Skip to main content

Advertisement

Log in

Process integration, energy and GHG emission analyses of Jatropha-based biorefinery systems

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Driven by the need to develop a wide variety of products with low environmental impact, biorefineries need to emerge as highly integrated facilities. This becomes effective when overall mass and energy integration through a centralised utility system design is undertaken. An approach combining process integration, energy and greenhouse gas (GHG) emission analyses is shown in this paper for Jatropha biorefinery design, primarily producing biodiesel using oil-based heterogeneously catalysed transesterification or green diesel using hydrotreatment. These processes are coupled with gasification of husk to produce syngas. Syngas is converted into end products, heat, power and methanol in the biodiesel case or hydrogen in the green diesel case. Anaerobic digestion of Jatropha by-products such as fruit shell, cake and/or glycerol has been considered to produce biogas for power generation. Combustion of fruit shell and cake is considered to provide heat. Heat recovery within biodiesel or green diesel production and the design of the utility (heat and power) system are also shown. The biorefinery systems wherein cake supplies heat for oil extraction and seed drying while fruit shells and glycerol provide power generation via anaerobic digestion into biogas achieve energy efficiency of 53 % in the biodiesel system and 57 % in the green diesel system. These values are based on high heating values (HHV) of Jatropha feedstocks, HHV of the corresponding products and excess power generated. Results showed that both systems exhibit an energy yield per unit of land of 83 GJ ha−1. The global warming potential from GHG emissions of the net energy produced (i.e. after covering energy requirements by the biorefinery systems) was 29 g CO2-eq MJ−1, before accounting credits from displacement of fossil-based energy by bioenergy exported from the biorefineries. Using a systematic integration approach for utilisation of whole Jatropha fruit, it is shown that global warming potential and fossil primary energy use can be reduced significantly if the integrated process schemes combined with optimised cultivation and process parameters are adopted in Jatropha-based biorefineries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wahl N, Hildebrandt T, Moser C, Lüdeke-Freund F, Averdunk K (2012) Insights into Jatropha projects worldwide—key facts & figures from a global survey. Leuphana University of Lüneburg, Lüneburg

    Google Scholar 

  2. Devappa RK, Makkar HPS, Becker K (2010) Optimization of conditions for the extraction of phorbol esters from Jatropha oil. Biomass Bioenergy 34(8):1125–1133

    Article  Google Scholar 

  3. Hamarneh AI, Heeres HJ, Broekhuis AA, Picchioni F (2010) Extraction of Jatropha curcas proteins and application in polyketone-based wood adhesives. Int J Adhes Adhes 30(7):615–625

    Article  Google Scholar 

  4. Misailidis N, Campbell GM, Du C, Sadhukhan J, Mustafa M, Mateos-Salvador F, Weightman RM (2009) Evaluating the feasibility of commercial arabinoxylan production in the context of a wheat biorefinery principally producing ethanol. Part 2. Process simulation and economic analysis. Chem Eng Res Des 87:1239–1250

    Article  Google Scholar 

  5. Achten WMJ, Verchot L, Franken YJ, Mathijs E, Singh VP, Aerts R, Muys B (2008) Jatropha bio-diesel production and use. Biomass Bioenergy 32(12):1063–1084

    Article  Google Scholar 

  6. Huaping Z, Zongbin W, Yuanxiong C, Ping Z, Shijie D, Xiaohua L, Zongqiang M (2006) Preparation of biodiesel catalyzed by solid super base of calcium oxide and its refining process. Chinese J Catal 27(5):391–396

    Google Scholar 

  7. Huo H, Wang M, Bloyd C, Putsche V (2008) Life-cycle assessment of energy and greenhouse gas effects of soybean-derived biodiesel and renewable fuels. http://www.transportation.anl.gov/pdfs/AF/467.pdf. Accessed 25 Feb 2013

  8. Singh RN, Vyas DK, Srivastava NSL, Narra M (2008) SPRERI experience on holistic approach to utilize all parts of Jatropha curcas fruit for energy. Renew Energ 33(8):1868–1873

    Article  Google Scholar 

  9. Rivera-Lorca JA, Ku-Vera JC (1997) Chemical composition of three different varieties of J. curcas from Mexico. In: Gubitz GM, Mittelbach M, and Trabi M (eds). Biofuels and industrial products from Jatropha curcas. Jatropha Symposium, Feb 23–Feb 27 1997; Managua, Nicaragua. Technische Universität Graz, Graz (Austria), pp 47–52

  10. Martinez-Herrera J, Siddhuraju P, Francis G, Davila-Ortiz G, Becker K (2006) Chemical composition, toxic/antimetabolic constituents, and effects of different treatments on their levels, in four provenances of Jatropha curcas L. from Mexico. Food Chem 96(1):80–89

