Skip to main content
Log in

Potential Sources of Inter-Subject Variability in Monoclonal Antibody Pharmacokinetics

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Understanding inter-subject variability in drug pharmacokinetics and pharmacodynamics is important to ensure that all patients attain suitable drug exposure to achieve efficacy and avoid toxicity. Inter-subject variability in the pharmacokinetics of therapeutic monoclonal antibodies (mAbs) is generally moderate to high; however, the factors responsible for the high inter-subject variability have not been comprehensively reviewed. In this review, the extent of inter-subject variability for mAb pharmacokinetics is presented and potential factors contributing to this variability are explored and summarised. Disease status, age, sex, ethnicity, body size, genetic polymorphisms, concomitant medication, co-morbidities, immune status and multiple other patient-specific details have been considered. The inter-subject variability for mAb pharmacokinetics most likely depends on the complex interplay of multiple factors. However, studies aimed at investigating the reasons for the inter-subject variability are sparse. Population pharmacokinetic models and physiologically based pharmacokinetic models are useful tools to identify important covariates, aiding in the understanding of factors contributing to inter-subject variability. Further understanding of inter-subject variability in pharmacokinetics should aid in development of dosing regimens that are more appropriate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Dostalek M, Gardner I, Gurbaxani B, Rose R, Chetty M. Pharmacokinetics, pharmacodynamics and physiologically-based pharmacokinetic modelling of monoclonal antibodies. Clin Pharmacokinet. 2013;52(2):83–124.

    Article  CAS  PubMed  Google Scholar 

  2. Subramanian KN, Weisman LE, Rhodes T, Ariagno R, Sanchez PJ, Steichen J, et al. Safety, tolerance and pharmacokinetics of a humanized monoclonal antibody to respiratory syncytial virus in premature infants and infants with bronchopulmonary dysplasia. MEDI-493 Study Group. Pediatr Infect Dis J. 1998;17(2):110–5.

    Article  CAS  PubMed  Google Scholar 

  3. Cézé N, Ternant D, Piller F, Degenne D, Azzopardi N, Dorval E, et al. An enzyme-linked immunosorbent assay for therapeutic drug monitoring of cetuximab. Ther Drug Monit. 2009;31(5):597–601.

    Article  PubMed  CAS  Google Scholar 

  4. St.Clair EW, Wagner CL, Fasanmade AA, Wang B, Schaible T, Kavanaugh A, et al. The relationship of serum infliximab concentrations to clinical improvement in rheumatoid arthritis: results from ATTRACT, a multicenter, randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 2002;46(6):1451–9.

    Article  CAS  PubMed  Google Scholar 

  5. Cohen S, Freeman T. Metabolic heterogeneity of human gamma-globulin. Biochem J. 1960;76:475–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Solomon A, Waldmann TA, Fahey JL. Clinical and experimental metabolism of normal 6.6s gamma-globulin in normal subjects and in patients with macroglobulinemia and multiple myeloma. J Lab Clin Med. 1963;62:1–17.

    CAS  PubMed  Google Scholar 

  7. Wochner RD, Drews G, Strober W, Waldmann TA. Accelerated breakdown of immunoglobulin G (IgG) in myotonic dystrophy: a hereditary error of immunoglobulin catabolism. J Clin Invest. 1966;45(3):321–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Birke G, Liljedahl SO, Olhagen B, Plantin LO, Ahlinder S. Catabolism and distribution of gamma-globulin. A preliminary study with 131 I-labelled gammaglobulin. Acta Med Scand. 1963;173:589–603.

    Article  CAS  PubMed  Google Scholar 

  9. Keizer R, Huitema AR, Schellens JM, Beijnen J. Clinical pharmacokinetics of therapeutic monoclonal antibodies. Clin Pharmacokinet. 2010;49(8):493–507.

    Article  CAS  PubMed  Google Scholar 

  10. Chiba K, Yoshitsugu H, Kyosaka Y, Iida S, Yoneyama K, Tanigawa T, et al. A comprehensive review of the pharmacokinetics of approved therapeutic monoclonal antibodies in Japan: are Japanese phase I studies still needed? J Clin Pharmacol. 2014;54(5):483–94.

    Article  CAS  PubMed  Google Scholar 

  11. Dirks N, Meibohm B. Population pharmacokinetics of therapeutic monoclonal antibodies. Clin Pharmacokinet. 2010;49(10):633–59.

    Article  CAS  PubMed  Google Scholar 

  12. Wang W, Wang EQ, Balthasar JP. Monoclonal antibody pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther. 2008;84(5):548–58.

    Article  CAS  PubMed  Google Scholar 

  13. Mould D, Green B. Pharmacokinetics and pharmacodynamics of monoclonal antibodies. BioDrugs. 2010;24(1):23–39.

    Article  CAS  PubMed  Google Scholar 

  14. Tabrizi MA, Tseng C-ML, Roskos LK. Elimination mechanisms of therapeutic monoclonal antibodies. Drug Discov Today. 2006;11(1–2):81–8.

    Article  CAS  PubMed  Google Scholar 

  15. Roberts BV, Susano I, Gipson DS, Trachtman H, Joy MS. Contribution of renal and non-renal clearance on increased total clearance of adalimumab in glomerular disease. J Clin Pharmacol. 2013;53(9):919–24.

    Article  CAS  PubMed  Google Scholar 

  16. Mortensen DL, Walicke PA, Wang X, Kwon P, Kuebler P, Gottlieb AB, et al. Pharmacokinetics and pharmacodynamics of multiple weekly subcutaneous efalizumab doses in patients with plaque psoriasis. J Clin Pharmacol. 2005;45(3):286–98.

    Article  CAS  PubMed  Google Scholar 

  17. Lu J-F, Bruno R, Eppler S, Novotny W, Lum B, Gaudreault J. Clinical pharmacokinetics of bevacizumab in patients with solid tumors. Cancer Chemother Pharmacol. 2008;62(5):779–86.

    Article  CAS  PubMed  Google Scholar 

  18. Xu ZH, Lee H, Vu T, Hu C, Yan H, Baker D, et al. Population pharmacokinetics of golimumab in patients with ankylosing spondylitis: impact of body weight and immunogenicity. Int J Clin Pharmacol Ther. 2010;48(9):596–607.

    Article  CAS  PubMed  Google Scholar 

  19. Olszewski WL, Pazdur J, Kubasiewicz E, Zaleska M, Cooke CJ, Miller NE. Lymph draining from foot joints in rheumatoid arthritis provides insight into local cytokine and chemokine production and transport to lymph nodes. Arthritis Rheum. 2001;44(3):541–9.

