Skip to main content
Log in

Dynamics of imidogen reaction with hydroxyl radical: a theoretical approach

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Dynamics of imidogen reaction with hydroxyl radical over the lowest doublet potential energy surface was investigated at the CBS-QB3 level of theory using the two methods of quasi-classical trajectory (QCT) and master equation calculations. The reaction probabilities and total classical reactive cross sections were calculated at the collisional energies of 10.5 to 157.5 kJ mol−1. The major products of the title reaction were found to be HNOH, H2NO, H(D) + HNO(S) and H2O + N(D) at the studied collisional energy range. Also, the results of both approaches indicated that the main product is H(D) and HNO(S) at low temperatures, in good agreement with the literature. To calculate the total rate constant of the title reaction, the QCT results were supplied to the collision theory. Comparison of the rate constants obtained from the QCT and master equation calculations with those reported by the available experimental and theoretical data exhibited good agreement between the two calculation methods and the experimental data over the temperature range of 300 to 1000 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. R. Sumathi, S. Peyerimhoff, A quantum statistical analysis of the rate constant for the HO2 + NH2 reaction. Chem. Phys. Lett. 263, 742–748 (1996)

    CAS  Google Scholar 

  2. L.L. Lohr Jr., M. Hanamura, K. Morokuma, The 1,2 hydrogen shift as an accompaniment to ring closure and opening: ab initio MO study of thermal rearrangements on the C2H3N potential energy hypersurface. J. Am. Chem. Soc. 105, 5541–5547 (1983)

    CAS  Google Scholar 

  3. www.danpritchard.com

  4. R.K. Lyon, Thermal DeNOx controlling nitrogen oxides emissions by a noncatalytic process. Environ. Sci. Technol. 21(3), 231–236 (1987)

    CAS  PubMed  Google Scholar 

  5. M. Alexander, P. Dagdigian, M.E. Jacox, C. Kolb, C. Melius, H. Rabitz, M. Smooke, W. Tsang, Nitramine propellant ignition and combustion research. Prog. Energy Combust. Sci. 17, 263–296 (1991)

    CAS  Google Scholar 

  6. T. Fueno, V. Bonacic-Koutecky, J. Koutecky, Ab initio CI study of chemical reactions of singlet and triplet imidogen (NH) radicals. J. Am. Chem. Soc. 105, 5547–5557 (1983)

    CAS  Google Scholar 

  7. B. Haynes, Reactions of ammonia and nitric oxide in the burnt gases of fuel-rich hydrocarbon-air flames. Combust. Flame 28, 81–91 (1977)

    CAS  Google Scholar 

  8. B. Haynes, The oxidation of hydrogen cyanide in fuel-rich flames. Combust. Flame 28, 113–121 (1977)

    CAS  Google Scholar 

  9. A. Mann, D. Williams, An investigation of diffuse cloud chemistry–I. Observational tests for surface chemistry on grains. Mon. Not. R. Astron. Soc. 209, 33–49 (1984)

    CAS  Google Scholar 

  10. R. Wagenblast, D. Williams, T. Millar, L. Nejad, On the origin of NH in diffuse interstellar clouds. Mon. Not. R. Astron. Soc. 260, 420–424 (1993)

    CAS  Google Scholar 

  11. J. Flores-Mijangos, J.M. Brown, F. Matsushima, H. Odashima, K. Takagi, L.R. Zink, K.M. Evenson, The far-infrared spectrum of the 14NH radical in its X3Σ − state. J. Mol. Spectrosc. 225, 189–195 (2004)

    CAS  Google Scholar 

  12. M. Litvak, E.R. Kuiper, Cometary NH-ultraviolet and submillimeter emission. Astrophys. J. 253, 622–633 (1982)

    CAS  Google Scholar 

  13. S. Yorka, Photometric molecular indices in warm carbon stars-NH, CN, CH, and C2. Astron. J. 88, 1816–1824 (1983)

    CAS  Google Scholar 

  14. F.E. Roach, On the relative abundance of CN, C2, CH, NH, and OH in the solar reversing layer. Astrophys. J. 89, 99–115 (1939)

    CAS  Google Scholar 

  15. J. Dickey, J. Crovisier, I. Kazes, Emission-absorption observations of OH in diffuse interstellar clouds. Astron. Astrophys. 98, 271–285 (1981)

