Skip to main content

Advertisement

Log in

The challenge of drug resistance in cancer treatment: a current overview

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

It is generally accepted that recent advances in anticancer agents have contributed significantly to the improvement of both the disease-free survival and quality of life in cancer patients. However, in many instances, a favorable initial response to treatment changes afterwards, thereby leading to cancer relapse and recurrence. This phenomenon of acquired resistance to therapy, it is a major problem for totally efficient anticancer therapy. The failure to obtain an initial response reflects a form of intrinsic resistance. Specific cell membrane transporter proteins are implicated in intrinsic drug resistance by altering drug transport and pumping drugs out of the tumor cells. Moreover, the gradual acquisition of specific genetic and epigenetic abnormalities in cancer cells could contribute greatly to acquired drug resistance. A critical issue in the clinical setting, is that the problem of drug resistance appears to have a negative effect on also the new molecularly-targeted anticancer drugs. Several ongoing efforts are being made by the medical community aimed to the identification of such resistance mechanisms and the development of novel drugs that could overcome them. In this review, the major drug resistance mechanisms and strategies to overcome them are critically discussed, and also possible future directions are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

MDR:

Multidrug resistance

ABC:

Adenosine triphosphate-binding cassette

DHFR:

Dihydrofolate reductase

NER:

Nucleotide excision repair

MTD:

Maximum tolerated dose

References

  1. Gottesman MM (2002) Mechanisms of cancer drug resistance. Annu Rev Med 53:615–627. https://doi.org/10.1146/annurev.med.53.082901.103929

    Article  PubMed  CAS  Google Scholar 

  2. Clynes M (1998) Multiple drug resistance in cancer 2: molecular, cellular and clinical aspects. Kluwer Academic Publishers, Dodrecht

    Book  Google Scholar 

  3. Ebos JM (2015) Prodding the beast: assessing the Impact of treatment-induced metastasis. Cancer Res 75(17):3427–3435. https://doi.org/10.1158/0008-5472.CAN-15-0308

    Article  PubMed  CAS  Google Scholar 

  4. Sherlach KS, Roepe PD (2014) Drug resistance associated membrane proteins. Front Physiol 5:108. https://doi.org/10.3389/fphys.2014.00108

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mansoori B, Mohammadi A, Davudian S, Shirjang S, Baradaran B (2017) The different mechanisms of cancer drug resistance: a brief review. Adv Pharm Bull 7(3):339–348. https://doi.org/10.15171/apb.2017.041

    Article  PubMed  PubMed Central  Google Scholar 

  6. Gottesman MM, Ludwig J, Xia D, Szakacs G (2006) Defeating drug resistance in cancer. Discov Med 6(31):18–23

    PubMed  Google Scholar 

  7. Pavlopoulou A, Oktay Y, Vougas K, Louka M, Vorgias CE, Georgakilas AG (2016) Determinants of resistance to chemotherapy and ionizing radiation in breast cancer stem cells. Cancer Lett 380(2):485–493. https://doi.org/10.1016/j.canlet.2016.07.018

    Article  PubMed  CAS  Google Scholar 

  8. Shaked Y, Henke E, Roodhart JM, Mancuso P, Langenberg MH, Colleoni M, Daenen LG, Man S, Xu P, Emmenegger U, Tang T, Zhu Z, Witte L, Strieter RM, Bertolini F, Voest EE, Benezra R, Kerbel RS (2008) Rapid chemotherapy-induced acute endothelial progenitor cell mobilization: implications for antiangiogenic drugs as chemosensitizing agents. Cancer Cell 14(3):263–273. https://doi.org/10.1016/j.ccr.2008.08.001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Housman G, Byler S, Heerboth S, Lapinska K, Longacre M, Snyder N, Sarkar S (2014) Drug resistance in cancer: an overview. Cancers 6(3):1769–1792. https://doi.org/10.3390/cancers6031769