    Article  CAS  PubMed  Google Scholar 

  20. Rane S, Donahue PMC, Towse T, Ridner S, Chappell M, Jordi J, et al. Clinical feasibility of noninvasive visualization of lymphatic flow with principles of spin labeling MR imaging: implications for lymphedema assessment. Radiology. 2013;269(3):893–902.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Stanton AW, Svensson WE, Mellor RH, Peters AM, Levick JR, Mortimer PS. Differences in lymph drainage between swollen and non-swollen regions in arms with breast-cancer-related lymphoedema. Clin Sci. 2001;101(2):131–40.

    Article  CAS  PubMed  Google Scholar 

  22. Stanton AWB, Modi S, Mellor RH, Peters AM, Svensson WE, Levick JR, et al. A quantitative lymphoscintigraphic evaluation of lymphatic function in the swollen hands of women with lymphoedema following breast cancer treatment. Clin Sci. 2006;110(5):553–61.

    Article  PubMed  Google Scholar 

  23. Hollander W, Reilly P, Burrows BA. Lymphatic flow in human subjects as indicated by the disappearance of i131-labeled albumin from the subcutaneous tissue. J Clin Invest. 1961;40(2):222–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lamka J, Kolarova H, Maresova J, Kvetina J. The influence of experimentally induced pathological states on the flow and composition of central lymph in the rat. Physiol Bohemoslov. 1986;35(4):328–33.

    CAS  PubMed  Google Scholar 

  25. Semaeva E, Tenstad O, Skavland J, Enger M, Iversen PO, Gjertsen BT, et al. Access to the spleen microenvironment through lymph shows local cytokine production, increased cell flux, and altered signaling of immune cells during lipopolysaccharide-induced acute inflammation. J Immunol. 2010;184(8):4547–56.

    Article  CAS  PubMed  Google Scholar 

  26. Waldmann TA, Strober W. Metabolism of immunoglobulins. Prog Allergy. 1969;13:1–110.

    CAS  PubMed  Google Scholar 

  27. Ying M, Ahuja A, Brook F. Gray scale and power doppler sonography of normal cervical lymph nodes: comparison between Chinese and white subjects. J Ultrasound Med. 2002;21(1):59–65.

    PubMed  Google Scholar 

  28. Conway WC, Faries M, Nicholl M, Terando A, Glass E, Sim M, et al. Age-related lymphatic dysfunction in melanoma patients. Ann Surg Oncol. 2009;16(6):1548–52.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kennedy C, Bastiaens MT, Bajdik CD, Willemze R, Westendorp RGJ, Bouwes Bavinck JN. Effect of smoking and sun on the aging skin. J Investig Dermatol. 2003;120(4):548–54.

    Article  CAS  PubMed  Google Scholar 

  30. Luscieti P, Hubschmid T, Cottier H, Hess MW, Sobin LH. Human lymph node morphology as a function of age and site. J Clin Pathol. 1980;33(5):454–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xu Z, Davis HM, Zhou H. Rational development and utilization of antibody-based therapeutic proteins in pediatrics. Pharmacol Ther. 2013;137(2):225–47.

    Article  CAS  PubMed  Google Scholar 

  32. Edlund H, Melin J, Parra-Guillen ZP, Kloft C. Pharmacokinetics and pharmacokinetic-pharmacodynamic relationships of monoclonal antibodies in children. Clin Pharmacokinet. 2015;54(1):35–80.

    Article  CAS  PubMed  Google Scholar 

  33. Tabrizi M, Bornstein GG, Suria H. Biodistribution mechanisms of therapeutic monoclonal antibodies in health and disease. AAPS J. 2010;12(1):33–43.

    Article  CAS  PubMed  Google Scholar 

  34. Lentner C. Geigy scientific tables, vol. 1: units of measurement, body fluids, composition of the body, and nutrition. 8th ed. Basel: Wiley; 1981. pp. 217–27.

  35. Fomon SJ, Haschke F, Ziegler EE, Nelson SE. Body composition of reference children from birth to age 10 years. Am J Clin Nutr. 1982;35(5):1169–75.

    CAS  PubMed  Google Scholar 

  36. Kauffman R. Drug therapeutics in the infant and child. In: Yaffe S, Aranda J, editors. Pediatric pharmacology: therapeutic principles in practise. Philadelphia: WB Saunders; 1992. p. 212–9.

    Google Scholar 

  37. Robbie GJ, Zhao L, Mondick J, Losonsky G, Roskos LK. Population pharmacokinetics of palivizumab, a humanized anti-respiratory syncytial virus monoclonal antibody, in adults and children. Antimicrob Agents Chemother. 2012;56(9):4927–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kagan L, Mager DE. Mechanisms of subcutaneous absorption of rituximab in rats. Drug Metab Dispos. 2013;41(1):248–55.

    Article  CAS  PubMed  Google Scholar 

  39. Kagan L, Turner MR, Balu-Iyer SV, Mager DE. Subcutaneous absorption of monoclonal antibodies: role of dose, site of injection, and injection volume on rituximab pharmacokinetics in rats. Pharm Res. 2012;29(2):490–9.

    Article  CAS  PubMed  Google Scholar 

  40. Xu Z, Wang Q, Zhuang Y, Frederick B, Yan H, Bouman-Thio E, et al. Subcutaneous bioavailability of golimumab at 3 different injection sites in healthy subjects. J Clin Pharmacol. 2010;50(3):276–84.

    Article  CAS  PubMed  Google Scholar 

  41. Havas E, Parviainen T, Vuorela J, Toivanen J, Nikula T, Vihko V. Lymph flow dynamics in exercising human skeletal muscle as detected by scintography. J Physiol (Lond). 1997;504(Pt 1):233–9.

    Article  CAS  PubMed Central  Google Scholar 

  42. Richter W, Bhansali S, Morris M. Mechanistic determinants of biotherapeutics absorption following SC administration. AAPS J. 2012;14(3):559–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Porter CJH, Charman SA. Lymphatic transport of proteins after subcutaneous administration. J Pharm Sci. 2000;89(3):297–310.

    Article  CAS  PubMed  Google Scholar 

  44. Swartz MA. The physiology of the lymphatic system. Adv Drug Deliv Rev. 2001;50(1–2):3–20.

    Article  CAS  PubMed  Google Scholar 

  45. Ng CM, Joshi A, Dedrick RL, Garovoy MR, Bauer RJ. Pharmacokinetic-pharmacodynamic-efficacy analysis of efalizumab in patients with moderate to severe psoriasis. Pharm Res. 2005;22(7):1088–100.

    Article  CAS  PubMed  Google Scholar 

  46. Sun Y-N, Lu J-F, Joshi A, Compton P, Kwon P, Bruno RA. Population pharmacokinetics of efalizumab (humanized monoclonal anti-CD11a antibody) following long-term subcutaneous weekly dosing in psoriasis subjects. J Clin Pharmacol. 2005;45(4):468–76.

