Skip to main content
Log in

Interpenetrating Polymer Network Hydrogels of Gelatin and Poly(ethylene glycol) as an Engineered 3D Tumor Microenvironment

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

An emerging trend in cancer research is to develop engineered tumor models using bio-inspired biomaterials that can mimic the native tumor microenvironment. Although various bio-inspired hydrogels have been utilized, it is still challenging to develop advanced polymeric hydrogel materials that can more accurately reconstruct critical aspects of the native tumor microenvironment. Herein, we present interpenetrating polymer network (IPN) hydrogels composed of thiolated gelatin and tyramine-conjugated poly(ethylene glycol), which form IPN hydrogels via horseradish peroxidase-mediated dual cross-linking reactions. We demonstrate that the IPN hydrogels exhibit independently controllable physicochemical properties. Also, the IPN hydrogels show resistance to the proteolytic enzymes and cytocompatibility for long-term culture of human fibrosarcoma (HT1080) cells. Moreover, we utilize the engineered tumor construct as a platform to evaluate the effect of matrix stiffness on cancer cell proliferation and drug resistance against the anticancer drug 5-fluorouracil as a model drug. In conclusion, we suggest that our IPN hydrogel is a promising material to study cancer biology and to screen innovative therapeutic agents for better clinical outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. S. Tessmer and K. T. Flaherty, Clin. Cancer Res., 23, 5325 (2017).

    Article  PubMed  Google Scholar 

  2. N. E. Davidson, S. A. Armstrong, L. M. Coussens, M. R. Cruz-Correa, R. J. DeBerardinis, J. H. Doroshow, M. Foti, P. Hwu, T. W. Kensler, M. Morrow, C. G. Mulligan, W. Pao, E. A. Platz, T. J. Smith, and C. L. Willman, Clin. Cancer Res., 22 Suppl 19, S1 (2016).

    Article  PubMed  Google Scholar 

  3. M. Hay, D. W. Thomas, J. L. Craighead, C. Economides, and J. Rosenthal, Nat. Biotechnol., 32, 40 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. M. De Palma, D. Biziato, and T. V. Petrova, Nat. Rev. Cancer, 17, 457 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. D. F. Quail and J. A. Joyce, Nat. Med., 19, 1423 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. M. Kumar, S. K. Dhatwalia, and D. K. Dhawan, Tumour. Biol., 37, 14341 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. S. M. Weis and D. A. Cheresh, Nat. Med., 17, 1359 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. D. Ackerman and M. C. Simon, Trends Cell Biol., 24, 472 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. K. M. Park, D. Lewis, and S. Gerecht, Annu. Rev. Biomed. Eng., 19, 109 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. K. M. Park and S. Gerecht, Eur. Polym. J., 72, 507 (2015).

    Article  CAS  Google Scholar 

  11. S. Park and K. M. Park, Biomaterials, 182, 234 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. K. M. Park, K. S. Ko, Y. K. Joung, H. Shin, and K. D. Park, J. Mater. Chem., 21, 13180 (2011).

    Article  CAS  Google Scholar 

  13. K. M. Park, M. R. Blatchley, and S. Gerecht, Macromol. Rapid Commun., 35, 1968 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. K. M. Park and S. Gerecht, Nat. Commun., 5, 4075 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. K. M. Park, Y. Lee, J. Y. Son, D. H. Oh, J. S. Lee, and K. D. Park, Biomacromolecules, 13, 604 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. C. Li, C. Mu, W. Lin, and T. Ngai, ACS Appl. Mater. Interfaces, 7, 18732 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. S. Kalia, Polymeric Hydrogels as Smart Biomaterials, Springer, 2016.

    Book  Google Scholar 

  18. B. J. Klotz, D. Gawlitta, A. Rosenberg, J. Malda, and F. P. W. Melchels, Trends Biotechnol., 34, 394 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. S. Sokic and G. Papavasiliou, Tissue Eng. Part A, 18, 2477 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. G. P. Raeber, M. P. Lutolf, and J. A. Hubbell, Biophys. J., 89, 1374 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. A. M. Zaton and E. Ochoa de Aspuru, FEBS Lett., 374, 192 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. R. Safiri, R. H. Sajedi, and V. Jafarian, J. Mol. Liq., 123, 20 (2006).

    Article  CAS  Google Scholar 

  23. D. R. Edwards and G. Murphy, Nature, 394, 527 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. L. M. Coussens and Z. Werb, Nature, 420, 860 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. K. Kessenbrock, V. Plaks, and Z. Werb, Cell, 141, 52 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. S. D. Shapiro, Curr. Opin. Cell Biol., 10, 602 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. H. Sato, T. Takino, Y. Okada, J. Cao, A. Shinagawa, E. Yamamoto, and M. Seiki, Nature, 370, 61 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. S. Kumar and V. M. Weaver, Cancer Metastasis Rev., 28, 113 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  29. D. Fukumura and R. K. Jain, J. Cell. Biochem., 101, 937 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. P. P. Provenzano, D. R. Inman, K. W. Eliceiri, J. G. Knittel, L. Yan, C. T. Rueden, J. G. White, and P. J. Keely, BMC Med., 6, 11 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. E. A. Phelps, N. O. Enemchukwu, V. F. Fiore, J. C. Sy, N. Murthy, T. A. Sulchek, T. H. Barker, and A. J. Garcia, Adv. Mater., 24, 64 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. A. A. Starkov, A. Y. Andreyev, S. F. Zhang, N. N. Starkova, M. Korneeva, M. Syromyatnikov, and V. N. Popov, J. Bioenerg. Biomembr., 46, 471 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. L. Slade, J. Chalker, N. Kuksal, A. Young, D. Gardiner, and R. J. Mailloux, Biochim. Biophys. Acta Gen. Subj., 1861, 1960 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. M. Nikolaou, A. Pavlopoulou, A. G. Georgakilas, and E. Kyrodimos, Clin. Exp. Metastasis, 35, 309 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. J. Rueff and A. S. Rodrigues, Methods Mol. Biol., 1395, 1 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. G. Housman, S. Byler, S. Heerboth, K. Lapinska, M. Longacre, N. Snyder, and S. Sarkar, Cancers (Basel), 6, 1769 (2014).

    Article  CAS  Google Scholar 

  37. P. Periti and E. Mini, J. Chemother., 1, 5 (1989).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byeong Hee Hwang.

Additional information

Acknowledgments: This work was supported by the Incheon National University International Cooperative Research Grants in 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, D.S., Kang, J.I., Hwang, B.H. et al. Interpenetrating Polymer Network Hydrogels of Gelatin and Poly(ethylene glycol) as an Engineered 3D Tumor Microenvironment. Macromol. Res. 27, 205–211 (2019). https://doi.org/10.1007/s13233-019-7072-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-019-7072-x

Keywords

Navigation