970–1030 (2020)

    Article  MathSciNet  Google Scholar 

  21. Taylor, M.E.: Partial Differential Equations, I, II, Second Edition, Applied Mathematical Sciences. Springer (2011)

  22. Teman, R.: Navier–Stokes Equations, Theory and Numerical Analysis. North Holland, Amsterdam (1977)

  23. Burq, N., Zworski, M.: Geometric control in the presence of a black box. J. Am. Math. Soc. 17(2), 443–471 (2004)

    Article  MathSciNet  Google Scholar 

  24. Zworski, M.: Semi-Classical Analysis, Graduate Studies in Mathematics, vol. 138 (2012)

Download references

Acknowledgements

This article is a part of Ph.D. thesis of the second author. The authors would like to thank professor Gilles Lebeau, the advisor of the second author, for his encouragement and fruitful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenmin Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

F. W. Chaves-Silva and Chenmin Sun were supported by the ERC Project No. 320845: Semi Classical Analysis of Partial Differential Equations, ERC-2012-ADG.

Appendix

Appendix

We will derive the hyperbolic Stokes system (1.2) from certain limit procedure of Lamé system from elastic theory:

$$\begin{aligned} \left\{ \begin{aligned}&\partial _t^2w-\mu \Delta w-(\lambda +\mu )\nabla \text {div} w=0, (t,x)\in [0,T]\times \Omega \\&w(t,.)|_{\partial \Omega }=0 \\&(w(0),\partial _tw(0))=(w_0,z_0)\in (H_0^1(\Omega )\times L^2(\Omega ))^d \end{aligned} \right. \end{aligned}$$
(7.1)

where the solution w(tx) is vector-valued.

Define \( u(t,x):=w(t/\sqrt{\mu },x)\), then we find that

$$\begin{aligned} \partial _t^2 u-\Delta u-\frac{\lambda +\mu }{\mu }\nabla \text {div} u=0. \end{aligned}$$

We let \(\epsilon =\frac{\mu }{\mu +\lambda }\ll 1\), in the case that \(\lambda \gg \mu >0.\) Thus, we obtain a family of equations

$$\begin{aligned} \left\{ \begin{aligned}&\partial _t^2u_{\epsilon }-\Delta u_{\epsilon }+\nabla p_{\epsilon }=0, (t,x)\in [0,T]\times \Omega \\&u_{\epsilon }(t,.)|_{\partial \Omega }=0 \\&(u_{\epsilon }(0),\partial _tu_{\epsilon }(0))=(u_{0,\epsilon },v_{0,\epsilon })\in (H_0^1(\Omega )\times L^2(\Omega ))^d \end{aligned} \right. \end{aligned}$$
(7.2)

where \(p_{\epsilon }=-\frac{1}{\epsilon }\text {div}u_{\epsilon }\) and satisfies \(\int _{\Omega }p_{\epsilon }\hbox {d}x=0\).

We make further assumption on the family of initial data \((u_{0,\epsilon },v_{0,\epsilon })\) so that

$$\begin{aligned} \Vert (u_{0,\epsilon },v_{0,\epsilon })-(u_0,v_0)\Vert _{H^1\times L^2}\le C\epsilon \end{aligned}$$

for some divergence free data \((u_0,v_0)\in V\times H\). In particular, we have

$$\begin{aligned} \Vert \mathrm {div }u_{0,\epsilon }\Vert _{L^2(\Omega )}\le C\epsilon . \end{aligned}$$

From the well-posedness of Lame system, we have that \(u_{\epsilon }\in C([0,T];H_0^1(\Omega )),\partial _t u_{\epsilon }\in C([0,T];L^2(\Omega ))\), and \(p_{\epsilon }\in C([0,T];L^2(\Omega ))\). Moreover, we have the conservation of energy

$$\begin{aligned} E[u_{\epsilon }]=\frac{1}{2}\int _{\Omega }\left( |\partial _t u_{\epsilon }|^2+|\nabla u_{\epsilon }|^2+\epsilon |p_{\epsilon }|^2\right) \hbox {d}x \end{aligned}$$

and therefore

$$\begin{aligned} E[u_{\epsilon }]=\frac{1}{2}\int _{\Omega }\left( |u_{0,\epsilon }|^2+|v_{0,\epsilon }|^2+\frac{1}{\epsilon }|\mathrm {div }u_{0,\epsilon }|^2\right) \hbox {d}x. \end{aligned}$$

From this, we have, up to some subsequence of \((u_{\epsilon },\partial _t u_{\epsilon })\)

$$\begin{aligned} \begin{aligned}&\text {div}u_{\epsilon }\rightarrow 0,\text { in } L^{\infty }([0,T];L^2(\Omega )),\\&u_{\epsilon }*\rightharpoonup u, *\text {weakly in }L^{\infty }([0,T];H_0^1(\Omega )),\\&\partial _tu_{\epsilon }*\rightharpoonup \partial _t u, *\text {weakly in }L^{\infty }([0,T];L^2(\Omega )). \end{aligned} \end{aligned}$$

From the uniform bound of \(\Vert \partial _t u_{\epsilon }\Vert _{L^{\infty }([0,T];L^2(\Omega ))}\), apply Ascoli theorem, we have that (up to some subsequence)

$$\begin{aligned} u_{\epsilon }\rightarrow u, \text { in } C([0,T];L^2(\Omega )). \end{aligned}$$

Using the equation, we conclude that \(\Vert \nabla p_{\epsilon }\Vert _{L^{\infty }([0,T];H^{-1}(\Omega ))}\) is uniformly bounded. Combine with the fact \(\int _{\Omega }p_{\epsilon }=0\), we have that \(\Vert p_{\epsilon }\Vert _{L^{\infty }([0,T];L^{2}(\Omega ))}\) is uniformly bounded, thus up to some subsequence, we may assume that

$$\begin{aligned} p_{\epsilon }*\rightharpoonup p, *\text {weakly in }L^{\infty }([0,T];L^2(\Omega )). \end{aligned}$$

Now it is not difficult to verify that (up) is a weak solution to (1.1). Moreover, p satisfies the zero mean condition

$$\begin{aligned} \int _{\Omega }p\hbox {d}x=0. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaves-Silva, F.W., Sun, C. On the stabilization of a hyperbolic Stokes system under geometric control condition. Z. Angew. Math. Phys. 71, 139 (2020). https://doi.org/10.1007/s00033-020-01366-w

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-020-01366-w

Keywords

Mathematics Subject Classification

Navigation