Skip to main content
Log in

New insights into the evolutionary history of resistance gene candidates in coconut palms and their expression profiles in palms affected by lethal yellowing disease

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

The nucleotide binding site and leucine rich repeat (NBS–LRR) class of R genes is the most comprehensively studied in terms of sequence evolution; however, in coconut palm and, more generally, in the family of Arecaceae, our understanding of the evolution of these genes is rather limited. In this study, disease resistance gene candidates (RGCs) of the nucleotide binding site (NBS) type of coconut palm were used to investigate evolutionary relationships in Arecaceae, Poaceae and Brassicaceae species. The results indicate a species-specific evolution of RGCs in coconut palm. However, strikingly similar RGCs between species of Arecales indicate a high conservation of specific RGCs of this family, suggesting a monophyletic origin of three genera. The phylogenetic relationship between RGCs of Arecales and Brassicales suggests that these sequences possibly emerged before being divided between monocots and dicots. Finally the comparative analysis of the expression of four RGCs in healthy coconut palm and those affected with lethal yellowing disease revealed differences in their expression profiles. This study provides new insights for future efforts towards the improvement of disease resistance in coconut palm and other species of Arecaceae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Al-Mssallem IS, Hu S, Zhang X, Lin Q, Liu W, Tan J, Yu X, Liu J, Pan L et al (2013) Genome sequence of the date palm Phoenix dactylifera L. Nat Commun 4:2274

    Article  PubMed  PubMed Central  Google Scholar 

  • Alsaihati B, Lin Q, Al-Mssallem IS (2014) Coconut Genome de novo Sequencing. Plant & animal genome XXII. Conference San Diego

  • Baumgarten A, Cannon S, Spangler R, May G (2003) Genome-level evolution of resistance genes in Arabidopsis thaliana. Genetics 165:309–319

    CAS  PubMed  PubMed Central  Google Scholar 

  • Belkhadir Y, Nimchuk Z, Hubert D, Mackey D, Dangl J (2004) Arabidopsis RIN4 negatively regulates disease resistance mediated by RPS2 and RPM1 downstream or independent of the NDR1 signal modulator and is not required for the virulence functions of bacterial type III effectors AvrRpt2 or AvrRpm1. Plant Cell 16:2822–2835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouktila D, Khalfallah Y, Habachi-Houimli Y, Mezghani-Khemakhem M, Makni M, Makni H (2015) Full-genome identification and characterization of NBS-encoding disease resistance genes in wheat. Mol Genet Genomics 290:257–271

    Article  CAS  PubMed  Google Scholar 

  • Cannon SB, Zhu H, Baumgarten AM, Spangler R, May G, Cook DR, Young ND (2002) Diversity, distribution, and ancient taxonomic relationships within the TIR and Non-TIR NBS–LRR resistance gene subfamilies. J Mol Evol 54:548–562

    Article  CAS  PubMed  Google Scholar 

  • Córdova I, Oropeza C, Puch-Hau C, Harrison N, Collí-Rodríguez A, Narvaez M, Nic-Matos G, Reyes C, Sáenz L (2014) A real-time pcr assay for detection of coconut lethal yellowing phytoplasmas of group 16SrIV subgroups A, D and E found in the Americas. J Plant Pathol 96:343–352

    Google Scholar 

  • Dangl L, Jones J (2001) Plant pathogens and integrated defense responses to infection. Nature 411:826–833

    Article  CAS  PubMed  Google Scholar 

  • Demuth J, Hahn M (2009) The life and death of gene families. BioEssays 31:29–39

    Article  PubMed  Google Scholar 

  • Eeuwens C (1976) Mineral requirements for growth and callus initiation of tissue explants excised from mature coconut palms (Cocos nucifera) and date (Phoenix dactylifera) palm cultured in vitro. Physiol Plant 42:173–178

    Article  Google Scholar 

  • Ellis J, Lawrence G, Luck J, Dodds P (1999) Identification of regions in alleles of the flax rust resistance gene L that determine differences in gene-for-gene specificity. Plant Cell 11:495–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan H, Xiao Y, Yang Y, Xia W, Mason AS et al (2013) RNA-Seq analysis of Cocos nucifera: transcriptome sequencing and subsequent functional genomics approaches. PLoS One 8:e59997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foan C, Lee Y, Tan J, Alwee S (2012) Amplification and sequencing of partial-length disease resistance gene homologues coding for NBS–LRR proteins in oil palm (Elaeis guineensis). Asia Pac J Mol Biol Biotechnol 20:25–31

    Google Scholar 

  • Gitau CW, Gurr GM, Dewhurst CF, Fletcher MJ, Mitchell A (2009) Insect pests and insect-vectored diseases of palms. Aust J Entomol 48:328–342

    Article  Google Scholar 

  • Griffith R (1987) Red ring disease of coconut palm. Plant Dis 71:193–196

    Google Scholar 

  • Gu L, Si W, Zhao L, Yang S, Zhang X (2015) Dynamic evolution of NBS–LRR genes in bread wheat and its progenitors. Mol Genet Genomics 290:727–738