    Article  CAS  PubMed  Google Scholar 

  47. Hayashi N, Tsukamoto Y, Sallas WM, Lowe PJ. A mechanism-based binding model for the population pharmacokinetics and pharmacodynamics of omalizumab. Br J Clin Pharmacol. 2007;63(5):548–61.

    Article  CAS  PubMed  Google Scholar 

  48. Peterson MC, Stouch BJ, Chen D, et al. A population PK/PD model describes the rapid, and sustained suppression of urinary N-telopeptide following administration of AMG 162, a fully human monoclonal antibody against RANKL, to healthy postmenopausal women. AAPS J. 2004;6(S1). http://abstracts.aaps.org/SecureView/AAPSJournal/radb51lv0bx.pdf

  49. Peterson MC, Jang G, Kim W, Gurrola E, Kinsey A, Dansey R. Selection of a phase 3 dose regimen for denosumab based on pharmacokinetic (PK), pharmacodynamic (PD), and safety data from multiple subcutaneous (SC) dosing regimens in breast cancer patients (pts) with bone metastases (BM). J Clin Oncol. 2006;24(18S):3086.

    Google Scholar 

  50. Le Couteur DG, Cogger VC, McCuskey RS, De Cabo R, Smedsrød B, Sorensen KK, et al. Age-related changes in the liver sinusoidal endothelium. Ann N Y Acad Sci. 2007;1114(1):79–87.

    Article  CAS  Google Scholar 

  51. Collins JC, Stockert RJ, Morell AG. Asialoglycoprotein receptor expression in murine pregnancy and development. Hepatology. 1984;4(1):80–3.

    Article  CAS  PubMed  Google Scholar 

  52. Stockert RJ, Gärtner U, Morell AG, Wolkoff AW. Effects of receptor-specific antibody on the uptake of desialylated glycoproteins in the isolated perfused rat liver. J Biol Chem. 1980;255(9):3830–1.

    CAS  PubMed  Google Scholar 

  53. Poulin P. A single-species approach considering additional physiological information for prediction of hepatic clearance of glycoprotein derivate therapeutics. Clin Pharmacokinet. 2011;50(10):665–74.

    Article  CAS  PubMed  Google Scholar 

  54. Sarin H. Physiologic upper limits of pore size of different blood capillary types and another perspective on the dual pore theory of microvascular permeability. J Angiogenes Res. 2010;2:14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Mulivor AW, Lipowsky HH. Inflammation- and ischemia-induced shedding of venular glycocalyx. Am J Physiol Heart Circ Physiol. 2004;286(5):H1672–80.

    Article  CAS  PubMed  Google Scholar 

  56. Vugmeyster Y, Harrold J, Xu X. Absorption, distribution, metabolism, and excretion (ADME) studies of biotherapeutics for autoimmune and inflammatory conditions. AAPS J. 2012;14(4):714–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Eisenberg C, Seta N, Appel M, Feldmann G, Durand G, Feger J. Asialoglycoprotein receptor in human isolated hepatocytes from normal liver and its apparent increase in liver with histological alterations. J Hepatol. 1991;13(3):305–9.

    Article  CAS  PubMed  Google Scholar 

  58. Slama A, Zinbi H, Feger J, Dodeur M. Comparative determination of the asialoglycoprotein receptor by ligand and antibody binding in hepatocytes from normal and diabetic rats. Biol Cell. 1988;63(3):367–9.

    Article  CAS  PubMed  Google Scholar 

  59. Dodeur M, Coumoul S, Scarmato P, Durand G, Feger J, Agneray J. Asialoorosomucoid degradation by normal and diabetic rat hepatocytes. Eur J Biochem. 1984;140(3):577–81.

    Article  CAS  PubMed  Google Scholar 

  60. Stohrer M, Boucher Y, Stangassinger M, Jain RK. Oncotic pressure in solid tumors is elevated. Cancer Res. 2000;60(15):4251–5.

    CAS  PubMed  Google Scholar 

  61. Jain RK. Transport of molecules, particles, and cells in solid tumors. Annu Rev Biomed Eng. 1999;1(1):241–63.

    Article  CAS  PubMed  Google Scholar 

  62. Brown RS, Kaminski MS, Fisher SJ, Chang AE, Wahl RL. Intratumoral microdistribution of [131I]MB-1 in patients with B-cell lymphoma following radioimmunotherapy. Nucl Med Biol. 1997;24(7):657–63.

    Article  CAS  PubMed  Google Scholar 

  63. Shockley TR, Lin K, Nagy JA, Tompkins RG, Yarmush ML, Dvorak HF. Spatial distribution of tumor-specific monoclonal antibodies in human melanoma xenografts. Cancer Res. 1992;52(2):367–76.

    CAS  PubMed  Google Scholar 

  64. Kliwinski C, Cooper PR, Perkinson R, Mabus JR, Tam SH, Wilkinson TM, et al. Contribution of FcRn binding to intestinal uptake of IgG in suckling rat pups and human FcRn-transgenic mice. Am J Physiol Gastrointest Liver Physiol. 2013;304(3):262–70.

    Article  CAS  Google Scholar 

  65. Martin MG, Wu SV, Walsh JH. Ontogenetic development and distribution of antibody transport and Fc receptor mRNA expression in rat intestine. Dig Dis Sci. 1997;42(5):1062–9.

    Article  CAS  PubMed  Google Scholar 

  66. Hornby P, Cooper P, Kliwinski C, Ragwan E, Mabus J, Harman B, et al. Human and non-human primate intestinal FcRn expression and immunoglobulin G transcytosis. Pharm Res. 2014;31(4):908–22.

    Article  CAS  PubMed  Google Scholar 

  67. Israel EJ, Taylor S, Wu Z, Mizoguchi E, Blumberg RS, Bhan A, et al. Expression of the neonatal Fc receptor, FcRn, on human intestinal epithelial cells. Immunology. 1997;92(1):69–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Shah U, Dickinson BL, Blumberg RS, Simister NE, Lencer WI, Walker WA. Distribution of the IgG Fc receptor, FcRn, in the human fetal intestine. Pediatr Res. 2003;53(2):295–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sarvas H, Seppälä I, Kurikka S, Siegberg R, Mäkelä O. Half-life of the maternal IgG1 allotype in infants. J Clin Immunol. 1993;13(2):145–51.

    Article  CAS  PubMed  Google Scholar 

  70. Freeman T. Gamma globulin metabolism in normal humans and in patients. Ser Haematol. 1965;4:76–86.

    Google Scholar 

  71. Gurbaxani B, Dostalek M, Gardner I. Are endosomal trafficking parameters better targets for improving mAb pharmacokinetics than FcRn binding affinity? Mol Immunol. 2013;56(4):660–74.

