Skip to main content

First-Principles Molecular Dynamics and Computed Rate Constants for the Series of OH-HX Reactions (X = H or the Halogens): Non-Arrhenius Kinetics, Stereodynamics and Quantum Tunnel

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2018 (ICCSA 2018)

Abstract

This paper is part of a series aiming at elucidating the mechanisms involved in the non-Arrhenius behavior of the four-body OH + HX (X = H, F,Cl, Br and I) reactions. These reactions are very important in atmospheric chemistry. Additionally, these four-body reactions are also of basic relevance for chemical kinetics. Their kinetics has manifested non-Arrhenius behavior: the experimental rate constants for the OH + HCl and OH + H2 reactions, when extended to low temperatures, show a concave curvature in the Arrhenius plot, a phenomenon designated as sub-Arrhenius behavior, while reactions with HBr and HI are considered as typical processes that exhibit negative temperature dependence of the rate constants (anti-Arrhenius behavior). From a theoretical point of view, these reactions have been studied in order to obtain the potential energy surface and to reproduce these complex rate constants using the Transition State Theory. Here, in order to understand the non-Arrhenius mechanism, we exploit recent information from ab initio molecular dynamics. For OH + HI and OH + HBr, the visualizations of rearrangements of bonds along trajectories has shown how molecular reorientation occurs in order that the reactants encounter a mutual angle of approach favorable for them to proceed to reaction. Besides the demonstration of the crucial role of stereodynamics, additional documentation was also provided on the interesting manifestation of the roaming phenomenon, both regarding the search for reactive configurations sterically favorable to reaction and the subsequent departure of products involving their vibrational excitation. Under moderate tunneling regime, the OH + H2 reaction was satisfactory described by deformed-Transition-State Theory. In the same reaction, the catalytic effect of water can be assessed by path integral molecular dynamics. For the OH + HCl reaction, the theoretical rate coefficients calculated with Bell tunneling correction were in good agreement with experimental data in the entire temperature range 200–2000 K, with minimal effort compared to much more elaborate treatments. Furthermore, the Born-Oppenheimer molecular dynamics simulation showed that the orientation process was less effective than for HBr and HI reactions, emphasizing the role of the quantum tunneling effect of penetration of an energy barrier in the reaction path along the potential energy surface. These results can shed light on the clarification of the different non-Arrhenius mechanisms involved in four-body reaction, providing rate constants and their temperature dependence of relevance for pure and applied chemical kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lilington, J.: Light Water Reactor Safety (1994)

    Google Scholar 

  2. Zuo, J., Zhao, B., Guo, H., Xie, D.: Rate coefficients of the HCl + OH → Cl + H2O reaction from ring polymer molecular dynamics. J. Phys. Chem. A 120, 3433–3440 (2016)

    Article  Google Scholar 

  3. Zuo, J., Zhao, B., Guo, H., Xie, D.: A global coupled cluster potential energy surface for HCl + OH ↔ Cl + H2O. Phys. Chem. Chem. Phys. 15, 9770–9777 (2017)

    Article  Google Scholar 

  4. Kaufman, F., Del Greco, F.P.: Fast reactions of OH radicals. Symp. Combust. 9, 659–668 (1963)

    Article  Google Scholar 

  5. Orkin, V.L., Kozlov, S.N., Poskrebyshev, G.A., Kurylo, M.J.: Rate constant for the reaction of OH with H2 between 200 and 480 K. J. Phys. Chem. A 110, 6978–6985 (2006)

    Article  Google Scholar 

  6. Lam, K.Y., Davidson, D.F., Hanson, R.K.: A shock tube study of H2 + OH → H2O + H using OH laser absorption. Int. J. Chem. Kinet. 45, 363–373 (2013)

    Article  Google Scholar 

  7. Meisner, J., Kästner, J.: Reaction rates and kinetic isotope effects of H2 + OH → H2O + H. J. Chem. Phys. 144, 174303 (2016)