    CAS  Google Scholar 

  16. I. Isaksen, S. Dalsøren, Getting a better estimate of an atmospheric radical. Science 331, 38–39 (2011)

    CAS  PubMed  Google Scholar 

  17. R. Müller, R. Salawitch, P. Crutzen, W. Lahoz, G. Manney, R. Toumi, Upper stratospheric processes in DL Albritton et al (eds) (1988). World Meteorological Organsation, Geneva, Switzerland 1999

  18. K.A. Sahetchian, R. Rigny, J. Tardieu, J. Tardieu de Maleissye, L. Batt, M. Anwar Khan, S. Mathews, The pyrolysis of organic hydroperoxides (ROOH), Symposium (International) on Combustion 1992, 24, pp. 637–643

  19. D. Perner, U. Platt, M. Trainer, G. Hübler, J. Drummond, W. Junkermann, J. Rudolph, B. Schubert, A. Volz, D. Ehhalt, Measurements of tropospheric OH concentrations: a comparison of field data with model predictions. J. Atmos. Chem. 5, 185–216 (1987)

    CAS  Google Scholar 

  20. S.H. Mousavipour, F. Pirhadi, A. HabibAgahi, A theoretical investigation on the kinetics and mechanism of the reaction of amidogen with hydroxyl radical. J. Phys. Chem. A 113, 12961–12971 (2009)

    CAS  PubMed  Google Scholar 

  21. R.D. Johnson, NIST computational chemistry comparison and benchmark database. http://srdata.nist.gov/cccbdb (2006)

  22. R. Sumathi, D. Sengupta, M.T. Nguyen, Theoretical study of the H2 + NO and related reactions of [H2NO] isomers. J. Phys. Chem. A 102, 3175–3183 (1998)

    CAS  Google Scholar 

  23. N. Cohen, K. Westberg, Chemical kinetic data sheets for high-temperature reactions. Part II. J. Phys. Chem. Ref. Data 20, 1211–1311 (1991)

    CAS  Google Scholar 

  24. W. Hack, H. Kurzke, The reaction of NH2-radicals with electronically excited molecular oxygen O2(1Δg). Ber. Bunsenges. Phys. Chem. 89, 86–93 (1985)

    CAS  Google Scholar 

  25. D. Baulch, C. Cobos, R. Cox, C. Esser, P. Frank, T. Just, J. Kerr, M. Pilling, J. Troe, R. Walker, Evaluated kinetic data for combustion modelling. J. Phys. Chem. Ref. Data 21, 411–734 (1992)

    CAS  Google Scholar 

  26. D. Baulch, C.T. Bowman, C. Cobos, R. Cox, T. Just, J. Kerr, M. Pilling, D. Stocker, J. Troe, W. Tsang, Evaluated kinetic data for combustion modeling: supplement II. J. Phys. Chem. Ref. Data 34(3), 757–1397 (2005)

    CAS  Google Scholar 

  27. J.R. Barker, N.F. Ortiz, J.M. Preses, L.L. Lohr, A. Maranzana, P.J. Stimac, T.L. Nguyen, T.D. Kumar, MultiWell program suite user manual. Ann Arbor 1001, 48109-2143 (2011)

    Google Scholar 

  28. M. Frisch, G. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. Petersson, Gaussian 09, revision a. 02, Gaussian. Inc., Wallingford, CT 2009, 200

  29. E. Mazarei, S.H. Mousavipour, A theoretical study on the dynamics of the reaction of CH radicals with water. J. Phys. Chem. A 121, 8033–8047 (2017)

    CAS  PubMed  Google Scholar 

  30. J.A. Montgomery Jr., M.J. Frisch, J.W. Ochterski, G.A. Petersson, A complete basis set model chemistry. VI. Use of density functional geometries and frequencies. J. Chem. Phys. 110, 2822–2827 (1999)

    CAS  Google Scholar 

  31. C. Gonzalez, H.B. Schlegel, Reaction path following in mass-weighted internal coordinates. J. Phys. Chem. 94, 5523–5527 (1990)

    CAS  Google Scholar 

  32. M.D. Harmony, V.W. Laurie, R.L. Kuczkowski, R. Schwendeman, D. Ramsay, F.J. Lovas, W.J. Lafferty, A.G. Maki, Molecular structures of gas-phase polyatomic molecules determined by spectroscopic methods. J. Phys. Chem. Ref. Data 8, 619–722 (1979)