    Article  CAS  PubMed  Google Scholar 

  72. Andersen JT, Sandlie I. The versatile MHC class I-related FcRn protects IgG and albumin from degradation: implications for development of new diagnostics and therapeutics. Drug Metab Pharmacokinet. 2009;24(4):318–32.

    Article  CAS  PubMed  Google Scholar 

  73. Uno Y, Utoh M, Iwasaki K. Polymorphisms of neonatal Fc receptor in cynomolgus and rhesus macaques. Drug Metab Pharmacokinet. 2014;29(5):427–30.

    Article  PubMed  CAS  Google Scholar 

  74. Wani MA, Haynes LD, Kim J, Bronson CL, Chaudhury C, Mohanty S, et al. Familial hypercatabolic hypoproteinemia caused by deficiency of the neonatal Fc receptor, FcRn, due to a mutant β2-microglobulin gene. Proc Natl Acad Sci USA. 2006;103(13):5084–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ishii-Watabe A, Saito Y, Suzuki T, Tada M, Ukaji M, Maekawa K, et al. Genetic polymorphisms of FCGRT encoding FcRn in a Japanese population and their functional analysis. Drug Metab Pharmacokinet. 2010;25(6):578–87.

    Article  CAS  PubMed  Google Scholar 

  76. de Bono JS, Tolcher AW, Forero A, Vanhove GFA, Takimoto C, Bauer RJ, et al. ING-1, a monoclonal antibody targeting Ep-CAM in patients with advanced adenocarcinomas. Clin Cancer Res. 2004;10(22):7555–65.

    Article  PubMed  Google Scholar 

  77. Ternant D, Ducourau E, Perdriger A, Corondan A, Le Goff B, Devauchelle-Pensec V, et al. Relationship between inflammation and infliximab pharmacokinetics in rheumatoid arthritis. Br J Clin Pharmacol. 2014;78(1):118–28.

    Article  CAS  PubMed  Google Scholar 

  78. Beum PV, Kennedy AD, Taylor RP. Three new assays for rituximab based on its immunological activity or antigenic properties: analyses of sera and plasmas of RTX-treated patients with chronic lymphocytic leukemia and other B cell lymphomas. J Immunol Methods. 2004;289(1–2):97–109.

    Article  CAS  PubMed  Google Scholar 

  79. Kuang B, King L, Wang HF. Therapeutic monoclonal antibody concentration monitoring: free or total? Bioanalysis. 2010;2(6):1125–40.

    Article  CAS  PubMed  Google Scholar 

  80. Arribas J, Borroto A. Protein ectodomain shedding. Chem Rev. 2002;102(12):4627–38.

    Article  CAS  PubMed  Google Scholar 

  81. Manshouri T, K-a Do, Wang X, Giles FJ, O’Brien SM, Saffer H, et al. Circulating CD20 is detectable in the plasma of patients with chronic lymphocytic leukemia and is of prognostic significance. Blood. 2003;101(7):2507–13.

    Article  CAS  PubMed  Google Scholar 

  82. Albitar M, Do K-A, Johnson MM, Giles FJ, Jilani I, O’Brien S, et al. Free circulating soluble CD52 as a tumor marker in chronic lymphocytic leukemia and its implication in therapy with anti-CD52 antibodies. Cancer. 2004;101(5):999–1008.

    Article  CAS  PubMed  Google Scholar 

  83. Lennon S, Barton C, Banken L, Gianni L, Marty M, Baselga J, et al. Utility of serum HER2 extracellular domain assessment in clinical decision making: pooled analysis of four trials of trastuzumab in metastatic breast cancer. J Clin Oncol. 2009;27(10):1685–93.

    Article  CAS  PubMed  Google Scholar 

  84. Moreno-Aspitia A, Hillman DW, Dyar SH, Tenner KS, Gralow J, Kaufman PA, et al. Soluble human epidermal growth factor receptor 2 (HER2) levels in patients with HER2-positive breast cancer receiving chemotherapy with or without trastuzumab: results from North Central Cancer Treatment Group adjuvant trial N9831. Cancer. 2013;119(15):2675–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Tokuda Y, Watanabe T, Omuro Y, Ando M, Katsumata N, Okumura A, et al. Dose escalation and pharmacokinetic study of a humanized anti-HER2 monoclonal antibody in patients with HER2/neu-overexpressing metastatic breast cancer. Br J Cancer. 1999;81(8):1419–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Baselga J, Tripathy D, Mendelsohn J, Baughman S, Benz CC, Dantis L, et al. Phase II study of weekly intravenous recombinant humanized anti-p185HER2 monoclonal antibody in patients with HER2/neu-overexpressing metastatic breast cancer. J Clin Oncol. 1996;14(3):737–44.

    CAS  PubMed  Google Scholar 

  87. Pegram MD, Lipton A, Hayes DF, Weber BL, Baselga JM, Tripathy D, et al. Phase II study of receptor-enhanced chemosensitivity using recombinant humanized anti-p185HER2/neu monoclonal antibody plus cisplatin in patients with HER2/neu-overexpressing metastatic breast cancer refractory to chemotherapy treatment. J Clin Oncol. 1998;16(8):2659–71.

    CAS  PubMed  Google Scholar 

  88. Mahmood I, Green M. Pharmacokinetic and pharmacodynamic considerations in the development of therapeutic proteins. Clin Pharmacokinet. 2005;44(4):331–47.

    Article  CAS  PubMed  Google Scholar 

  89. Enevold C, Baslund B, Linde L, Josephsen NL, Tarp U, Lindegaard H, et al. Interleukin-6-receptor polymorphisms rs12083537, rs2228145, and rs4329505 as predictors of response to tocilizumab in rheumatoid arthritis. Pharmacogenet Genomics. 2014;24(8):401–5.

    CAS  PubMed  Google Scholar 

  90. Machavaram KK, Almond LM, Rostami-Hodjegan A, Gardner I, Jamei M, Tay S, et al. A physiologically based pharmacokinetic modeling approach to predict disease-drug interactions: suppression of CYP3A by IL-6. Clin Pharmacol Ther. 2013;94(2):260–8.

    Article  CAS  PubMed  Google Scholar 

  91. Takeuchi T, Miyasaka N, Tatsuki Y, Yano T, Yoshinari T, Abe T, et al. Baseline tumour necrosis factor alpha levels predict the necessity for dose escalation of infliximab therapy in patients with rheumatoid arthritis. Ann Rheum Dis. 2011;70(7):1208–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Straub RH, Paimela L, Peltomaa R, Schölmerich J, Leirisalo-Repo M. Inadequately low serum levels of steroid hormones in relation to interleukin-6 and tumor necrosis factor in untreated patients with early rheumatoid arthritis and reactive arthritis. Arthritis Rheum. 2002;46(3):654–62.