    Article  Google Scholar 

  8. Ravishankara, A.R., Wine, P.H., Wells, J.R.: The OH + HBr reaction revisited 447, 83–85 (1985)

    Google Scholar 

  9. Sims, I.R., Smith, I.W.M., Clary, D.C., Bocherel, P., Rowe, B.R.: Ultra-low temperature kinetics of neutral-neutral reactions - new experimental and theoretical results for OH + HBr between 295 K and 23 K. J. Chem. Phys. 101, 1748–1751 (1994)

    Article  Google Scholar 

  10. Atkinson, D.B., Jaramillo, V.I., Smith, M.A.: Low-temperature kinetic behavior of the bimolecular reaction OH + HBr (76 − 242 K). J. Phys. Chem. A 101, 3356–3359 (1997)

    Article  Google Scholar 

  11. Bedjanian, Y., Riffault, V., Le Bras, G., Poulet, G.: Kinetic study of the reactions of OH and OD with HBr and DBr. J. Photochem. Photobiol. A Chem. 128, 15–25 (1999)

    Article  Google Scholar 

  12. Jaramillo, V.I., Smith, M.A.: Temperature-dependent kinetic isotope effects in the gas-phase reaction: OH + HBr. J. Phys. Chem. A 105, 5854–5859 (2001)

    Article  Google Scholar 

  13. Mullen, C., Smith, M.A.: Temperature dependence and kinetic isotope effects for the OH + HBr reaction and H/D isotopic variants at low temperatures (53–135 K) measured using a pulsed supersonic Laval nozzle flow reactor. J. Phys. Chem. A 109, 3893–3902 (2005)

    Article  Google Scholar 

  14. Jaramillo, V.I., Gougeon, S., Le Picard, S.D., Canosa, A., Smith, M.A., Rowe, B.R.: A consensus view of the temperature dependence of the gas phase reaction: OH + HBr → H2O + Br. Int. J. Chem. Kinet. 34, 339–344 (2002)

    Article  Google Scholar 

  15. Takacs, G.A., Glass, G.P.: Reactions of hydroxyl radicals with some hydrogen halides. J. Phys. Chem. 77, 1948–1951 (1973)

    Article  Google Scholar 

  16. Mac Leod, H., Balestra, C., Jourdain, J.L., Laverdet, G., Bras, G.L.E.: Kinetic study of the reaction OH + HI by laser photolysis-resonance fluorescence. Int. J. Chem. Kinet. 22, 1167–1176 (1990)

    Article  Google Scholar 

  17. Lancar, I.T., Mellouki, A., Poulet, G.: Kinetics of the reactions of hydrogen iodide with hydroxyl and nitrate radicals. Chem. Phys. Lett. 177, 554–558 (1991)

    Article  Google Scholar 

  18. Butkovskaya, N.I., Setser, D.W.: Dynamics of OH and OD radical reactions with HI and GeH4 studied by infrared chemiluminescence of the H2O and HDO products. J. Chem. Phys. 106, 5028–5042 (1997)

    Article  Google Scholar 

  19. Campuzano-Jost, P., Crowley, J.N.: Kinetics of the reaction of OH with HI between 246 and 353 K. J. Phys. Chem. A 103, 2712–2719 (1999)

    Article  Google Scholar 

  20. Moise, A., Parker, D.H., Ter Meulen, J.J.: State-to-state inelastic scattering of OH by HI: a comparison with OH-HCI and OH-HBr. J. Chem. Phys. 126, 124302 (2007)

    Article  Google Scholar 

  21. Inada, Y., Akagane, K.: Non-empirical analysis of the chemical reactions of iodine with steam; I + H2O → HI + OH and I + H2O → IOH + H, in severe light water reactor accidents. J. Nucl. Sci. Technol. 34, 217–221 (1997)

    Article  Google Scholar 

  22. Canneaux, S., Xerri, B., Louis, F., Cantrel, L.: Theoretical study of the gas-phase reactions of iodine atoms (2P3/2) with H2, H2O, HI, and OH. J. Phys. Chem. A 114, 9270–9288 (2010)