    Article  Google Scholar 

  11. Makkar HPS, Becker K (1997) Potential of J. curcas seed meal as a protein supplement to livestock feed. Constraints to its utilisation and possible strategies to overcome constraints. In: Gubitz GM, Mittelbach M, and Trabi M (eds). Biofuels and industrial products from Jatropha curcas. Jatropha Symposium, Feb 23–Feb 27 1997; Managua, Nicaragua. Technische Universitat Graz, Graz (Austria), pp 190–205

  12. FACT Foundation (2010) The Jatropha handbook. http://www.fact-foundation.com/en/Knowledge_and_Expertise/Handbooks?session=crv4nn46ndd6jhpcarlf9kg4b1. Accessed February 2013

  13. Makkar HPS, Martinez-Herrera J, Becker K (2008) Variations in seed number per fruit, seed physical parameters and contents of oil, protein and phorbol ester in toxic and non-toxic genotypes of Jatropha curcas. J Plant Sc 3(4):260–265

    Article  Google Scholar 

  14. Heller J (1996) Physic nut Jatropha curcas L. Promoting the conservation and use of underutilized and neglected crops. Institute of Plant Genetics and Crop Plant Research, Gatersleben/International Plant Genetic Resources Institute, Rome

  15. Jongschaap REE, Corre WJ, Bindraban PS, Brandenburg WA (2007) Claims and facts on Jatropha curcas L.: global Jatropha curcas evaluation, breeding and propagation programme. Plant Research International BV, Wageningen (Netherlands)

  16. Staubmann R, Foidl G, Foidl N, Gubitz GM, Lafferty RM, Arbizu VM, Steiner W (1997) Biogas production from Jatropha curcas press cake. Appl Biochem Biotech 63–65(1):457–467

    Article  Google Scholar 

  17. Lopez O, Foidl G, Foidl N (1997) Production of Biogas from J. curcas Fruit shells. In: Gubitz GM, Mittelbach M, and Trabi M (eds). Biofuels and industrial products from Jatropha curcas. Jatropha Symposium, Feb 23–Feb 27 1997; Managua, Nicaragua. Technische Universitat Graz, Graz (Austria), pp 118–122

  18. Dhanya MS, Gupta N, Joshi HC, Lata (2009) Biogas potentiality of agro-wastes Jatropha fruit coat. Int J Civil Environ Eng 1(3):136–140

    Google Scholar 

  19. Lopez J, Santos M, Perez A, Martin A (2009) Anaerobic digestion of glycerol derived from biodiesel manufacturing. Bioresource Technol 100(23):5609–5615

    Article  Google Scholar 

  20. Thamsiriroj T, Murphy JD (2010) Can rape seed biodiesel meet the European Union sustainability criteria for biofuels? Energy Fuels 24(3):1720–1730

    Article  Google Scholar 

  21. Manurung R, Wever DAZ, Wildschut J, Venderbosch RH, Hidayat H, van Dam JEG, Leijenhorst EJ, Broekhuis AA, Heeres HJ (2009) Valorisation of Jatropha curcas L. parts: nut shell conversion to fast pyrolysis oil. Food Bioprod Process 87(3):187–196

    Article  Google Scholar 

  22. Sricharoenchaikul V, Atong D (2009) Thermal decomposition study on Jatropha curcas L. waste using TGA and fixed bed reactor. J Anal Appl Pyrol 85(1–2):155–162

    Article  Google Scholar 

  23. Ng KS, Sadhukhan J (2011) Process integration and economic analysis of bio-oil platform for the production of methanol and combined heat and power. Biomass Bioenergy 35(3):1153–1169

    Article  Google Scholar 

  24. Sadhukhan J, Ng KS, Shah N, Simons HJ (2009) Heat integration strategy for economic production of combined heat and power from biomass waste. Energy Fuels 23(10):5106–5120

    Article  Google Scholar 

  25. Sadhukhan J, Ng KS (2011) Economic and European Union environmental sustainability criteria assessment of bio-oil based biofuel systems: refinery integration cases. Ind Eng Chem Res 50(11):6794–6808

    Article  Google Scholar 

  26. Pfeifer C, Koppatz S, Hofbauer H (2011) Steam gasification of various feedstocks at a dual fluidised bed gasifier: impacts of operation conditions and bed materials. Biomass Conv Bioref 1(1):39–53

    Article  Google Scholar 

  27. Wagner H, Kaltschmitt M (2012) Biochemical and thermochemical conversion of wood to ethanol—simulation and analysis of different processes. Biomass Conv Bioref. doi:10.1007/s13399-012-0064-0