    Article  CAS  PubMed  Google Scholar 

  93. Lecluse LA, Driessen RB, Spuls PI, et al. Extent and clinical consequences of antibody formation against adalimumab in patients with plaque psoriasis. Arch Dermatol. 2010;146(2):127–32.

    Article  CAS  PubMed  Google Scholar 

  94. Zhou L, Hoofring S, Wu Y, Vu T, Ma P, Swanson S, et al. Stratification of antibody-positive subjects by antibody level reveals an impact of immunogenicity on pharmacokinetics. AAPS J. 2013;15(1):30–40.

    Article  CAS  PubMed  Google Scholar 

  95. Bendtzen K, Geborek P, Svenson M, Larsson L, Kapetanovic MC, Saxne T. Individualized monitoring of drug bioavailability and immunogenicity in rheumatoid arthritis patients treated with the tumor necrosis factor α inhibitor infliximab. Arthritis Rheum. 2006;54(12):3782–9.

    Article  CAS  PubMed  Google Scholar 

  96. de Vries MK, Wolbink GJ, Stapel SO, de Groot ER, Dijkmans BAC, Aarden LA, et al. Inefficacy of infliximab in ankylosing spondylitis is correlated with antibody formation. Ann Rheum Dis. 2007;66(1):133–4.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Chen X, Hickling T, Kraynov E, Kuang B, Parng C, Vicini P. A mathematical model of the effect of immunogenicity on therapeutic protein pharmacokinetics. AAPS J. 2013;15(4):1141–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Schellekens H. Factors influencing the immunogenicity of therapeutic proteins. Nephrol Dial Transpl. 2005;20(suppl 6):vi3–vi9.

  99. Chirmule N, Jawa V, Meibohm B. Immunogenicity to therapeutic proteins: impact on PK/PD and efficacy. AAPS J. 2012;14(2):296–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. van der Maas A, van den Bemt BJ, Wolbink G, van den Hoogen FH, van Riel PL, den Broeder AA. Low infliximab serum trough levels and anti-infliximab antibodies are prevalent in rheumatoid arthritis patients treated with infliximab in daily clinical practice: results of an observational cohort study. BMC Musculoskelet Disord. 2012;13:184.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Shen J, Townsend R, You X, Shen Y, Zhan P, Zhou Z, et al. Pharmacokinetics, pharmacodynamics, and immunogenicity of belatacept in adult kidney transplant recipients. Clin Drug Investig. 2014;34(2):117–26.

    Article  CAS  PubMed  Google Scholar 

  102. Vugmeyster Y, Xu X, Theil FP, Khawli LA, Leach MW. Pharmacokinetics and toxicology of therapeutic proteins: advances and challenges. World J Biol Chem. 2012;3(4):73–92.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Rosenberg A. Effects of protein aggregates: an immunologic perspective. AAPS J. 2006;8(3):E501–7.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Ratanji KD, Derrick JP, Dearman RJ, Kimber I. Immunogenicity of therapeutic proteins: influence of aggregation. J Immunotoxicol. 2014;11(2):99–109.

    Article  CAS  PubMed  Google Scholar 

  105. Price KS, Hamilton RG. Anaphylactoid reactions in two patients after omalizumab administration after successful long-term therapy. Allergy Asthma Proc. 2007;28(3):313–9.

    Article  CAS  PubMed  Google Scholar 

  106. Ruixo JP, Ma P, Chow A. The utility of modeling and simulation approaches to evaluate immunogenicity effect on the therapeutic protein pharmacokinetics. AAPS J. 2013;15(1):172–82.

    Article  CAS  Google Scholar 

  107. Xue L, Rup B. Evaluation of pre-existing antibody presence as a risk factor for posttreatment anti-drug antibody induction: analysis of human clinical study data for multiple biotherapeutics. AAPS J. 2013;15(3):893–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Schellekens H. The immunogenicity of therapeutic proteins. Discov Med. 2010;9(49):560–4.

    PubMed  Google Scholar 

  109. Bartelds GM, Wijbrandts CA, Nurmohamed MT, Stapel S, Lems WF, Aarden L, et al. Anti-infliximab and anti-adalimumab antibodies in relation to response to adalimumab in infliximab switchers and anti-tumour necrosis factor naive patients: a cohort study. Ann Rheum Dis. 2010;69(5):817–21.

    Article  CAS  PubMed  Google Scholar 

  110. Dowling DJ, Levy O. Ontogeny of early life immunity. Trends Immunol. 2014;35(7):299–310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Rascu A, Repp R, Westerdaal NAC, Kalden JR, van de Winkel JGJ. Clinical relevance of Fcγ receptor polymorphisms. Ann N Y Acad Sci. 1997;815(1):282–95.

    Article  CAS  PubMed  Google Scholar 

  112. Julià M, Guilabert A, Lozano F, et al. The role of fcγ receptor polymorphisms in the response to anti–tumor necrosis factor therapy in psoriasis: a pharmacogenetic study. JAMA Dermatol. 2013;149(9):1033–9.

    Article  PubMed  CAS  Google Scholar 

  113. Tutuncu Z, Kavanaugh A, Zvaifler N, Corr M, Deutsch R, Boyle D. Fcγ receptor type IIIA polymorphisms influence treatment outcomes in patients with inflammatory arthritis treated with tumor necrosis factor α-blocking agents. Arthritis Rheum. 2005;52(9):2693–6.

    Article  CAS  PubMed  Google Scholar 

  114. Nishio S, Yamamoto T, Kaneko K, Tanaka-Matsumoto N, Muraoka S, Kaburaki M, et al. Pharmacokinetic study and Fcgamma receptor gene analysis in two patients with rheumatoid arthritis controlled by low-dose infliximab. Mod Rheumatol. 2009;19(3):329–33.

    Article  CAS  PubMed  Google Scholar 

  115. Ternant D, Berkane Z, Picon L, Gouilleux-Gruart V, Colombel JF, Allez M, et al. Assessment of the influence of inflammation and FCGR3A genotype on infliximab pharmacokinetics and time to relapse in patients with Crohn’s disease. Clin Pharmacokinet. 2015;54(5):551–62.

    Article  CAS  PubMed  Google Scholar 

  116. Prokopec KE, Rhodiner M, Matt P, Lindqvist U, Kleinau S. Down regulation of Fc and complement receptors on B cells in rheumatoid arthritis. Clin Immunol. 2010;137(3):322–9.