    Article  Google Scholar 

  23. Hao, Y., Gu, J., Guo, Y., Zhang, M., Xie, Y., Schaefer III, H.F.: Spin-orbit corrected potential energy surface features for the I (2P3/2) + H2O → HI + OH forward and reverse reactions. Phys. Chem. Chem. Phys. 16, 2641–2646 (2014)

    Article  Google Scholar 

  24. Takacs, G.A., Glass, G.P.: Reactions of hydrogen atoms and hydroxyl radicals with hydrogen bromide. J. Phys. Chem. 77, 1060–1064 (1973)

    Article  Google Scholar 

  25. Smith, I.W.M., Zellner, R.: Rate measurements of reaction of OH by resonance absorption. J. Chem. Soc., Faraday Trans. 8, 1045–1056 (1973)

    Google Scholar 

  26. Wilson, W.E., O’Donovan, J.T., Fristrom, R.M.: Flame inhibition by halogen compounds. In: 12th Symposium on Combustion (1969)

    Article  Google Scholar 

  27. Tsai, P., Che, D., Nakamura, M., Lin, K., Kasai, T.: Orientation dependence in the four-atom reaction of OH + HBr using the single-state oriented OH radical beam. Phys. Chem. Chem. Phys. 12, 2532–2534 (2010)

    Article  Google Scholar 

  28. Tsai, P.-Y., Che, D., Nakamura, M., Lin, K., Kasai, T.: Orientation dependence for Br formation in the reaction of oriented OH radical with HBr molecule. Phys. Chem. Chem. Phys. 13, 1419–1423 (2011)

    Article  Google Scholar 

  29. Che, D.-C., Matsuo, T., Yano, Y., Bonnet, L., Kasai, T.: Negative collision energy dependence of Br formation in the OH + HBr reaction. Phys. Chem. Chem. Phys. 10, 1419–1423 (2008)

    Article  Google Scholar 

  30. Che, D.-C., Doi, A., Yamamoto, Y., Okuno, Y., Kasai, T.: Collision energy dependence for the Br formation in the reaction of OD + HBr. Phys. Scr. 80, 48110 (2009)

    Article  Google Scholar 

  31. Clary, D.C., Stoecklint, T.S., Wickham, A.G., Stoecklin, T.S., Wickham, A.G.: Rate constants for chemical reactions of radicals at low temperatures. J. Chem. Soc., Faraday Trans. 89, 2185–2191 (1993)

    Article  Google Scholar 

  32. Clary, D.C., Nyman, G., Hernandez, R.: Mode selective chemistry in the reactions of OH with HBr and HCl. J. Chem. Phys. 101, 3704–3714 (1994)

    Article  Google Scholar 

  33. Nizamov, B., Setser, D.W., Wang, H., Peslherbe, G.H., Hase, W.L., Nizamov, B., Setser, D.W.: Quasiclassical trajectory calculations for the OH (X2Π) and OD (X2Π) + HBr reactions: energy partitioning and rate constants. J. Chem. Phys. 105, 9897–9911 (1996)

    Article  Google Scholar 

  34. de Oliveira-Filho, A.G.S., Ornellas, F.R., Bowman, J.M.: Quasiclassical trajectory calculations of the rate constant of the OH + HBr → Br + H2O reaction using a full-dimensional Ab initio potential energy surface over the temperature range 5 to 500 K. J. Phys. Chem. Lett. 5, 706–712 (2014)

    Article  Google Scholar 

  35. de Oliveira-Filho, A.G.S., Ornellas, F.R., Bowman, J.M.: Energy disposal and thermal rate constants for the OH + HBr and OH + DBr reactions: quasiclassical trajectory calculations on an accurate potential energy surface. J. Phys. Chem. A 118, 12080 (2014)

    Article  Google Scholar 

  36. Zhang, M., Hao, Y., Guo, Y., Xie, Y., Schaefer, H.F.: Anchoring the potential energy surface for the Br + H2O → HBr + OH reaction. Theor. Chem. Acc. 133, 1513 (2014)