    Article  CAS  PubMed  Google Scholar 

  • Hanold D, Randles J (1991) Coconut cadang-cadang disease and its viroid agent. Plant Dis 75:330–335

    Article  CAS  Google Scholar 

  • Harrison N, Oropeza C (2008) Coconut lethal yellowing. In: Harrison NA, Rao GP, Marcone C (eds) Characterization, diagnosis and management of phytoplasmas. Studium Press LLC, Houston, pp 219–248

    Google Scholar 

  • Harrison N, Richardson P, Kramer J, Tsai JH (1994) Detection of the mycoplasma like organism associated with lethal yellowing disease of palms in Florida by polymerase chain reaction. Plant Pathol 43:998–1008

    Article  CAS  Google Scholar 

  • Howard FW, Barrant CI (1989) Questions and answers about lethal yellowing disease. Principes 33:163–171

    Google Scholar 

  • Huang Y, Lee CP, Fu FL, Chang B, Matzke A (2014) De novo transcriptome sequence assembly from coconut leaves and seeds with a focus on factors involved in RNA-directed DNA methylation. G3 Genes Genom Genet 4:2147–2157

    Google Scholar 

  • Hulbert S, Webb C, Smith S, Sun Q (2001) Resistance gene complexes: evolution and utilization. Annu Rev Phytopathol 39:285–312

    Article  CAS  PubMed  Google Scholar 

  • Jones D, Jones J (1997) The role of leucine-rich repeat proteins in plant defenses. Adv Bot Res 24:89–167

    Article  Google Scholar 

  • Khan A, Khan A, Azhar M, Amrao L, Cheema H (2015) Comparative analysis of resistance gene analogues encoding NBS–LRR domains in cotton. J Sci Food Agric 96:530–538

    Article  PubMed  Google Scholar 

  • Larkin M, Blackshields G, Brown N, Chenna R, McGettigan P, McWilliam H, Valentin F, Wallace I, Wilm A, Lopez A, Thompson J, Gibson T, Higgins D (2007) ClustalW and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Leister D (2004) Tandem and segmental gene duplication and recombination in the evolution of plant disease resistance genes. Trends Genet 20:116–122

    Article  CAS  PubMed  Google Scholar 

  • Li J, Ding J, Zhang W, Zhang Y, Tang P, Chen JQ, Tian D, Yang S (2010) Unique evolutionary pattern of numbers of gramineous NBS–LRR genes. Mol Genet Genomics 283:427–438

    Article  CAS  PubMed  Google Scholar 

  • Livak K, Schmittgen T (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lozano R, Hamblin M, Prochnik S, Jannink J (2015) Identification and distribution of the NBS–LRR gene family in the Cassava genome. BMC Genomics 16:360

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo S, Zhang Y, Hu Q, Chen J, Li K, Lu C, Liu H, Wang W, Kuang H (2012) Dynamic nucleotide-binding site and leucine-rich repeat-encoding genes in the grass family. Plant Physiol 159:197–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez M, López-Solanilla E, Rodríguez-Palenzuela P, Carbonero P, Díaz I (2003) Inhibition of plant-pathogenic fungi by the barley cystatin Hv-CPI (gene Icy) is not associated with its cysteine-proteinase inhibitory properties. Mol Plant Microbe Interact 16:876–883

    Article  PubMed  Google Scholar 

  • McCoy R, Howard F, Tsai J, Donselman H, Thomas D, Basham H, Atilano R, Eskafi F, Britt L, Collins M (1983) Lethal yellowing of palms. Florida Agricultural Experiment Station Bulletin 834, Gainesville

  • Meyers B, Dickerman A, Michelmore R, Sivaramakrishnan S, Sobral B, Young N (1999) Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. Plant J 20:317–332

    Article  CAS  PubMed  Google Scholar 

  • Meyers B, Kozik A, Griego A, Kuang H, Michelmore R (2003) Genome-wide analysis of NBS–LRR—encoding genes in Arabidopsis. Plant Cell 15:809–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyers B, Kaushik S, Nandety R (2005) Evolving disease resistance genes. Curr Opin Plant Biol 8:129–134

    Article  CAS  PubMed  Google Scholar 

  • Michelmore R, Meyers B (1998) Clusters of resistance genes in plants evolve by divergent selection and birth-and-death process. Genome Res 8:1113–1130

    CAS  PubMed  Google Scholar 

  • Montero-Cortes M, Saenz L, Cordova I, Quiroz A, Verdeil J, Oropeza C (2010) GA3 stimulate the formation and germination of somatic embryos and the expression of a KNOTTED-like homeobox gene of Cocos nucifera (L.). Plant Cell Rep 29:1049–1059

    Article  CAS  PubMed  Google Scholar 

  • Nei M, Gojobori T (1986) Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3:418–426

    CAS  PubMed  Google Scholar 

  • Nejat N, Cahill DM, Vadamalai G, Ziemann M, Rookes J, Naderali N (2015) Transcriptomics-based analysis using RNA-Seq of the coconut (Cocos nucifera) leaf in response to yellow decline phytoplasma Infection. Mol Genet Genomics 290:1899–1910