    CAS  Google Scholar 

  33. D.R. Lide, CRC Handbook of Chemistry and Physics (CRC, Boca Raton, 2012)

    Google Scholar 

  34. D.R. Lide, CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data (CRC Press, Boca Raton, 1995)

    Google Scholar 

  35. P.J. Linstrom, W. Mallard, NIST Chemistry Webbook. NIST standard reference database No. 69 (2001)

  36. Z. Homayoon, J.M. Bowman, A global potential energy surface describing the N(2D) + H2O reaction and a quasiclassical trajectory study of the reaction to NH + OH. J. Phys. Chem. A 118, 545–553 (2014)

    CAS  PubMed  Google Scholar 

  37. D. Yang, M. Koszykowski, J. Durant Jr., The reaction of NH2 (X2B1) with O(X3P): a theoretical study employing Gaussian 2 theory. J. Chem. Phys. 101, 1361–1368 (1994)

    CAS  Google Scholar 

  38. S.H. Mousavipour, S.S. Asemani, Theoretical study on the dynamics of the reaction of HNO (1A′) with HO2 (2A″). J. Phys. Chem. A 119, 5553–5565 (2015)

    CAS  PubMed  Google Scholar 

  39. S.J. Klippenstein, L. Harding, B. Ruscic, R. Sivaramakrishnan, N. Srinivasan, M.-C. Su, J. Michael, Thermal decomposition of nh2oh and subsequent reactions: ab initio transition state theory and reflected shock tube experiments. J. Phys. Chem. A 113, 10241–10259 (2009)

    CAS  PubMed  Google Scholar 

  40. E. Vessally, S. Ebrahimi, M. Goodarzi, A. Seif, Insight into detailed mechanism of the atmospheric reaction of imidogen with hydroxyl: a computational study. Struct. Chem. 25, 169–175 (2014)

    CAS  Google Scholar 

  41. S.P. Walch, Theoretical characterization of the reaction NH2 + O → products. J. Chem. Phys. 99, 3804–3808 (1993)

    CAS  Google Scholar 

  42. M.W. Chase Jr., JANAF thermochemical table. J. Phys. Chem. Ref. Data 14(1), 188–200 (1985)

    Google Scholar 

  43. W.R. Anderson, Oscillator strengths of amidogen and the heats of formation of imidogen and amidogen. J. Phys. Chem. 93, 530–536 (1989)

    CAS  Google Scholar 

  44. Y. Kurosaki, T. Takayanagi, Ab initio molecular orbital study of the N(2D) + H2O reaction. J. Phys. Chem. A 103, 436–442 (1999)

    CAS  Google Scholar 

  45. J. Ischtwan, M.A. Collins, Molecular potential energy surfaces by interpolation. J. Chem. Phys. 100, 8080–8088 (1994)

    CAS  Google Scholar 

  46. M.A. Collins, K.C. Thompson, Group theory and the global functional shapes for molecular potential energy surfaces. Chemical Group Theory: Techniques and Applications (1995), pp. 191–234

  47. R. Farwig, Rate of convergence of Shepard’s global interpolation formula. Math. Comput. 46, 577–590 (1986)

    Google Scholar 

  48. P. Lancaster, K. Salkauskas, Curve and Surface Fitting: An Introduction (Academic Press, Cambridge, 1986)

    Google Scholar 

  49. K.C. Thompson, M.A. Collins, Molecular potential-energy surfaces by interpolation: further refinements. J. Chem. Soc. Faraday Trans. 93, 871–878 (1997)

    CAS  Google Scholar 

  50. R.P. Bettens, M.A. Collins, Learning to interpolate molecular potential energy surfaces with confidence: a Bayesian approach. J. Chem. Phys. 111, 816–826 (1999)

    CAS  Google Scholar 

  51. A.H. Duncan, M.A. Collins, Construction of interpolated potential energy surfaces using constrained dynamics: application to rotational inelastic scattering. J. Chem. Phys. 111, 1346–1353 (1999)

    CAS  Google Scholar 

  52. D.H. Zhang, M.A. Collins, S.-Y. Lee, First-principles theory for the H + H2O, D2O reactions. Science 290, 961–963 (2000)

    CAS  PubMed  Google Scholar 

  53. R.P. Bettens, M.A. Collins, M.J. Jordan, D.H. Zhang, Ab initio potential energy surface for the reactions between H2O and H. J. Chem. Phys. 112, 10162–10172 (2000)