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Joo WD, Visintin I, Mor G (2013) Targeted cancer therapy—are the days of systemic chemotherapy numbered? Maturitas 76(4):308–314. https://doi.org/10.1016/j.maturitas.2013.09.008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Kummar S, Gutierrez M, Doroshow JH, Murgo AJ (2006) Drug development in oncology: classical cytotoxics and molecularly targeted agents. Br J Clin Pharmacol 62(1):15–26. https://doi.org/10.1111/j.1365-2125.2006.02713.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Groenendijk FH, Bernards R (2014) Drug resistance to targeted therapies: deja vu all over again. Mol Oncol 8(6):1067–1083. https://doi.org/10.1016/j.molonc.2014.05.004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Szakacs G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM (2006) Targeting multidrug resistance in cancer. Nat Rev Drug Discov 5(3):219–234. https://doi.org/10.1038/nrd1984

    Article  PubMed  CAS  Google Scholar 

  14. Synold TW, Dussault I, Forman BM (2001) The orphan nuclear receptor SXR coordinately regulates drug metabolism and efflux. Nat Med 7(5):584–590. https://doi.org/10.1038/87912

    Article  PubMed  CAS  Google Scholar 

  15. Liu YY, Han TY, Giuliano AE, Cabot MC (2001) Ceramide glycosylation potentiates cellular multidrug resistance. FASEB J 15(3):719–730. https://doi.org/10.1096/fj.00-0223com

    Article  PubMed  CAS  Google Scholar 

  16. Torgovnick A, Schumacher B (2015) DNA repair mechanisms in cancer development and therapy. Front Genet 6:157. https://doi.org/10.3389/fgene.2015.00157

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Lowe SW, Ruley HE, Jacks T, Housman DE (1993) p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74(6):957–967

    Article  PubMed  CAS  Google Scholar 

  18. Fojo T (2007) Multiple paths to a drug resistance phenotype: mutations, translocations, deletions and amplification of coding genes or promoter regions, epigenetic changes and microRNAs. Drug Resist Updates 10 (1–2):59–67. https://doi.org/10.1016/j.drup.2007.02.002

    Article  CAS  Google Scholar 

  19. Greaves M, Maley CC (2012) Clonal evolution in cancer. Nature 481(7381):306–313. https://doi.org/10.1038/nature10762

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Nowell PC (1976) The clonal evolution of tumor cell populations. Science 194(4260):23–28

    Article  PubMed  CAS  Google Scholar 

  21. Goldie JH, Coldman AJ (1979) A mathematic model for relating the drug sensitivity of tumors to their spontaneous mutation rate. Cancer Treat Rep 63(11–12):1727–1733

    PubMed  CAS  Google Scholar 

  22. Goldie JH, Coldman AJ (1985) Genetic instability in the development of drug resistance. Semin Oncol 12(3):222–230

    PubMed  CAS  Google Scholar 

  23. Coldman AJ, Goldie JH (1986) A stochastic model for the origin and treatment of tumors containing drug-resistant cells. Bull Math Biol 48(3–4):279–292

    Article  PubMed  CAS  Google Scholar 

  24. Woodhouse JR, Ferry DR (1995) The genetic basis of resistance to cancer chemotherapy. Ann Med 27(2):157–167

    Article  PubMed  CAS  Google Scholar 

  25. Angerer WP (2001) An explicit representation of the Luria-Delbruck distribution. J Math Biol 42(2):145–174

    Article  PubMed  CAS  Google Scholar 

  26. Dewanji A, Luebeck EG, Moolgavkar SH (2005) A generalized Luria-Delbruck model. Math Biosci 197(2):140–152. https://doi.org/10.1016/j.mbs.2005.07.003

    Article  PubMed  CAS  Google Scholar 

  27. Frank SA (2003) Somatic mosaicism and cancer: inference based on a conditional Luria-Delbruck distribution. J Theor Biol 223(4):405–412

    Article  PubMed  Google Scholar 

  28. Haeno H, Iwasa Y, Michor F (2007) The evolution of two mutations during clonal expansion. Genetics 177(4):2209–2221. https://doi.org/10.1534/genetics.107.078915

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Iwasa Y, Nowak MA, Michor F (2006) Evolution of resistance during clonal expansion. Genetics 172(4):2557–2566. https://doi.org/10.1534/genetics.105.049791

    Article  PubMed  PubMed Central  Google Scholar 

  30. Komarova NL, Mironov V (2005) On the role of endothelial progenitor cells in tumor neovascularization. J Theor Biol 235(3):338–349. https://doi.org/10.1016/j.jtbi.2005.01.014