    Google Scholar 

  28. Jahan MS, Sultana N, Rahman M, Quaiyyum A (2012) An integrated biorefinery initiative in producing dissolving pulp from agricultural wastes. Biomass Conv Bioref. doi:10.1007/s13399-012-0067-x

    Google Scholar 

  29. Pollex A, Ortwein A, Kaltschmitt M (2012) Thermo-chemical conversion of solid biofuels. Biomass Conv Bioref 2(1):21–39

    Article  Google Scholar 

  30. Boldrin A, Balzan A, Astrup T (2013) Energy and environmental analysis of a rapeseed biorefinery conversion process. Biomass Conv Bioref. doi:10.1007/s13399-013-0071-9

    Google Scholar 

  31. Weinberg J, Kaltschmitt M, Wilhelm C (2012) Analysis of greenhouse gas emissions from microalgae-based biofuels. Biomass Conv Bioref 2(2):179–194

    Article  Google Scholar 

  32. Reinhardt G, Gartner S, Rettenmaier N, Munch J, Falkenstein E (2007) Screening life cycle assessment of Jatropha biodiesel. Institute for Energy and Environmental Research Heidelberg, Heidelberg (Germany). http://www.ifeu.de/landwirtschaft/pdf/jatropha_report_111207.pdf. Accessed 25 Feb 2013

  33. Achten WMJ, Almeida J, Fobelets V, Bolle E, Mathijs E, Singh VP, Tewari DN, Verchot LV, Muys B (2010) Life cycle assessment of Jatropha biodiesel as transportation fuel in rural India. Appl Energ 87(12):3652–3660

    Article  Google Scholar 

  34. Ndong R, Montrejaud-Vignoles M, Saint-Girons O, Gabrielle B, Pirot R, Domergue M, Sablayrolles C (2009) Life cycle assessment of biofuels from Jatropha curcas in West Africa: a field study. Glob Change Biol Bioenergy 3:197–210

    Article  Google Scholar 

  35. Prueksakorn K, Gheewala SH (2006). Energy and greenhouse gas implications of biodiesel production from Jatropha curcas L. Proceedings of the 2nd Joint International Conference on Sustainable Energy and Environment, Nov 21–Nov 23 2006; Bangkok, Thailand. http://www.jatropha.pro/pdf%20bestanden/ghg%20thailand.pdf. Accessed 25 Feb 2013

  36. Linnhoff B (1993) Pinch analysis—a state of the art overview. Trans IchemE 71(A):503–522

    Google Scholar 

  37. Wang YP, Smith R (1994) Wastewater minimisation. Chem Eng Sci 49(7):981–1006

    Article  Google Scholar 

  38. Majozi T, Brouckaert CJB, Buckley CAB (2006) A graphical technique for wastewater minimisation in batch processes. J Environ Manag 78(4):317–329

    Article  Google Scholar 

  39. Ng DKS, Pham V, El-Halwagi MM, Jiménez-Gutiérrez A, Spriggs HD (2010) A hierarchical approach to the synthesis and analysis of integrated biorefineries. In: El-Halwagi MM, Linninger AA, editors. Design for Energy. Proceedings of the Seventh International Conference on Foundations of Computer-Aided Process Design, June 7-Jun 12 2009; Breckenridge, CO (US). CRC, Florida, pp 425–432

  40. Kokossis AC, Yang A (2010) On the use of systems technologies and a systematic approach for the synthesis and the design of future biorefineries. Comput Chem Eng 34(9):1397–1405

    Article  Google Scholar 

  41. El-Halwagi MM (1997) Pollution prevention through process integration: systematic design tools, 1st edn. Academic, San Diego

    Google Scholar 

  42. Dunnett A, Adjiman C, Shah N (2007) Biomass to heat supply chains: applications of process optimization. Process Saf Environ 85(5):419–429

    Article  Google Scholar 

  43. Hosseini SA, Shah N (2011) Multiscale modeling of biorefineries. Comput Aided Chem Eng 29:1688–1692

    Article  Google Scholar 

  44. Williams AG, Audsley E, Sandars DL (2006) Determining the environmental burdens and resource use in the production of agricultural and horticultural commodities. Cranfield University and DEFRA, Bedford (UK). http://www.cranfield.ac.uk/sas/naturalresources/research/projects/is0205.html. Accessed 25 Feb 2013