    Article  Google Scholar 

  37. Zahniser, M.S., Kaufman, F.: Kinetics of the reaction of OH with HCl. Chem. Phys. Lett. 27, 507–510 (1974)

    Article  Google Scholar 

  38. Keyser, L.F.: High-pressure flow kinetics. A study of the hydroxyl + hydrogen chloride reaction from 2 to 100 torr. J. Phys. Chem. 88, 4750–4758 (1984)

    Article  Google Scholar 

  39. Molina, M., Molina, L., Smith, C.: The rate of the reaction of OH with HCl. Int. J. Chem. Kinet. 16, 1151–1160 (1984)

    Article  Google Scholar 

  40. Husain, D., Plane, J.M.C., Slater, N.K.H.: Kinetic investigation of the reactions of OH(X2Π) with the hydrogen halides, HCl, DCl, HBr and DBr by time-resolved resonance fluorescence (A2∑ + −X2Π). J. Chem. Soc. Faraday Trans. 2 77, 1949 (1981)

    Article  Google Scholar 

  41. Ravishankara, A.R., Wine, P.H., Wells, J.R., Thompson, R.L.: Kinetic study of the reaction of OH with HCl from 240 to 1055 K. Chem. Phys. Lett. 17, 1281–1297 (1985)

    Google Scholar 

  42. Smith, I.W.M., Williams, M.D.: Effects of isotopic substitution and vibrational excitation on reaction rates. J. Chem. Soc., Faraday Trans. 2(80), 1043–1055 (1986)

    Article  Google Scholar 

  43. Sharkey, P., Smith, I.W.M.: Kinetics of elementary reactions at low temperatures: rate. J. Chem. Soc., Faraday Trans. 89, 631–638 (1993)

    Article  Google Scholar 

  44. Battin-Leclerc, F., Kim, I.K., Talukdar, R.K., Portmann, R.W., Ravishankara, A.R., Steckler, R., Brown, D.: Rate coefficients for the reactions of OH and OD with HCl and DCl between 200 and 400 K. J. Phys. Chem. A 103, 3237–3244 (1999)

    Article  Google Scholar 

  45. Bryukov, M.G., Dellinger, B.: Kinetics of the Gas-Phase Reaction of OH with HCl, 936–943 (2006)

    Google Scholar 

  46. Meisner, J., Kästner, J.: Reaction rates and kinetic isotope effects of H2 + OH → H2O + H, 174303 (2016)

    Google Scholar 

  47. Aquilanti, V., Mundim, K.C., Cavalli, S., Fazio, D., Aguilar, A., Lucas, J.M.: Exact activation energies and phenomenological description of quantum tunneling for model potential energy surfaces. The F + H2 reaction at low temperature. Chem. Phys. 398, 186–191 (2012)

    Article  Google Scholar 

  48. Cavalli, S., Aquilanti, V., Mundim, K.C., De Fazio, D.: Theoretical reaction kinetics astride the transition between moderate and deep tunneling regimes: the F + HD case. J. Phys. Chem. A 118, 6632–6641 (2014)

    Article  Google Scholar 

  49. Silva, V.H.C., Aquilanti, V., de Oliveira, H.C.B., Mundim, K.C.: Uniform description of non-Arrhenius temperature dependence of reaction rates, and a heuristic criterion for quantum tunneling vs classical non-extensive distribution. Chem. Phys. Lett. 590, 201–207 (2013)

    Article  Google Scholar 

  50. Carvalho-Silva, V.H., Aquilanti, V., de Oliveira, H.C.B., Mundim, K.C.: Deformed transition-state theory: deviation from Arrhenius behavior and application to bimolecular hydrogen transfer reaction rates in the tunneling regime. J. Comput. Chem. 38, 178–188 (2017)

    Article  Google Scholar 

  51. Guo, Y., Zhang, M., Xie, Y., Schaefer, H.F.: Communication: some critical features of the potential energy surface for the Cl + H2O → HCl + OH forward and reverse reactions. J. Chem. Phys. 139, 10–14 (2013)