    CAS  Google Scholar 

  54. H.W. Schranz, S. Nordholm, G. Nyman, An efficient microcanonical sampling procedure for molecular systems. J. Chem. Phys. 94, 1487–1498 (1991)

    CAS  Google Scholar 

  55. D.T. Gillespie, A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22, 403–434 (1976)

    CAS  Google Scholar 

  56. D.T. Gillespie, A rigorous derivation of the chemical master equation. Physica A 188(1–3), 404–425 (1992)

    CAS  Google Scholar 

  57. J.R. Barker, Multiple-Well, multiple-path unimolecular reaction systems. I. MultiWell computer program suite. Int. J. Chem. Kinet. 33, 232–245 (2001)

    CAS  Google Scholar 

  58. H. Hippler, J. Troe, H. Wendelken, Collisional deactivation of vibrationally highly excited polyatomic molecules. II. Direct observations for excited toluene. J. Chem. Phys. 78, 6709–6717 (1983)

    CAS  Google Scholar 

  59. P.D. Neufeld, A. Janzen, R. Aziz, Empirical equations to calculate 16 of the transport collision integrals Ω (l, s)* for the Lennard-Jones (12–6) potential. J. Chem. Phys. 57, 1100–1102 (1972)

    CAS  Google Scholar 

  60. R.G. Gilbert, S.C. Smith, Theory of Unimolecular and Recombination Reactions. Publishers’ Business Services [distributor] (1990)

  61. P.J. Robinson, K.A. Holbrook, Unimolecular reactions (Wiley-Interscience, New York, 1972)

    Google Scholar 

  62. W. Forst, Theory of Unimolecular Reactions (Academic, New York, 1973)

    Google Scholar 

  63. H. Eyring, The activated complex in chemical reactions. J. Chem. Phys. 3, 107–115 (1935)

    CAS  Google Scholar 

  64. W. Forst, Temperature-dependent A factor in thermal unimolecular reactions. J. Phys. Chem. 83, 100–108 (1979)

    CAS  Google Scholar 

  65. W. Forst, Unimolecular Reactions: A Concise Introduction (Cambridge University Press, Cambridge, 2003)

    Google Scholar 

  66. H.W. Brown, G.C. Pimentel, Photolysis of nitromethane and of methyl nitrite in an argon matrix; infrared detection of nitroxyl, HNO. J. Chem. Phys. 29, 883–888 (1958)

    CAS  Google Scholar 

  67. M.P. Rissanen, A.J. Eskola, T.L. Nguyen, J.R. Barker, J. Liu, J. Liu, E. Halme, R.S. Timonen, CH2NH2 + O2 and CH3CHNH2 + O2 reaction kinetics: photoionization mass spectrometry experiments and master equation calculations. J. Phys. Chem. A 118, 2176–2186 (2014)

    CAS  PubMed  Google Scholar 

  68. L. Yang, J.-Y. Liu, C. Luo, J.R. Barker, Theoretical study on the kinetics of the reaction CH2Br + NO2. J. Phys. Chem. A 118, 3313–3318 (2014)

    CAS  PubMed  Google Scholar 

  69. J.A. Miller, C.T. Bowman, Mechanism and modeling of nitrogen chemistry in combustion. Prog. Energy Combust. Sci. 15, 287–338 (1989)

    CAS  Google Scholar 

  70. R.P. Wayne, I. Barnes, P. Biggs, J. Burrows, C. Canosa-Mas, J. Hjorth, G. Le Bras, G. Moortgat, D. Perner, G. Poulet, The nitrate radical: physics, chemistry, and the atmosphere. Atmos. Environ. Part A. Gen. Top. 25, 1–203 (1991)

    Google Scholar 

  71. M.D. Bartberger, J.M. Fukuto, K. Houk, On the acidity and reactivity of HNO in aqueous solution and biological systems. Proc. Natl. Acad. Sci. 98, 2194–2198 (2001)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The financial support from the Research Council of Shiraz University is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Hosein Mousavipour.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 126 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asemani, S.S., Mousavipour, S.H. Dynamics of imidogen reaction with hydroxyl radical: a theoretical approach. J IRAN CHEM SOC 17, 1987–2000 (2020). https://doi.org/10.1007/s13738-020-01905-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-020-01905-2

Keywords

Navigation