  45. Melgarejo-Flores LA, Palmerin-Ruiz E, Magdaleno-Molina M, Gasca-Ramirez J, Sosa-Iglesias G, Vega-Rangel E, Sánchez-Reyna G, Rivero-Rodríguez R (2008) Integración del inventario para análisis de ciclo de vida en la producción de petrolíferos de la refinería Miguel Hidalgo. Presented at: International Eco-efficiency Forum 2008. Instituto Mexicano del Petroleo, Coatzacoalcos (Mexico). http://www.scribd.com/doc/14424951/Pres-8. Accessed 25 Feb 2013

  46. Beer T, Grant T, Morgan G, Lapszewicz J, Anyon P, Edwards J (2001) Comparison of transport fuels. Stage 2 study of life-cycle emissions analysis of alternative fuels for heavy vehicles. Australian Greenhouse Office, Aspendale (Australia). http://www.globalbioenergy.org/uploads/media/06_Australian_Greenhouse_Office_-_Comparison_of_Transport_Fuels.pdf. Accessed 25 Feb 2013

  47. Spath PL, Mann MK (2001). Life cycle assessment of hydrogen production via NG steam reforming. National Renewable Energy Laboratory, Golden, Colorado (US). http://www.nrel.gov/docs/fy01osti/27637.pdf. Accessed 25 Feb 2013

  48. Dalgaard R, Schmidt J, Halberg N, Christensen P, Thrane M, Pengue WA (2008) LCA of soybean meal. Int J LCA 13(3):240–254

    Article  Google Scholar 

  49. SENER, Mexico (2013) Sistema de Información Energética; www.sener.org.mx. Accessed 25 Feb 2013

  50. Aspen Technology, Inc. (2013) www.aspentech.com/products/aspen-plus.aspx. Accessed 25 Feb 2013

  51. Trabucco A, Achten WMJ, Bowe C, Aerts R, Orshoven JV, Norgroves L, Muys B (2010) Global mapping of Jatropha curcas yield based on response of fitness to present and future climate. Glob Change Biol Bioenergy 2:139–151

    Google Scholar 

  52. Angulo-Escalante MA (2010) Clones de Jatropha curcas altamente productivos. Resultados de proyectos de investigación, validación y transferencia de tecnología 2009–2010. Fundación Produce Sinaloa A.C., Sinaloa (Mexico), pp 136–139. http://www.fps.org.mx/divulgacion/index.php?option=com_remository&Itemid=284&func=select&id=1. Accessed 25 February 2013

  53. Kalannavar VN (2008) Response of Jatropha curcas to nitrogen, phosphorus and potassium levels in northern transition zone of Karnataka. Dissertation, University of Agricultural Sciences, Dharwad (India)

  54. Ouwens DK, Francis G, Franken YJ, Rijssenbeek W, Riedacker R, Foidl N, Jongschaap R, Bindraban P (2007) Position Paper on Jatropha curcas, State of the Art, Small and Large Scale Project Development. FACT Foundation, The Netherlands. http://www.betuco.be/agroforestry/Jatropha%20-%20Paper%20on%20Jatropha%20and%20Large%20Scale%20Project%20Development.pdf. Accessed October 2013.

  55. Prueksakorn K, Gheewala SH, Malakul P, Bonnet S (2010) Energy analysis of Jatropha plantation systems for biodiesel production in Thailand. Energ Sust Dev 14(1):1–5

    Article  Google Scholar 

  56. Adriaans T (2006) Suitability of solvent extraction for Jatropha curcas. FACT Foundation, The Netherlands. http://www.fact-foundation.com/media_en/FACT_%282006%29_-_Suitability_of_solvent_extraction_for_jatropha_curcas. Accessed 25 Feb 2013

  57. Chang A, Liu YA (2010) Integrated process modeling and product design of biodiesel manufacturing. Ind Eng Chem Res 49(3):1197–1213

    Article  Google Scholar 

  58. Schmidt T (2011) Anaerobic digestion of Jatropha curcas L. press cake and effects of an iron-additive. Waste Manag Res 29:1171–1176

    Article  Google Scholar 

Download references

Acknowledgments

Financial support from the CONACYT of Mexico and EPSRC (EP/F063563/1 and EP/F063563/2) of the UK for undertaking this research is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jhuma Sadhukhan.

Appendix

Appendix

Table 9 Mass balance of the biodiesel plant
Table 10 Mass balance of the green diesel plant
Table 11 Mass balance of husk gasification and methanol production in the IBGCC-MeOH plant
Table 12 Mass balance of husk gasification and hydrogen production in the IBGCC-H2 plant

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martinez-Hernandez, E., Martinez-Herrera, J., Campbell, G.M. et al. Process integration, energy and GHG emission analyses of Jatropha-based biorefinery systems. Biomass Conv. Bioref. 4, 105–124 (2014). https://doi.org/10.1007/s13399-013-0105-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-013-0105-3

Keywords

Navigation