    Google Scholar 

  52. Li, J., Dawes, R., Guo, H.: Kinetic and dynamic studies of the Cl(2Pu) + H2O(X ̃1A 1) → HCl(X ̃1Σ +) + OH(X ̃2Π) reaction on an ab initio based full-dimensional global potential energy surface of the ground electronic state of ClH2O. J. Chem. Phys. 139, (2013)

    Article  Google Scholar 

  53. Zuo, J., Li, Y., Guo, H., Xie, D.: Rate coefficients of the HCl + OH → Cl + H2O reaction from ring polymer molecular dynamics. J. Phys. Chem. A 120, 3433–3440 (2016)

    Article  Google Scholar 

  54. Zuo, J., Xie, C., Guo, H., Xie, D.: Accurate determination of tunneling affected rate coefficients : theory assessing experiment. J. Phys. Chem. Lett. 8, 3392–3397 (2017)

    Article  Google Scholar 

  55. Mallick, S., Sarkar, S., Bandyopadhyay, B., Kumar, P.: Effect of ammonia and formic acid on the OH• + HCl reaction in the troposphere: competition between single and double hydrogen atom transfer pathways. J. Phys. Chem. A 122, 350–363 (2018)

    Article  Google Scholar 

  56. Li, J., Corchado, J.C., Espinosa-Garcia, J., Guo, H.: Final state-resolved mode specificity in HX + OH → X + H2O (X = F and Cl) reactions: a quasi-classical trajectory study. J. Chem. Phys. 142, 84314 (2015)

    Article  Google Scholar 

  57. Song, H., Guo, H.: Mode specificity in the HCl + OH → Cl + H2O reaction: Polanyi’s rules vs sudden vector projection model. J. Phys. Chem. A 119, 826–831 (2015)

    Article  Google Scholar 

  58. Bonnet, L., Larrégaray, P., Duguay, B., Rayes, J.-C., Che, D.-C., Kasai, T.: Stereoselectivity as a probe of unexpected reaction pathways. Chem. Soc. Jpn. 80, 707–710 (2007)

    Article  Google Scholar 

  59. Cireasa, R., Beek, M.C., Van, Moise, A., Meulen, J.J.: Inelastic state-to-state scattering of OH (, J = 3/2, f) by HCl. 74319 (2005)

    Google Scholar 

  60. Chen, J., Xu, X., Xu, X., Zhang, D.H.: A global potential energy surface for the H2 + OH ↔ H2O + H reaction using neural networks. J. Chem. Phys. 138, 154301 (2013)

    Article  Google Scholar 

  61. Martí, C., Pacifici, L., Laganà, A., Coletti, C.: A quantum-classical study of the OH + H2 reactive and inelastic collisions. Chem. Phys. Lett. 674, 103–108 (2017)

    Article  Google Scholar 

  62. Ohno, K., Ito, M., Ichihara, M., Ito, M.: Molecular hydrogen as an emerging therapeutic medical gas for neurodegenerative and other diseases. Oxid. Med. Cell. Longev. (2012)

    Google Scholar 

  63. Dole, M., Wilson, F.R., Fife, W.P.: Hyperbaric hydrogen therapy: a possible treatment for cancer. Science 190, 152–154 (1975)

    Article  Google Scholar 

  64. Ostojic, S.M.: Molecular hydrogen: an inert gas turns clinically effective. Ann. Med. 47, 301–304 (2015)

    Article  Google Scholar 

  65. Ohsawa, I., Ishikawa, M., Takahashi, K., Watanabe, M., Nishimaki, K., Yamagata, K., Katsura, K., Katayama, Y., Asoh, S., Ohta, S.: Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat. Med. 13, 688–694 (2007)