    Article  CAS  PubMed  Google Scholar 

  117. Prokopec K, Berntson L, Öman A, Kleinau S. Up regulated complement and Fc receptors in juvenile idiopathic arthritis and correlation with disease phenotype. J Clin Immunol. 2012;32(3):540–50.

    Article  CAS  PubMed  Google Scholar 

  118. Loegering DJ, Blumenstock FA, Cuddy BG. Determination of Kupffer cell Fc receptor function in vivo following injury. Proc Soc Exp Biol Med. 1989;192(3):255–60.

    Article  CAS  PubMed  Google Scholar 

  119. Dall’Ozzo S, Tartas S, Paintaud G, Cartron G, Colombat P, Bardos P, et al. Rituximab-dependent cytotoxicity by natural killer cells: influence of FCGR3A polymorphism on the concentration-effect relationship. Cancer Res. 2004;64(13):4664–9.

    Article  PubMed  Google Scholar 

  120. Meibohm B, Zhou H. Characterizing the impact of renal impairment on the clinical pharmacology of biologics. J Clin Pharmacol. 2012;52:54S–62S.

    Article  PubMed  Google Scholar 

  121. Mentre F, Kovarik J, Gerbeau C. Constructing a prediction interval for time to reach a threshold concentration based on a population pharmacokinetic analysis: an application to basiliximab in renal transplantation. J Pharmacokinet Biopharm. 1999;27(2):213–30.

    Article  CAS  PubMed  Google Scholar 

  122. Kovarik JM, Nashan B, Neuhaus P, Clavien PA, Gerbeau C, Hall ML, et al. A population pharmacokinetic screen to identify demographic-clinical covariates of basiliximab in liver transplantation. Clin Pharmacol Ther. 2001;69(4):201–9.

    Article  CAS  PubMed  Google Scholar 

  123. Kovarik J, Breidenbach T, Gerbeau C, Korn A, Schmidt AG, Nashan B. Disposition and immunodynamics of basiliximab in liver allograft recipients. Clin Pharmacol Ther. 1998;64(1):66–72.

    Article  CAS  PubMed  Google Scholar 

  124. Zhou J, Pop LM, Ghetie V. Hypercatabolism of IgG in mice with lupus-like syndrome. Lupus. 2005;14(6):458–66.

    Article  CAS  PubMed  Google Scholar 

  125. Kneepkens EL, Krieckaert CLM, van der Kleij D, Nurmohamed MT, van der Horst-Bruinsma IE, Rispens T, et al. Lower etanercept levels are associated with high disease activity in ankylosing spondylitis patients at 24 weeks of follow-up. Ann Rheum Dis. 2014;74(10):1825–9.

    Article  PubMed  CAS  Google Scholar 

  126. Wolbink GJ, Voskuyl AE, Lems WF, de Groot E, Nurmohamed MT, Tak PP, et al. Relationship between serum trough infliximab levels, pretreatment C reactive protein levels, and clinical response to infliximab treatment in patients with rheumatoid arthritis. Ann Rheum Dis. 2005;64(5):704–7.

    Article  CAS  PubMed  Google Scholar 

  127. Dirks NL, Nolting A, Kovar A, Meibohm B. Population pharmacokinetics of cetuximab in patients with squamous cell carcinoma of the head and neck. J Clin Pharmacol. 2008;48(3):267–78.

    Article  CAS  PubMed  Google Scholar 

  128. Xu Z, Seitz K, Fasanmade A, Ford J, Williamson P, Xu W, et al. Population pharmacokinetics of infliximab in patients with ankylosing spondylitis. J Clin Pharmacol. 2008;48(6):681–95.

    Article  CAS  PubMed  Google Scholar 

  129. Kuester K, Kovar A, Lupfert C, Brockhaus B, Kloft C. Population pharmacokinetic data analysis of three phase I studies of matuzumab, a humanised anti-EGFR monoclonal antibody in clinical cancer development. Br J Cancer. 2008;98(5):900–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Bruno R, Washington CB, Lu JF, Lieberman G, Banken L, Klein P. Population pharmacokinetics of trastuzumab in patients with HER2+ metastatic breast cancer. Cancer Chemother Pharmacol. 2005;56(4):361–9.

    Article  CAS  PubMed  Google Scholar 

  131. Fasanmade AA, Adedokun OJ, Ford J, Hernandez D, Johanns J, Hu C, et al. Population pharmacokinetic analysis of infliximab in patients with ulcerative colitis. Eur J Clin Pharmacol. 2009;65(12):1211–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Ng CM, Lum BL, Gimenez V, Kelsey S, Allison D. Rationale for fixed dosing of pertuzumab in cancer patients based on population pharmacokinetic analysis. Pharm Res. 2006;23(6):1275–84.

    Article  CAS  PubMed  Google Scholar 

  133. Zhu Y, Hu C, Lu M, Liao S, Marini JC, Yohrling J, et al. Population pharmacokinetic modeling of ustekinumab, a human monoclonal antibody targeting IL-12/23p40, in patients with moderate to severe plaque psoriasis. J Clin Pharmacol. 2009;49(2):162–75.

    Article  CAS  PubMed  Google Scholar 

  134. Kim J, Hayton WL, Robinson JM, Anderson CL. Kinetics of FcRn-mediated recycling of IgG and albumin in human: pathophysiology and therapeutic implications using a simplified mechanism-based model. Clin Immunol. 2007;122(2):146–55.

    Article  CAS  PubMed  Google Scholar 

  135. Anderson CL, Chaudhury C, Kim J, Bronson CL, Wani MA, Mohanty S. Perspective—FcRn transports albumin: relevance to immunology and medicine. Trends Immunol. 2006;27(7):343–8.

    Article  CAS  PubMed  Google Scholar 

  136. Ma P, Yang BB, Wang YM, Peterson M, Narayanan A, Sutjandra L, et al. Population pharmacokinetic analysis of panitumumab in patients with advanced solid tumors. J Clin Pharmacol. 2009;49(10):1142–56.

    Article  CAS  PubMed  Google Scholar 

  137. Mould DR, Baumann A, Kuhlmann J, Keating MJ, Weitman S, Hillmen P, et al. Population pharmacokinetics-pharmacodynamics of alemtuzumab (Campath) in patients with chronic lymphocytic leukaemia and its link to treatment response. Br J Clin Pharmacol. 2007;64(3):278–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Zhuang Y, de Vries DE, Xu Z, Marciniak SJ Jr, Chen D, Leon F, et al. Evaluation of disease-mediated therapeutic protein-drug interactions between an anti-interleukin-6 monoclonal antibody (sirukumab) and cytochrome P450 activities in a phase 1 study in patients with rheumatoid arthritis using a cocktail approach. J Clin Pharmacol. 2015;55(12):1386–1394. doi:10.1002/jcph.561

  139. Schmitt C, Kuhn B, Zhang X, Kivitz AJ, Grange S. Disease-drug-drug interaction involving tocilizumab and simvastatin in patients with rheumatoid arthritis. Clin Pharmacol Ther. 2011;89(5):735–40.