    Article  PubMed  CAS  Google Scholar 

  31. Komarova NL, Wodarz D (2005) Drug resistance in cancer: principles of emergence and prevention. Proc Natl Acad Sci USA 102(27):9714–9719. https://doi.org/10.1073/pnas.0501870102

    Article  PubMed  CAS  Google Scholar 

  32. Beketic-Oreskovic L, Duran GE, Chen G, Dumontet C, Sikic BI (1995) Decreased mutation rate for cellular resistance to doxorubicin and suppression of mdr1 gene activation by the cyclosporin PSC 833. J Natl Cancer Inst 87(21):1593–1602

    Article  PubMed  CAS  Google Scholar 

  33. Chen G, Jaffrezou JP, Fleming WH, Duran GE, Sikic BI (1994) Prevalence of multidrug resistance related to activation of the mdr1 gene in human sarcoma mutants derived by single-step doxorubicin selection. Cancer Res 54(18):4980–4987

    PubMed  CAS  Google Scholar 

  34. Dumontet C, Duran GE, Steger KA, Beketic-Oreskovic L, Sikic BI (1996) Resistance mechanisms in human sarcoma mutants derived by single-step exposure to paclitaxel (Taxol). Cancer Res 56(5):1091–1097

    PubMed  CAS  Google Scholar 

  35. Jaffrezou JP, Chen G, Duran GE, Kuhl JS, Sikic BI (1994) Mutation rates and mechanisms of resistance to etoposide determined from fluctuation analysis. J Natl Cancer Inst 86(15):1152–1158

    Article  PubMed  CAS  Google Scholar 

  36. Chen KG, Wang YC, Schaner ME, Francisco B, Duran GE, Juric D, Huff LM, Padilla-Nash H, Ried T, Fojo T, Sikic BI (2005) Genetic and epigenetic modeling of the origins of multidrug-resistant cells in a human sarcoma cell line. Cancer Res 65(20):9388–9397. https://doi.org/10.1158/0008-5472.CAN-04-4133

    Article  PubMed  CAS  Google Scholar 

  37. Matsumoto Y, Takano H, Fojo T (1997) Cellular adaptation to drug exposure: evolution of the drug-resistant phenotype. Cancer Res 57(22):5086–5092

    PubMed  CAS  Google Scholar 

  38. Gerlinger M, Rowan AJ, Horswell S, Math M, Larkin J, Endesfelder D, Gronroos E, Martinez P, Matthews N, Stewart A, Tarpey P, Varela I, Phillimore B, Begum S, McDonald NQ, Butler A, Jones D, Raine K, Latimer C, Santos CR, Nohadani M, Eklund AC, Spencer-Dene B, Clark G, Pickering L, Stamp G, Gore M, Szallasi Z, Downward J, Futreal PA, Swanton C (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. New Engl J Med 366(10):883–892. https://doi.org/10.1056/NEJMoa1113205

    Article  PubMed  CAS  Google Scholar 

  39. Lee AJ, Swanton C (2012) Tumour heterogeneity and drug resistance: personalising cancer medicine through functional genomics. Biochem Pharmacol 83(8):1013–1020. https://doi.org/10.1016/j.bcp.2011.12.008

    Article  PubMed  CAS  Google Scholar 

  40. Swanton C (2012) Intratumor heterogeneity: evolution through space and time. Cancer Res 72(19):4875–4882. https://doi.org/10.1158/0008-5472.CAN-12-2217

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Alt FW, Kellems RE, Bertino JR, Schimke RT (1992) Selective multiplication of dihydrofolate reductase genes in methotrexate-resistant variants of cultured murine cells. 1978. Biotechnology 24:397–410

    PubMed  CAS  Google Scholar 

  42. Wang YC, Juric D, Francisco B, Yu RX, Duran GE, Chen GK, Chen X, Sikic BI (2006) Regional activation of chromosomal arm 7q with and without gene amplification in taxane-selected human ovarian cancer cell lines. Genes Chromosomes Cancer 45(4):365–374. https://doi.org/10.1002/gcc.20300