    Article  Google Scholar 

  66. Ichihara, M., Sobue, S., Ito, M., Ito, M., Hirayama, M., Ohno, K.: Beneficial biological effects and the underlying mechanisms of molecular hydrogen - comprehensive review of 321 original articles. Med. Gas Res. 5, 1–21 (2015)

    Article  Google Scholar 

  67. Bhattacharya, S., Panda, A.N., Meyer, H.D.: Multiconfiguration time-dependent Hartree approach to study the OH + H2 reaction. J. Chem. Phys. 132, 8 (2010)

    Google Scholar 

  68. Hao, Y., Gu, J., Guo, Y., Zhang, M., Xie, Y., Schaefer III, H.F.: Spin–orbit corrected potential energy surface features for the I (2P3/2) + H2O → HI + OH forward and reverse reactions. Phys. Chem. Chem. Phys. 16, 2641 (2014)

    Article  Google Scholar 

  69. Li, J., Li, Y., Guo, H.: Communication: covalent nature of XH2O (X F, Cl, and Br) interactions. J. Chem. Phys. 138 (2013)

    Google Scholar 

  70. Marx, D., Hutter, J.: Ab initio molecular dynamics: Theory and implementation. Mod. Methods Algorithms Quantum Chem. 1, 301–449 (2000)

    Google Scholar 

  71. Paranjothy, M., Sun, R., Zhuang, Y., Hase, W.L.: Direct chemical dynamics simulations: coupling of classical and quasiclassical trajectories with electronic structure theory. WIRE Comput. Mol. Sci. 3, 296–316 (2013)

    Article  Google Scholar 

  72. Marx, D., Hutter, J.: Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods. Cambridge University Press, New York (2009)

    Google Scholar 

  73. Kasai, T., Che, D.-C., Okada, M., Tsai, P.-Y., Lin, K.-C., Palazzetti, F., Aquilanti, V.: Directions of chemical change: experimental characterization of the stereodynamics of photodissociation and reactive processes. Phys. Chem. Chem. Phys. 16, 9776 (2014)

    Article  Google Scholar 

  74. Cireasa, R., Moise, A., Ter Meulen, J.J.: Steric effects in state-to-state scattering of OH (2Π3/2, J = 3/2, f) by HCl. J. Chem. Phys. 123, 8 (2005)

    Article  Google Scholar 

  75. Coutinho, N.D., Silva, V.H.C., de Oliveira, H.C.B., Camargo, A.J., Mundim, K.C., Aquilanti, V.: Stereodynamical origin of anti-arrhenius kinetics: negative activation energy and roaming for a four-atom reaction. J. Phys. Chem. Lett. 6, 1553–1558 (2015)

    Article  Google Scholar 

  76. CPMDversion 3.17.1: Copyright IBM (2012)

    Google Scholar 

  77. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 78, 1396 (1997). [Phys. Rev. Lett. 77, 3865 (1996)]

    Article  Google Scholar 

  78. Vanderbilt, D.: Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892–7895 (1990)

    Article  Google Scholar 

  79. Martyna, G.J., Klein, M.L., Tuckerman, M.: Nose-Hoover chains: the canonical ensemble via continuous dynamics. J. Chem. Phys. 97, 2635–2643 (1992)

    Article  Google Scholar 

  80. Coutinho, N.D., Aquilanti, V., Silva, V.H.C., Camargo, A.J., Mundim, K.C., de Oliveira, H.C.B.: Stereodirectional origin of anti-arrhenius kinetics for a tetraatomic hydrogen exchange reaction: born-oppenheimer molecular dynamics for OH + HBr. J. Phys. Chem. A 120, 5408–5417 (2016)

    Article  Google Scholar 

  81. Coutinho, N.D., Carvalho-Silva, V.H., de Oliveira, H.C.B., Aquilanti, V.: The HI + OH → H2O + I reaction by first-principles molecular dynamics: stereodirectional and anti-Arrhenius kinetics. In: Gervasi, O., et al. (eds.) ICCSA 2017. LNCS, vol. 10408, pp. 297–313. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62404-4_22