    Article  CAS  PubMed  Google Scholar 

  140. Zhou H, Davis HM. Risk-based strategy for the assessment of pharmacokinetic drug-drug interactions for therapeutic monoclonal antibodies. Drug Discov Today. 2009;14(17–18):891–8.

    Article  CAS  PubMed  Google Scholar 

  141. Kenny JR, Liu MM, Chow AT, Earp JC, Evers R, Slatter JG, et al. Therapeutic protein drug-drug interactions: navigating the knowledge gaps-highlights from the 2012 AAPS NBC Roundtable and IQ Consortium/FDA workshop. AAPS J. 2013;15(4):933–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Evers R, Dallas S, Dickmann LJ, Fahmi OA, Kenny JR, Kraynov E, et al. Critical review of preclinical approaches to investigate cytochrome p450-mediated therapeutic protein drug-drug interactions and recommendations for best practices: a white paper. Drug Metab Dispos. 2013;41(9):1598–609.

    Article  CAS  PubMed  Google Scholar 

  143. Kraynov E, Martin SW, Hurst S, Fahmi OA, Dowty M, Cronenberger C, et al. How current understanding of clearance mechanisms and pharmacodynamics of therapeutic proteins can be applied for evaluation of their drug-drug interaction potential. Drug Metab Dispos. 2011;39(10):1779–83.

    Article  CAS  PubMed  Google Scholar 

  144. Girish S, Martin SW, Peterson MC, Zhang LK, Zhao H, Balthasar J, et al. AAPS workshop report: strategies to address therapeutic protein-drug interactions during clinical development. AAPS J. 2011;13(3):405–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Azam YJ, Machavaram KK, Rostami-Hodjegan A. The modulating effects of endogenous substances on drug metabolising enzymes and implications for inter-individual variability and quantitative prediction. Curr Drug Metab. 2014;15(6):599–619.

    Article  CAS  PubMed  Google Scholar 

  146. Weisman MH, Moreland LW, Furst DE, Weinblatt ME, Keystone EC, Paulus HE, et al. Efficacy, pharmacokinetic, and safety assessment of adalimumab, a fully human anti-tumor necrosis factor-alpha monoclonal antibody, in adults with rheumatoid arthritis receiving concomitant methotrexate: a pilot study. Clin Ther. 2003;25(6):1700–21.

    Article  CAS  PubMed  Google Scholar 

  147. Bunescu A, Seideman P, Lenkei R, Levin K, Egberg N. Enhanced Fcgamma receptor I, alphaMbeta2 integrin receptor expression by monocytes and neutrophils in rheumatoid arthritis: interaction with platelets. J Rheumatol. 2004;31(12):2347–55.

    CAS  PubMed  Google Scholar 

  148. Maini RN, Breedveld FC, Kalden JR, Smolen JS, Davis D, Macfarlane JD, et al. Therapeutic efficacy of multiple intravenous infusions of anti-tumor necrosis factor alpha monoclonal antibody combined with low-dose weekly methotrexate in rheumatoid arthritis. Arthritis Rheum. 1998;41(9):1552–63.

    Article  CAS  PubMed  Google Scholar 

  149. Wijngaarden S, van Roon JA, van de Winkel JG, Bijlsma JW, Lafeber FP. Down-regulation of activating Fcgamma receptors on monocytes of patients with rheumatoid arthritis upon methotrexate treatment. Rheumatology (Oxford). 2005;44(6):729–34.

    Article  CAS  Google Scholar 

  150. Herceptin (trastuzumab): US prescribing information. 2010. http://www.accessdata.fda.gov/drugsatfda_docs/label/2010/103792s5250lbl.pdf. Accessed 12 Dec 2015.

  151. Ganjoo KN, An CS, Robertson MJ, Gordon LI, Sen JA, Weisenbach J, et al. Rituximab, bevacizumab and CHOP (RA-CHOP) in untreated diffuse large B-cell lymphoma: safety, biomarker and pharmacokinetic analysis. Leuk Lymphoma. 2006;47(6):998–1005.

    Article  CAS  PubMed  Google Scholar 

  152. Abuqayyas L, Balthasar JP. Pharmacokinetic mAb-mAb interaction: anti-VEGF mAb decreases the distribution of anti-CEA mAb into colorectal tumor xenografts. AAPS J. 2012;14(3):445–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Xu Y, Hijazi Y, Wolf A, Wu B, Sun YN, Zhu M. Physiologically based pharmacokinetic model to assess the influence of blinatumomab-mediated cytokine elevations on cytochrome P450 enzyme activity. CPT Pharmacomet Syst Pharmacol. 2015;4(9):507–15.

    Article  CAS  Google Scholar 

  154. Ng CM, Bruno R, Combs D, Davies B. Population pharmacokinetics of rituximab (anti-CD20 monoclonal antibody) in rheumatoid arthritis patients during a phase II clinical trial. J Clin Pharmacol. 2005;45(7):792–801.

    Article  CAS  PubMed  Google Scholar 

  155. Meibohm B, Laer S, Panetta JC, Barrett JS. Population pharmacokinetic studies in pediatrics: issues in design and analysis. AAPS J. 2005;7(2):E475–87.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Chetty M, Gill K, Machavaram K, Li L, Gardner I, Rostami A, et al. Emerging covariates on the pharmacokinetics of monoclonal antibodies: do current PBPK models account for the covariates identified in POPPK studies? [abstract no. 3680]. Hersonissos: PAGE (Population Approach Group Europe); 2–5 Jun 2015.

  157. Wang DD, Zhang S, Zhao H, Men AY, Parivar K. Fixed dosing versus body size—based dosing of monoclonal antibodies in adult clinical trials. J Clin Pharmacol. 2009;49(9):1012–24.

    Article  CAS  PubMed  Google Scholar 

  158. Rituxan (rituximab): US prescribing information. 2010. http://www.accessdata.fda.gov/drugsatfda_docs/label/2010/103705s5311lbl.pdf. Accessed 12 Dec 2015.

  159. Avastin (bevacizumab): US prescribing information. 2011. http://www.accessdata.fda.gov/drugsatfda_docs/label/2011/125085s225lbl.pdf. Accessed 12 Dec 2015.

  160. Garg A, Balthasar J. Physiologically-based pharmacokinetic (PBPK) model to predict IgG tissue kinetics in wild-type and FcRn-knockout mice. J Pharmacokinet Pharmacodyn. 2007;34(5):687–709.