    Article  PubMed  CAS  Google Scholar 

  43. Matei D, Fang F, Shen C, Schilder J, Arnold A, Zeng Y, Berry WA, Huang T, Nephew KP (2012) Epigenetic resensitization to platinum in ovarian cancer. Cancer Res 72(9):2197–2205. https://doi.org/10.1158/0008-5472.CAN-11-3909

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Balch C, Nephew KP (2013) Epigenetic targeting therapies to overcome chemotherapy resistance. Adv Exp Med Biol 754:285–311. https://doi.org/10.1007/978-1-4419-9967-2_14

    Article  PubMed  CAS  Google Scholar 

  45. Wilting RH, Dannenberg JH (2012) Epigenetic mechanisms in tumorigenesis, tumor cell heterogeneity and drug resistance. Drug Resist Updates 15 (1–2):21–38. https://doi.org/10.1016/j.drup.2012.01.008

    Article  CAS  Google Scholar 

  46. Zeller C, Dai W, Steele NL, Siddiq A, Walley AJ, Wilhelm-Benartzi CS, Rizzo S, van der Zee A, Plumb JA, Brown R (2012) Candidate DNA methylation drivers of acquired cisplatin resistance in ovarian cancer identified by methylome and expression profiling. Oncogene 31(42):4567–4576. https://doi.org/10.1038/onc.2011.611

    Article  PubMed  CAS  Google Scholar 

  47. Deaton AM, Bird A (2011) CpG islands and the regulation of transcription. Genes Dev 25(10):1010–1022. https://doi.org/10.1101/gad.2037511

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Bhatla T, Wang J, Morrison DJ, Raetz EA, Burke MJ, Brown P, Carroll WL (2012) Epigenetic reprogramming reverses the relapse-specific gene expression signature and restores chemosensitivity in childhood B-lymphoblastic leukemia. Blood 119(22):5201–5210. https://doi.org/10.1182/blood-2012-01-401687

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Issa ME, Takhsha FS, Chirumamilla CS, Perez-Novo C, Vanden Berghe W, Cuendet M (2017) Epigenetic strategies to reverse drug resistance in heterogeneous multiple myeloma. Clin Epigenetics 9:17. https://doi.org/10.1186/s13148-017-0319-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Huang Y (2007) Pharmacogenetics/genomics of membrane transporters in cancer chemotherapy. Cancer Metastasis Rev 26(1):183–201. https://doi.org/10.1007/s10555-007-9050-6

    Article  PubMed  CAS  Google Scholar 

  51. Gottesman MM, Ambudkar SV (2001) Overview: ABC transporters and human disease. J Bioenerg Biomembr 33(6):453–458

    Article  PubMed  CAS  Google Scholar 

  52. Glavinas H, Krajcsi P, Cserepes J, Sarkadi B (2004) The role of ABC transporters in drug resistance, metabolism and toxicity. Curr Drug Deliv 1(1):27–42

    Article  CAS  Google Scholar 

  53. Campos L, Guyotat D, Archimbaud E, Calmard-Oriol P, Tsuruo T, Troncy J, Treille D, Fiere D (1992) Clinical significance of multidrug resistance P-glycoprotein expression on acute nonlymphoblastic leukemia cells at diagnosis. Blood 79(2):473–476

    PubMed  CAS  Google Scholar 

  54. Dalton WS, Grogan TM, Meltzer PS, Scheper RJ, Durie BG, Taylor CW, Miller TP, Salmon SE (1989) Drug-resistance in multiple myeloma and non-Hodgkin’s lymphoma: detection of P-glycoprotein and potential circumvention by addition of verapamil to chemotherapy. J Clin Oncol 7(4):415–424. https://doi.org/10.1200/JCO.1989.7.4.415

    Article  PubMed  CAS  Google Scholar 

  55. Marie JP, Zittoun R, Sikic BI (1991) Multidrug resistance (mdr1) gene expression in adult acute leukemias: correlations with treatment outcome and in vitro drug sensitivity. Blood 78(3):586–592

    PubMed  CAS  Google Scholar 

  56. Miller TP, Grogan TM, Dalton WS, Spier CM, Scheper RJ, Salmon SE (1991) P-glycoprotein expression in malignant lymphoma and reversal of clinical drug resistance with chemotherapy plus high-dose verapamil. J Clin Oncol 9(1):17–24. https://doi.org/10.1200/JCO.1991.9.1.17