    Chapter  Google Scholar 

  82. Coutinho, N.D., Sanches-Neto, F.O., Carvalho-Silva, V.H., de Oliveira, H.C.B., Ribeiro, L.A., Aquilanti, V.: Kinetics of the OH + HCl → H2O + Cl reaction: rate determining roles of stereodynamics and roaming, and the of quantum tunnelling. Submitted (2018)

    Google Scholar 

  83. Hause, M.L., Herath, N., Zhu, R., Lin, M.C., Suits, A.G.: Roaming-mediated isomerization in the photodissociation of nitrobenzene. Nat. Chem. 3, 932–937 (2011)

    Article  Google Scholar 

  84. Herath, N., Suits, A.G.: Roaming radical reactions. J. Phys. Chem. Lett. 2, 642–647 (2011)

    Article  Google Scholar 

  85. Tsai, P.-Y., Chao, M.-H., Kasai, T., Lin, K.-C., Lombardi, A., Palazzetti, F., Aquilanti, V.: Roads leading to roam. Role of triple fragmentation and of conical intersections in photochemical reactions: experiments and theory on methyl formate. Phys. Chem. Chem. Phys. 16, 2854–2865 (2014)

    Article  Google Scholar 

  86. Lombardi, A., Palazzetti, F., Aquilanti, V., Li, H.-K., Tsai, P.-Y., Kasai, T., Lin, K.-C.: Rovibrationally excited molecules on the verge of a triple breakdown: molecular and roaming mechanisms in the photodecomposition of methyl formate. J. Phys. Chem. A 120, 5155–5162 (2016)

    Article  Google Scholar 

  87. Nakamura, M., Tsai, P.-Y., Kasai, T., Lin, K.-C., Palazzetti, F., Lombardi, A., Aquilanti, V.: Dynamical, spectroscopic and computational imaging of bond breaking in photodissociation: roaming and role of conical intersections. Faraday Discuss. 177, 77–98 (2015)

    Article  Google Scholar 

  88. Husain, D., Plane, J.M.C., Xiang, C.C.: Kinetic studies of the reactions of OH(X2Π) with hydrogen chloride and deuterium chloride at elevated temperatures by time-resolved resonance fluorescence (A2+ – X2Π). J. Chem. Soc., Faraday Trans. 2(80), 713–728 (1984)

    Article  Google Scholar 

  89. Bryukov, M.G., Dellinger, B., Knyazev, V.D.: Kinetics of the gas-phase reaction of OH with HCl. J. Phys. Chem. A 110, 936–943 (2006)

    Article  Google Scholar 

  90. Sanches-Neto, F.O., Coutinho, N.D., Carvalho-Silva, V.H.: A novel assessment of the role of the methyl radical and water formation channel in the CH3OH + H reaction. Phys. Chem.Chem. Phys. Submit

    Google Scholar 

  91. Marx, D., Parrinello, M.: Ab initio path integral molecular dynamics: basic ideas. J. Chem. Phys. 104, 4077–4082 (1996)

    Article  Google Scholar 

  92. Bell, R.P.: The Tunnel Effect in Chemistry. Chapman and Hall, London (1980)

    Book  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support given by CAPES and CNPq. Valter H. Carvalho-Silva thanks PrP/UEG for research funding programs through PROBIP and PRÓ-PROJETOS programs. This research is also supported by the High Performance Computing Center at the Universidade Estadual de Goiás (UEG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valter H. Carvalho-Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Coutinho, N.D., Aquilanti, V., Sanches-Neto, F.O., Vaz, E.C., Carvalho-Silva, V.H. (2018). First-Principles Molecular Dynamics and Computed Rate Constants for the Series of OH-HX Reactions (X = H or the Halogens): Non-Arrhenius Kinetics, Stereodynamics and Quantum Tunnel. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2018. ICCSA 2018. Lecture Notes in Computer Science(), vol 10964. Springer, Cham. https://doi.org/10.1007/978-3-319-95174-4_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95174-4_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95173-7

  • Online ISBN: 978-3-319-95174-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics