Skip to main content
Log in

A theoretical study on the dynamics of the gas phase reaction of NH2(2B1) with HO2(2A″)

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Quasi-classical trajectory calculations and stochastic one-dimensional chemical master equation simulation methods are used to study the dynamics of the reaction of amidogen radical [NH2(2B1)] with hydroperoxyl radical [HO2(2A″)] on the lowest singlet electronic state. The title complex reaction takes place on a multi-well multichannel potential energy surface consisting of three deep potential wells and one van der Waals complex. In quasi-classical trajectory calculations a new analytical potential energy surface based on CCSD(T)/aug-cc-pVTZ//MPW1K/6-31+G(d,p) ab initio method was driven and used to study the dynamics of the title reaction. In quasi-classical trajectory calculations, the reactive cross sections and reaction probabilities are determined for 200–2000 K relative translational energies to calculate the rate constants. The same ab initio method was used to have the necessary data for solving the one-dimensional chemical master equation to calculate the rate constants of different channels. In solving the master equation, the Lennard-Jones potential model was used to form the collision between the collider gases. The fractional populations of different intermediates and products in the early stages of the reaction were examined to determine the role of the energized intermediates and the van der Waals complex on the dynamics of the title reaction. Although the calculated total rate constants from both methods are in good agreement with the reported experimental values in the literature, the quasi-classical trajectory simulation predicts the formation of NH2O + OH as the major channel in the title reaction in accordance with the previous studies (Sumathi and Peyerimhoff, Chem. Phys. Lett., 263:742–748, 1996), while the stochastic master equation simulation predicts the formation of HNO + H2O as the major products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R. Sumathi, S.D. Peyerimhoff, Chem. Phys. Lett. 263, 742–748 (1996)

    Article  CAS  Google Scholar 

  2. M. Nicolet, J. Can, Chem. 52, 1381 (1974)

    CAS  Google Scholar 

  3. O.M. Sarkisov, S.G. Cheskis, E.A. Sviridenkov, Izv. Akad. Nauk. SSSR 11, 2612 (1978)

    Google Scholar 

  4. R. Simonaitis, J. Heicklen, J. Phys. Chem. 80, 1 (1976)

    Article  CAS  Google Scholar 

  5. B. Laszlo, Z.B. Alfassi, P. Neta, R.E. Huie, J. Phys. Chem. A 102, 8498–8504 (1998)

    Article  CAS  Google Scholar 

  6. S.G. Cheskis, O.M. Sarkisov, Chem. Phys. Lett. 62, 72 (1979)

    Article  CAS  Google Scholar 

  7. R. Lesclaux, Rev. Chem. Intermediates 5, 347–392 (1984)

    Article  CAS  Google Scholar 

  8. C. Pouchan, B. Lam, D.L. Bishop, J. Phys. Chem. 91, 4804 (1987)

    Article  Google Scholar 

  9. J.W. Bozzelli, A.M. Dean, J. Phys. Chem. 93, 1058–1065 (1989)

    Article  CAS  Google Scholar 

  10. V.A. Lozovskii, V.A. Nadtochenko, O.M. Sarkisov, S.G. Cheskis, Kint. Catl. 20, 918 (1979)

    Google Scholar 

  11. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria et al., Gaussian 2009, Revision A. 02; Gaussian, Inc.: Wallingford, CT (2009)

  12. B.J. Lynch, D.G. Truhlar, J. Phys. Chem. A 105, 2936–2941 (2001)

    Article  CAS  Google Scholar 

  13. G.D. Purvis III, R.J. Bartlett. J. Chem. Phys. 1982, 76 (1910)

    Google Scholar 

  14. T.H. Dunning Jr, J. Chem. Phys. 90, 1007–1023 (1989)

    Article  CAS  Google Scholar 

  15. S.H. Robertson, D.R. Glowacki, C.-H. Liang, C. Morley, R. Shannon, M. Blitz, P.W. Seakins, M.J. Pilling, MESMER (Master Equation Solver for Multi-Energy Well Reactions), 2008–2013; an object oriented C++ program implementing master equation methods for gas phase reactions with arbitrary multiple wells. http://sourceforge.net/projects/mesmer. Accessed 12 Feb 2016

  16. D.R. Glowacki, C.-H. Liang, C. Morley, M.J. Pilling, M.J. Robertson, J. Phys. Chem. A 116, 9545–9560 (2012)

    Article  CAS  Google Scholar 

  17. S.H. Robertson, M.J. Pilling, L.C. Jitariu, I.H. Hillier, Phys. Chem. Chem. Phys. 9, 4085–4097 (2007)

    Article  CAS  Google Scholar 

  18. J.A. Miller, S.J. Klippenstein, J. Phys. Chem. A 110, 10528–10544 (2006)

    Article  CAS  Google Scholar 

  19. R.G. Gilbert, S.C. Smith, Theory of Unimolecular and Recombination Reactions (Blackwell Scientific Publications, Oxford, 1990)

    Google Scholar 

  20. Struan H. Robertson, David R. Glowacki, Chi-Hsiu Liang, Chris Morley, Robin Shannon, Mark Blitz, Paul W. Seakins and Michael J. Pilling, MESMER (Master Equation Solver for Multi-Energy well Reactions), Version 3.0, User’s Manual, Last updated: 19 February 2014

  21. P.J. Robinson, K.A. Holbrook, Unimolecular Reactions (Wiley-Interscience, New York, 1972)

    Google Scholar 

  22. W. Forst, Theory of Unimolecular Reactions (Academic Press, New York, 1973)

    Google Scholar 

  23. R.G. Gilbert, S.C. Smith, Theory of Unimolecular and Recombination Reactions (Blackwell Scientific, Oxford, 1990)

    Google Scholar 

  24. T. Baer, W.L. Hase, Unimolecular Reaction Dynamics (Theory and Experiments; Oxford University Press, New York, 1996)

    Google Scholar 

  25. J.T. Bartis, B. Widom, J. Chem. Phys. 60, 3474–3482 (1974)

    Article  CAS  Google Scholar 

  26. W.H. Miller, J. Am. Chem. Soc. 1979(101), 6810–6814 (1979)

    Article  Google Scholar 

  27. J.W. Davies, N.J.B. Green, M.J. Pilling, Chem. Phys. Lett. 126, 373–379 (1986)

    Article  CAS  Google Scholar 

  28. S.H. Robertson, M.J. Pilling, D.L. Baulch, N. Green, J. B. J. Phys. Chem. 99, 13452–13460 (1995)

    Article  CAS  Google Scholar 

  29. J.R. Barker, N.F. Ortiz, J.M. Preses, L.L. Lohr, A. Maranzana, P.J. Stimac, T.L. Nguyen, Multi-well Program Suite User Manual, University of Michigan Ann Arbor, MI 48109-2143 (2014)

  30. S.H. Mousavipour, S.S. Asemani, J. Phys. Chem. 119, 5553–5565 (2015)

    Article  CAS  Google Scholar 

  31. X. Hu, W. Hase, T. Pirraglia, J. Comput. Chem. 12, 1014–1024 (1991)

    Article  CAS  Google Scholar 

  32. W.L. Hase, R.J. Duchovic, X. Hu, A. Komornicki, K. Lim, D.-H. Lu, G.H. Peslherbe, K.N. Swamy, S.R. Vande Linde, H. Wang, Wolfe RJ VENUS96, A general chemical dynamics computer program. QCPE 16, 671 (1996)

    Google Scholar 

  33. D.H. Lu, W.L. Hase, R.J. Wolf, J. Chem. Phys. 85, 4422 (1986)

    Article  CAS  Google Scholar 

  34. S.H. Mousavipour, Z. Homayoon, J. Iran. Chem. Soc. 9, 957–969 (2012)

    Article  CAS  Google Scholar 

  35. R.L. Brown, J. Res. Natl. Bur. Stand. 86, 357–359 (1981)

    Article  CAS  Google Scholar 

  36. C. Eckart, Phys. Rev. 35, 1303 (1930)

    Article  CAS  Google Scholar 

  37. E.P. Wigner, Phys. Chem. B 19, 203 (1932)

    Google Scholar 

  38. O.M. Sarkisov, S.G. Cheskis, V.A. Nadtochenko, E.A. Svirdenkov, V.I. Vedeneev, Arch. Combust. 4, 111 (1984)

    CAS  Google Scholar 

  39. S.F. Xu, M.C. Lin, Int. J. Chem. Kinet. 41, 667–677 (2009)

    Article  CAS  Google Scholar 

  40. Z.F. Xu, M.C. Lin, Chem. Phys. Lett. 440, 12–18 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Research Council of Shiraz University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Hosein Mousavipour.

Electronic supplementary material

Below is the link to the electronic supplementary material.

13738_2016_825_MOESM1_ESM.docx

Vibrational term values and moments of inertia of the stationary points calculated at the MPW1K/6-31+G(d,p) level of theory are listed in Table S1. Parameters for the analytical potential energy surface in equation (5) are shown in Tables S2 to S4. Numbering of the atoms related to the analytical potential energy surface is shown in Figure S1. The Supporting Information is available free of charge on the JICS Publications website. (DOCX 117 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mousavipour, S.H., Keshavarz, F. & Soleimanzadegan, S. A theoretical study on the dynamics of the gas phase reaction of NH2(2B1) with HO2(2A″). J IRAN CHEM SOC 13, 1115–1124 (2016). https://doi.org/10.1007/s13738-016-0825-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-016-0825-y

Keywords

Navigation