    Article  PubMed  CAS  Google Scholar 

  57. Ambudkar SV, Kimchi-Sarfaty C, Sauna ZE, Gottesman MM (2003) P-glycoprotein: from genomics to mechanism. Oncogene 22(47):7468–7485. https://doi.org/10.1038/sj.onc.1206948

    Article  PubMed  CAS  Google Scholar 

  58. Bradshaw DM, Arceci RJ (1998) Clinical relevance of transmembrane drug efflux as a mechanism of multidrug resistance. J Clin Oncol 16(11):3674–3690. https://doi.org/10.1200/JCO.1998.16.11.3674

    Article  PubMed  CAS  Google Scholar 

  59. Clarke R, Leonessa F, Trock B (2005) Multidrug resistance/P-glycoprotein and breast cancer: review and meta-analysis. Semin Oncol 32(6 Suppl 7):S9–S15. https://doi.org/10.1053/j.seminoncol.2005.09.009

    Article  CAS  Google Scholar 

  60. Mahadevan D, List AF (2004) Targeting the multidrug resistance-1 transporter in AML: molecular regulation and therapeutic strategies. Blood 104(7):1940–1951. https://doi.org/10.1182/blood-2003-07-2490

    Article  PubMed  CAS  Google Scholar 

  61. Fisher GA, Sikic BI (1995) Clinical studies with modulators of multidrug resistance. Hematol/Oncol Clin N Am 9(2):363–382

    Article  CAS  Google Scholar 

  62. Sikic BI (1993) Modulation of multidrug resistance: at the threshold. J Clin Oncol 11(9):1629–1635. https://doi.org/10.1200/JCO.1993.11.9.1629

    Article  PubMed  CAS  Google Scholar 

  63. Sikic BI (1997) Pharmacologic approaches to reversing multidrug resistance. Semin Hematol 34(4 Suppl 5):40–47

    PubMed  CAS  Google Scholar 

  64. Capranico G, De Isabella P, Castelli C, Supino R, Parmiani G, Zunino F (1989) P-glycoprotein gene amplification and expression in multidrug-resistant murine P388 and B16 cell lines. Br J Cancer 59(5):682–685

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Shukla S, Chen ZS, Ambudkar SV (2012) Tyrosine kinase inhibitors as modulators of ABC transporter-mediated drug resistance. Drug Resist Updates 15 (1–2):70–80. https://doi.org/10.1016/j.drup.2012.01.005

    Article  CAS  Google Scholar 

  66. Chang XB (2007) A molecular understanding of ATP-dependent solute transport by multidrug resistance-associated protein MRP1. Cancer Metastasis Rev 26(1):15–37. https://doi.org/10.1007/s10555-007-9041-7

    Article  PubMed  CAS  Google Scholar 

  67. Burg D, Wielinga P, Zelcer N, Saeki T, Mulder GJ, Borst P (2002) Inhibition of the multidrug resistance protein 1 (MRP1) by peptidomimetic glutathione-conjugate analogs. Mol Pharmacol 62(5):1160–1166

    Article  PubMed  CAS  Google Scholar 

  68. Chen YN, Mickley LA, Schwartz AM, Acton EM, Hwang JL, Fojo AT (1990) Characterization of adriamycin-resistant human breast cancer cells which display overexpression of a novel resistance-related membrane protein. J Biol Chem 265(17):10073–10080

    PubMed  CAS  Google Scholar 

  69. Robey RW, Polgar O, Deeken J, To KW, Bates SE (2007) ABCG2: determining its relevance in clinical drug resistance. Cancer Metastasis Rev 26(1):39–57. https://doi.org/10.1007/s10555-007-9042-6

    Article  PubMed  CAS  Google Scholar 

  70. Bates SE, Robey R, Miyake K, Rao K, Ross DD, Litman T (2001) The role of half-transporters in multidrug resistance. J Bioenerg Biomembr 33(6):503–511

    Article  PubMed  CAS  Google Scholar 

  71. Ross DD, Yang W, Abruzzo LV, Dalton WS, Schneider E, Lage H, Dietel M, Greenberger L, Cole SP, Doyle LA (1999) Atypical multidrug resistance: breast cancer resistance protein messenger RNA expression in mitoxantrone-selected cell lines. J Natl Cancer Inst 91(5):429–433