    Article  CAS  PubMed  Google Scholar 

  161. Baxter LT, Zhu H, Mackensen DG, Jain RK. Physiologically based pharmacokinetic model for specific and nonspecific monoclonal antibodies and fragments in normal tissues and human tumor xenografts in nude mice. Cancer Res. 1994;54(6):1517–28.

    CAS  PubMed  Google Scholar 

  162. Baxter LT, Zhu H, Mackensen DG, Butler WF, Jain RK. Biodistribution of monoclonal antibodies: scale-up from mouse to human using a physiologically based pharmacokinetic model. Cancer Res. 1995;55(20):4611–22.

    CAS  PubMed  Google Scholar 

  163. Shah DK, Betts AM. Towards a platform PBPK model to characterize the plasma and tissue disposition of monoclonal antibodies in preclinical species and human. J Pharmacokinet Pharmacodyn. 2012;39(1):67–86.

    Article  CAS  PubMed  Google Scholar 

  164. Ferl GZ, Wu AM, DiStefano JJ 3rd. A predictive model of therapeutic monoclonal antibody dynamics and regulation by the neonatal Fc receptor (FcRn). Ann Biomed Eng. 2005;33(11):1640–52.

    Article  PubMed  Google Scholar 

  165. Chen Y, Balthasar JP. Evaluation of a catenary PBPK model for predicting the in vivo disposition of mAbs engineered for high-affinity binding to FcRn. AAPS J. 2012;14(4):850–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Davda JP, Jain M, Batra SK, Gwilt PR, Robinson DH. A physiologically based pharmacokinetic (PBPK) model to characterize and predict the disposition of monoclonal antibody CC49 and its single chain Fv constructs. Int Immunopharmacol. 2008;8(3):401–13.

    Article  CAS  PubMed  Google Scholar 

  167. Urva SR, Yang VC, Balthasar JP. Physiologically based pharmacokinetic model for T84.66: a monoclonal anti-CEA antibody. J Pharm Sci. 2010;99(3):1582–600.

    Article  CAS  PubMed  Google Scholar 

  168. Covell DG, Barbet J, Holton OD, Black CD, Parker RJ, Weinstein JN. Pharmacokinetics of monoclonal immunoglobulin G1, F(ab’)2, and Fab’ in mice. Cancer Res. 1986;46(8):3969–78.

    CAS  PubMed  Google Scholar 

  169. Heiskanen T, Kairemo K. Development of a PBPK model for monoclonal antibodies and simulation of human and mice PBPK of a radiolabelled monoclonal antibody. Curr Pharm Des. 2009;15(9):988–1007.

    Article  CAS  PubMed  Google Scholar 

  170. Fang L, Sun D. Predictive physiologically based pharmacokinetic model for antibody-directed enzyme prodrug therapy. Drug Metab Dispos. 2008;36(6):1153–65.

    Article  CAS  PubMed  Google Scholar 

  171. Chabot JR, Dettling DE, Jasper PJ, Gomes BC. Comprehensive mechanism-based antibody pharmacokinetic modeling. Conf Proc IEEE Eng Med Biol Soc. 2011:4318–23.

  172. Li L, Gardner I, Rose R, Jamei M. Incorporating target shedding into a minimal PBPK-TMDD model for monoclonal antibodies. CPT Pharmacomet Syst Pharmacol. 2014;3:e96.

    Article  CAS  Google Scholar 

  173. Cao Y, Balthasar JP, Jusko WJ. Second-generation minimal physiologically-based pharmacokinetic model for monoclonal antibodies. J Pharmacokinet Pharmacodyn. 2013;40(5):597–607.

    Article  CAS  PubMed  Google Scholar 

  174. Cao Y, Jusko WJ. Applications of minimal physiologically-based pharmacokinetic models. J Pharmacokinet Pharmacodyn. 2012;39(6):711–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Fronton L, Pilari S, Huisinga W. Monoclonal antibody disposition: a simplified PBPK model and its implications for the derivation and interpretation of classical compartment models. J Pharmacokinet Pharmacodyn. 2014;41(2):87–107.

    Article  CAS  PubMed  Google Scholar 

  176. Li L, Gardner I, Dostalek M, Jamei M. Simulation of monoclonal antibody pharmacokinetics in humans using a minimal physiologically based model. AAPS J. 2014;16(5):1097–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Elmeliegy M, Lowe P, Krzyzanski W. Simplification of complex physiologically based pharmacokinetic models of monoclonal antibodies. AAPS J. 2014;16(4):810–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Zhao L, Ji P, Li Z, Roy P, Sahajwalla CG. The antibody drug absorption following subcutaneous or intramuscular administration and its mathematical description by coupling physiologically based absorption process with the conventional compartment pharmacokinetic model. J Clin Pharmacol. 2013;53(3):314–25.

    Article  CAS  PubMed  Google Scholar 

  179. Kagan L, Zhao J, Mager DE. Interspecies pharmacokinetic modeling of subcutaneous absorption of rituximab in mice and rats. Pharm Res. 2014;31(12):3265–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Jamei M, Dickinson GL, Rostami-Hodjegan A. A framework for assessing inter-individual variability in pharmacokinetics using virtual human populations and integrating general knowledge of physical chemistry, biology, anatomy, physiology and genetics: a tale of ‘bottom-up’ vs ‘top-down’ recognition of covariates. Drug Metab Pharmacokinet. 2009;24(1):53–75.

    Article  CAS  PubMed  Google Scholar 

  181. Jamei M, Marciniak S, Feng K, Barnett A, Tucker G, Rostami-Hodjegan A. The Simcyp population-based ADME simulator. Expert Opin Drug Metab Toxicol. 2009;5(2):211–23.

    Article  CAS  PubMed  Google Scholar 

  182. Torkildsen Ø, Utsi E, Mellgren SI, Harbo HF, Vedeler CA, Myhr K-M. Ethnic variation of Fcγ receptor polymorphism in Sami and Norwegian populations. Immunology. 2005;115(3):416–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoranjenni Chetty.

Ethics declarations

Conflict of interest

Katherine L. Gill, Krishna K. Machavaram, Rachel H. Rose and Manoranjenni Chetty are employees of Simcyp (a Certara company) and declare no conflicts of interest that might be relevant to the contents of this manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 837 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gill, K.L., Machavaram, K.K., Rose, R.H. et al. Potential Sources of Inter-Subject Variability in Monoclonal Antibody Pharmacokinetics. Clin Pharmacokinet 55, 789–805 (2016). https://doi.org/10.1007/s40262-015-0361-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-015-0361-4

Keywords

Navigation