Skip to main content

Advertisement

Log in

Analysis of greenhouse gas emissions from microalgae-based biofuels

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Energy supply for transportation causes a major part of the anthropogenic greenhouse gas (GHG) emissions responsible for climate change. Therefore, several governments have introduced measures to promote biofuels based on agricultural feedstock in order to decrease greenhouse gas emissions and to reduce the import dependency of fossil fuel energy. However, due to the land requirement for the cultivation of agricultural feedstock and the conflict between the use of biomass for food and fuel, the generation of biofuel from microalgae as a promising alternative is discussed more and more. Against this background, the goal of this paper is to estimate the GHG emissions for the provision and use of biodiesel, bioethanol and biomethane from microalgal feedstock. These biofuels have the possibility to reduce the pressure on agricultural land because of the higher area-specific biomass yields. Nevertheless, the energy demand needed for the provision of biofuels from microalgae according to the concepts investigated here is responsible for no significant reduction in greenhouse gas emissions compared with fossil fuels or even for a high increase in emissions. From the investigated options, the cultivation in open ponds seems to be more promising than the cultivation in photo-bioreactors, and the provision of biodiesel and biomethane from microalgae shows advantages over the ethanol generation from a greenhouse-gas-reduction point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

DM:

Dry matter

GHG:

Greenhouse gas

LCA:

Life cycle assessment

OP:

Open pond

opt:

Optimistic

pes:

Pessimistic

PBR:

Photo-bioreactor

wt:

Weight

References

  1. International Energy Agency (2010) World energy outlook 2010. OECD, Paris, ISBN: 978 92 64 08624 1

    Book  Google Scholar 

  2. The European Parliament and the Council of the European Union. Directive 2009/28/EG on the promotion of the use of energy from renewable sources and amending and subsequently repealing directives 2001/77/EC and 2003/30/EC; 23 April 2009

  3. Biokraftstoffnachhaltigkeitsverordnung (2009) Verordnung über Anforderungen an eine nachhaltige Herstellung von Biokraftstoffen, 30.09.2009

  4. World Wide Fund of Nature–Germany (2007) Regenwald für biodiesel?–Ökologische Auswirkungen der energetischen Nutzung von Palmöl. Frankfurt am Main

  5. Pulz O (2009) Treibstoffe aus Algen. Eta-energy 7:34–37

    Google Scholar 

  6. Bantan L, Quinn J, Willson B, Bradley T (2010) Net energy and greenhouse gas emission evaluation of biodiesel derived from microalgae. Environ Sci Technol 44:7975–7980

    Article  Google Scholar 

  7. Brentner LB, Eckelmann MJ, Zimmermann JB (2011) Combinatorial life cycle assessment to inform process design of industrial production of algal biodiesel. Environ Sci Technol 45:7060–7067

    Google Scholar 

  8. Hou J, Zhang P, Yuan X, Zheng Y (2011) Life cycle assessment of biodiesel from soybean, jatropha and microalgae in China conditions. Renew Sustain Energy Rev 15(9):5081–5091

    Article  Google Scholar 

  9. Khoo HH, Sharratt PN, Das P, Balasubramanian RK, Naraharisetti PK, Shaik S (2011) Life cycle energy and CO2 analysis of microalgae-to-biodiesel: preliminary results and comparisons. Bioresour Technol 102:5800–5807

    Article  Google Scholar 

  10. Lardon L, Helias A, Sialve B, Steyer J-P, Bernard O (2009) Life-cycle assessment of biodiesel production from microalgae. Environ Sci Technol 43(17):6475–6481

    Article  Google Scholar 

  11. Sander K, Murthy GS (2010) Life cycle analysis of algae biodiesel. Int J Life Cycle Assess 15(7):704–714

    Article  Google Scholar 

  12. Yang J et al (2010) Life cycle analysis on biodiesel production from microalgae: water footprint and nutrients balance. Bioresour Technol. doi:10.1016/j.biotech.2010.07.017

  13. Collet P et al (2011) Life-cycle assessment of microalgae culture coupled to biogas production. Bioresour Technol 102:207–214

    Article  Google Scholar 

  14. Liu J, Xiaoqian M (2009) The analysis on energy and environmental impacts of microalgae-based fuel methanol in china. Energy Policy 37(4):1479–1488

    Article  Google Scholar 

  15. Razon LF, Raymond RT (2011) Net energy analysis of the production of biodiesel and biogas from the microalgae: Haematoccus pluvalis and Nannochloropsis. Appl Energy 88(10):3507–3514

    Article  Google Scholar 

  16. Campbell PK, Beer T, Batten D (2010) Life cycle assessment of biodiesel production from microalgae in ponds. Bioresour Technol 102:50–56

    Article  Google Scholar 

  17. Clarens AF, Resurreccion EP, White MA, Colosi LM (2010) Environmental life cycle comparison of algae to other bioenergy feedstocks. Environ Sci Technol 44:1813–1819

    Article  Google Scholar 

  18. Ripplinger P (2008) Wertstoffe aus dem Flachplatten-Airlift-Reaktor. Subitec GmbH, Stuttgart

    Google Scholar 

  19. Jorquera O et al (2010) Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Bioresour Technol 101:1406–1413

    Article  Google Scholar 

  20. Stephenson AL, Kazamia E, Dennis JS, Howe CL, Scott SA, Smith AG (2010) Life-cycle assessment of potential algal biodiesel production in the United Kingdom: a comparison of raceways and air-lift tubular bioreactors. Energy Fuel 24(7):4062–4077

    Article  Google Scholar 

  21. DIN EN ISO 14040 (2006) Environmental management–life cycle assessment—requirements and guidelines. German and English version EN ISO 14040:2006, Beuth Verlag, Berlin

  22. DIN EN ISO 14044 (2006) Environmental management–life cycle assessment—principles and framework. German and English version EN ISO 14044:2006, Beuth Verlag, Berlin

  23. Solomon S, Qin D, Manning M (2007) Technical summary. In Climate Change 2007: the physical science basis. Contribution of working group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge

  24. IEA (2011) Electricity/heat in Italy in 2008. IEA Energy Statistics. http://www.iea.org/stats/electricitydata.asp?COUNTRY_CODE=IT, Accessed 28 November 2011

  25. Swiss Centre for Life Cycle Inventories (2010). Sachbilanzen von Energiesystemen. Database V2.2, http://www.ecoinvent.org. Accessed 26 November 2011

  26. Oh-Hama T, Miyachi S (1988) Chlorella. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal biotechnology. Cambridge University Press, Cambridge

    Google Scholar 

  27. Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev 14(1):217–232

    Article  Google Scholar 

  28. Neenan B, Feinberg D, Hill A, McIntosh R, Terry K (1986) Fuels from microalgae: technology status, potential, and research requirements. Technical report. Solar Energy Research Institute. Golden, Colorado

    Book  Google Scholar 

  29. Richmond A (1988) Spirulina. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal biotechnology. Cambridge University Press, Cambridge

    Google Scholar 

  30. Biograce (2011) Harmonised calculations of biofuel greenhouse gas emissions in Europe. Complete list of standard values, version 4. www.biograce.net, Accessed 02. November 2011

  31. Fragerstone KD, Quinn JC, Bradley TH, De Long SK, Marchese AJ (2011) Quantitative measurements of direct nitrous oxide emissions from microalgae cultivation. Environ Sci Technol 45:9449–9456

    Article  Google Scholar 

  32. Posten C (2009) Design principles of photo-bioreactors for cultivation of microalgae. Eng Life Sci 9(3):165–177

    Article  Google Scholar 

  33. Wilhelm C, Jakob T (2011) From photons to biomass and biofuels: evaluation of different strategies for the improvement of algal biotechnology based on comparative energy balances. Appl Microbiol Biotechnol 92(5):909–919

    Article  Google Scholar 

  34. Tredici MR (2012) Energy balance of microalgae cultures in photobioreactors and ponds. Contribution to the EU Workshop Life Cycle of Algal based biofuels, February 2012, Brussels

  35. Deutsche Energie-Agentur GmbH (2011) Infoblätter lufttechnik: ventilatoren und antriebe. http://www.industrie-energieeffizienz.de/uploads/media/L04-Ventilatoren_01.pdf, Accessed 28 November 2011

  36. Chiaramonti D, et al. (2011) Improved raceway ponds for microalgae production. Contribution to XIX ISAF international symposium on alcohol fuels, October 2011, Verona

  37. Weissman JC, Goebel RP (1987) Design and analysis of microalgal open pond for the purpose of producing fuels. Technical report. Solar Energy Research Institute. Golden, Colorado

    Book  Google Scholar 

  38. Borowitzka MA (1992) Algal biotechnology products and processes—matching science and economics. J Appl Phycol 4(3):267–279

    Article  Google Scholar 

  39. Merkl G (2008) Technik der Wasserversorgung. Oldenbourg Industrieverlag, München

    Google Scholar 

  40. Mohn FH (1988) Harvesting of micro-algal biomass. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal biotechnology. Cambridge University Press, Cambridge

    Google Scholar 

  41. Molina Grima E, Belarbi EH, Ancien Fernandez FG, Robles Medina A, Chisti Y (2003) Recovery of microalgae and metabolites: process options and economics. Biotechnol Adv 20:491–515

    Article  Google Scholar 

  42. Muramatsu M, Tatsumi C (1977) Method of producing ethanol. GB Patent 1493480

  43. De Schamphelaire L, Verstraete W (2009) Revival of the biological sunlight-to-biogas energy conversion systems. Biotechnol Bioeng 103(2):296–304

    Article  Google Scholar 

  44. Willy A. Bachhofen AG Maschinenfabrik (2008) Dyno-Mill ECM-Plus. http://www.wab.ch/ie/d/ecm1.htm, Accessed 3 February 2009

  45. Scharmer K, Pudel F, Ribarov D (1994) Umwandlung von Pflanzenölen zu Methyl- und Äthylestern. VDI Ber Nr 1126:107–132

    Google Scholar 

  46. Wäsche A, Luck T (1994) Großtechnische Ölgewinnung und Entwicklungsperspektiven in der Ölmühlentechnik. VDI Ber Nr 1126:53–76

    Google Scholar 

  47. Majer S, Oehmichen K (2010) Mögliche Ansätze zur Optimierung der THG-Bilanz von Biodiesel aus Raps, Deutsches BiomasseForschungsZentrum GmbH, http://www.ufop.de/downloads/Optimierung_der_THG-Bilanz_von_RME.pdf, Accessed 4 January 2012

  48. Chisti Y (2008) Response to Reijnders: do biofuels from microalgae beat biofuels from terrestrial plants? Trends Biotechnol 26(7):351–352

    Article  Google Scholar 

  49. Kaltschmitt M, Hartmann H (eds) (2009) Energie aus biomasse. Springer Verlag, Berlin

    Google Scholar 

  50. Kaltschmitt M, Reinhard GA (eds) (1997) Nachwachsende energieträger. Vieweg Verlag, Braunschweig

    Google Scholar 

  51. Fachagentur Nachwachsende Rohstoffe e.V. (2004) Handreichung Biogasgewinnung und Nutzung. Leipzig

  52. Samson R, leDuy A (1982) Biogas production from anaerobic digestion of Spirulina maxima algal biomass. Biotechnol Bioeng 24(8):1919–1924

    Article  Google Scholar 

  53. Deutsche Energie-Agentur GmbH (2010) Biogaseinspeisung in Deutschland und Europa–Markt, Techniken und Akteure. Berlin

  54. Bauen A (2012) Algae LCA: systems methods and future directions. Contribution to the EU Workshop Life Cycle of Algal based biofuels, February 2012, Brussels

  55. Luo D et al (2010) Life cycle energy and greenhouse gas emissions for ethanol production process based on blue-green algae. Environ Sci Technol 44:8670–8677

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jana Weinberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weinberg, J., Kaltschmitt, M. & Wilhelm, C. Analysis of greenhouse gas emissions from microalgae-based biofuels. Biomass Conv. Bioref. 2, 179–194 (2012). https://doi.org/10.1007/s13399-012-0044-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-012-0044-4

Keywords

Navigation