    Article  CAS  PubMed  Google Scholar 

  • Parthasarathy MV, van Slobbe WG, Soudant C (1978) Hartrot or fatal wilt of palms. Coconuts (Cocos nucifera). Principes 22:3–14

    Google Scholar 

  • Porter B, Paidi M, Ming R, Alam M, Nishijima W, Zhu Y (2009) Genome-wide analysis of Carica papaya reveals a small NBS resistance gene family. Mol Genet Genomics 281:609–626

    Article  CAS  PubMed  Google Scholar 

  • Puch-Hau C, Oropeza-Salín C, Peraza-Echeverría S, Gongora-Paredes M, Córdova-Lara I, Narvaez-Cab M, Zizumbo-Villareal D, Sáenz-Carbonell L (2015) Molecular cloning and characterization of disease-resistance gene candidates of the nucleotide binding site (NBS) type from Cocos nucifera L. Physiol Mol Plant Pathol 89:87–96

    Article  CAS  Google Scholar 

  • Rajesh M, Rachana K, Naganeeswaran S, Shafeeq R, Thomas R, Shareefa M, Merin B, Anitha K (2015) Identification of expressed resistance gene analog sequences in coconut leaf transcriptome and their evolutionary analysis. Turk J Agric For 39:1–14

    Article  Google Scholar 

  • Richly E, Kurth J, Leister D (2002) Mode of amplification and reorganization of resistance genes during recent Arabidopsis thaliana evolution. Mol Biol Evol 19:76–84

    Article  CAS  PubMed  Google Scholar 

  • Rohde W, Randles JW, Langridge P, Hanold D (1990) Nucleotide sequence of a circular single stranded DNA associated with coconut foliar decay virus. Virol 176:648–651

    Article  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Seoighe C, Gehring C (2004) Genome duplication led to highly selective expansion of the Arabidopsis thaliana proteome. Trends Genet 20:461–464

    Article  CAS  PubMed  Google Scholar 

  • Shang J, Tao Y, Chen X, Zou Y, Lei C, Wang J, Li X, Zhao X, Zhang M, Lu Z, Xu J, Cheng Z, Wan J, Zhu L (2009) Identification of a new rice blast resistance gene, Pid3, by genome wide comparison of paired nucleotide-binding site leucine-rich repeat genes and their pseudogene alleles between the two sequenced rice genomes. Genetics 182:1303–1311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugio A, MacLean A, Kingdom H, Grieve V, Manimekalai R, Hogenhout S (2011) Diverse targets of phytoplasma effectors: from plant development to defense against insects. Annu Rev Phytopathol 49:175–195

    Article  CAS  PubMed  Google Scholar 

  • Tai T, Dahlbeck D, Clark E, Gajiwala P, Pasion R, Whalen M, Stall R, Staskawicz B (1999) Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato. Proc Natl Acad Sci USA 96:14153–14158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan H, Yuan W, Ye Q, Wang R, Ruan M, Li Z, Zhou G, Yao Z, Zhao J, Liu S, Yang Y (2012) Analysis of TIR- and non-TIR-NBS LRR disease resistance gene analogous in pepper: characterization, genetic variation, functional divergence and expression patters. BMC Genom 13:1–15

    Article  Google Scholar 

  • Wan H, Yuan W, Bo K, Shen J, Pang X, Chen J (2013) Genome-wide analysis of NBS-encoding disease resistance in Cucumis sativus and phylogenetic study of NBS-encoding genes in Cucurbitaceae crops. BMC Genom 14:109

    Article  CAS  Google Scholar 

  • Yang S, Zhang X, Yue J, Tian D, Chen J (2008) Recent duplications dominate NBS-encoding gene expansion in two woody species. Mol Genet Genomics 280:187–198

    Article  CAS  PubMed  Google Scholar 

  • Zhou T, Wang Y, Chen JQ, Araki H, Jing Z, Jiang K, Shen J, Tian D (2004) Genome-wide identification of NBS genes in japonica rice reveals significant expansion of divergent non-TIR NBS–LRR genes. Mol Genet Genomics 271:402–415

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Cannon S, Young N, Cook D (2002) Phylogeny and genomic organization of the TIR and non-TIR NBS–LRR resistance gene family in Medicago truncatula. Mol Plant Microbe Interact 15:529–539

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Funding of the research reported here was provided by CONACyT, México (Grant No. CB 129717). Carlos Puch-Hau and Manuel Gongora thank CONACyT for the scholarship awarded No. 47245 and 265354, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Sáenz.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puch-Hau, C., Oropeza, C., Góngora-Paredes, M. et al. New insights into the evolutionary history of resistance gene candidates in coconut palms and their expression profiles in palms affected by lethal yellowing disease. Genes Genom 38, 793–807 (2016). https://doi.org/10.1007/s13258-016-0422-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-016-0422-6

Keywords

Navigation