    Article  PubMed  CAS  Google Scholar 

  72. Westover D, Ling X, Lam H, Welch J, Jin C, Gongora C, Del Rio M, Wani M, Li F (2015) FL118, a novel camptothecin derivative, is insensitive to ABCG2 expression and shows improved efficacy in comparison with irinotecan in colon and lung cancer models with ABCG2-induced resistance. Mol Cancer 14:92. https://doi.org/10.1186/s12943-015-0362-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Dumontet C, Sikic BI (1999) Mechanisms of action of and resistance to antitubulin agents: microtubule dynamics, drug transport, and cell death. J Clin Oncol 17(3):1061–1070. https://doi.org/10.1200/JCO.1999.17.3.1061

    Article  PubMed  CAS  Google Scholar 

  74. Orr GA, Verdier-Pinard P, McDaid H, Horwitz SB (2003) Mechanisms of Taxol resistance related to microtubules. Oncogene 22(47):7280–7295. https://doi.org/10.1038/sj.onc.1206934

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Seve P, Mackey J, Isaac S, Tredan O, Souquet PJ, Perol M, Lai R, Voloch A, Dumontet C (2005) Class III beta-tubulin expression in tumor cells predicts response and outcome in patients with non-small cell lung cancer receiving paclitaxel. Mol Cancer Ther 4(12):2001–2007. https://doi.org/10.1158/1535-7163.MCT-05-0244

    Article  PubMed  CAS  Google Scholar 

  76. Yusuf RZ, Duan Z, Lamendola DE, Penson RT, Seiden MV (2003) Paclitaxel resistance: molecular mechanisms and pharmacologic manipulation. Curr Cancer Drug Targets 3(1):1–19

    Article  PubMed  CAS  Google Scholar 

  77. Rouzier R, Rajan R, Wagner P, Hess KR, Gold DL, Stec J, Ayers M, Ross JS, Zhang P, Buchholz TA, Kuerer H, Green M, Arun B, Hortobagyi GN, Symmans WF, Pusztai L (2005) Microtubule-associated protein tau: a marker of paclitaxel sensitivity in breast cancer. Proc Natl Acad Sci USA 102(23):8315–8320. https://doi.org/10.1073/pnas.0408974102

    Article  PubMed  CAS  Google Scholar 

  78. Wagner P, Wang B, Clark E, Lee H, Rouzier R, Pusztai L (2005) Microtubule Associated Protein (MAP)-Tau: a novel mediator of paclitaxel sensitivity in vitro and in vivo. Cell Cycle 4(9):1149–1152. https://doi.org/10.4161/cc.4.9.2038

    Article  PubMed  CAS  Google Scholar 

  79. Andoh T, Ishii K, Suzuki Y, Ikegami Y, Kusunoki Y, Takemoto Y, Okada K (1987) Characterization of a mammalian mutant with a camptothecin-resistant DNA topoisomerase I. Proc Natl Acad Sci USA 84(16):5565–5569

    Article  PubMed  CAS  Google Scholar 

  80. Deffie AM, Batra JK, Goldenberg GJ (1989) Direct correlation between DNA topoisomerase II activity and cytotoxicity in adriamycin-sensitive and -resistant P388 leukemia cell lines. Cancer Res 49(1):58–62

    PubMed  CAS  Google Scholar 

  81. Tanizawa A, Pommier Y (1992) Topoisomerase I alteration in a camptothecin-resistant cell line derived from Chinese hamster DC3F cells in culture. Cancer Res 52(7):1848–1854

    PubMed  CAS  Google Scholar 

  82. Beck WT, Morgan SE, Mo YY, Bhat UG (1999) Tumor cell resistance to DNA topoisomerase II inhibitors: new developments. Drug Resist Updates 2(6):382–389. https://doi.org/10.1054/drup.1999.0110

    Article  CAS  Google Scholar 

  83. Xu Y, Villalona-Calero MA (2002) Irinotecan: mechanisms of tumor resistance and novel strategies for modulating its activity. Ann Oncol 13(12):1841–1851

    Article  PubMed  CAS  Google Scholar 

  84. Lackner MR, Wilson TR, Settleman J (2012) Mechanisms of acquired resistance to targeted cancer therapies. Future Oncol 8(8):999–1014. https://doi.org/10.2217/fon.12.86

    Article  PubMed  CAS  Google Scholar 

  85. O’Hare T, Eide CA, Deininger MW (2007) Bcr-Abl kinase domain mutations, drug resistance, and the road to a cure for chronic myeloid leukemia. Blood 110(7):2242–2249. https://doi.org/10.1182/blood-2007-03-066936

    Article  PubMed  CAS  Google Scholar 

  86. Wang D, Lippard SJ (2005) Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov 4(4):307–320. https://doi.org/10.1038/nrd1691

    Article  PubMed  CAS  Google Scholar 

  87. Kaina B, Christmann M (2002) DNA repair in resistance to alkylating anticancer drugs. Int J Clin Pharmacol Ther 40(8):354–367

    Article  PubMed  CAS  Google Scholar 

  88. Ceppi P, Volante M, Novello S, Rapa I, Danenberg KD, Danenberg PV, Cambieri A, Selvaggi G, Saviozzi S, Calogero R, Papotti M, Scagliotti GV (2006) ERCC1 and RRM1 gene expressions but not EGFR are predictive of shorter survival in advanced non-small-cell lung cancer treated with cisplatin and gemcitabine. Ann Oncol 17(12):1818–1825. https://doi.org/10.1093/annonc/mdl300

    Article  PubMed  CAS  Google Scholar 

  89. Siddik ZH (2003) Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 22(47):7265–7279. https://doi.org/10.1038/sj.onc.1206933

    Article  PubMed  CAS  Google Scholar 

  90. Gerson SL (2004) MGMT: its role in cancer aetiology and cancer therapeutics. Nat Rev Cancer 4(4):296–307. https://doi.org/10.1038/nrc1319

    Article  PubMed  CAS  Google Scholar 

  91. Lowe SW, Schmitt EM, Smith SW, Osborne BA, Jacks T (1993) p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362(6423):847–849. https://doi.org/10.1038/362847a0

    Article  PubMed  CAS  Google Scholar 

  92. Clarke AR, Purdie CA, Harrison DJ, Morris RG, Bird CC, Hooper ML, Wyllie AH (1993) Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature 362(6423):849–852. https://doi.org/10.1038/362849a0

    Article  PubMed  CAS  Google Scholar 

  93. Fan S, el-Deiry WS, Bae I, Freeman J, Jondle D, Bhatia K, Fornace AJ Jr, Magrath I, Kohn KW, O’Connor PM (1994) p53 gene mutations are associated with decreased sensitivity of human lymphoma cells to DNA damaging agents. Cancer Res 54(22):5824–5830

    PubMed  CAS  Google Scholar 

  94. Carnero A, Garcia-Mayea Y, Mir C, Lorente J, Rubio IT, LLeonart ME (2016) The cancer stem-cell signaling network and resistance to therapy. Cancer Treat Rev 49:25–36. https://doi.org/10.1016/j.ctrv.2016.07.001

    Article  PubMed  CAS  Google Scholar 

  95. Tannock I (1978) Cell kinetics and chemotherapy: a critical review. Cancer Treat Rep 62(8):1117–1133

    PubMed  CAS  Google Scholar 

  96. Tannock IF (1968) The relation between cell proliferation and the vascular system in a transplanted mouse mammary tumour. Br J Cancer 22(2):258–273

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Hirst DG, Denekamp J (1979) Tumour cell proliferation in relation to the vasculature. Cell Tissue Kinetics 12(1):31–42

    PubMed  CAS  Google Scholar 

  98. Ljungkvist AS, Bussink J, Rijken PF, Kaanders JH, van der Kogel AJ, Denekamp J (2002) Vascular architecture, hypoxia, and proliferation in first-generation xenografts of human head-and-neck squamous cell carcinomas. Int J Radiat Oncol Biol Phys 54(1):215–228

    Article  PubMed  Google Scholar 

  99. Hazlehurst LA, Damiano JS, Buyuksal I, Pledger WJ, Dalton WS (2000) Adhesion to fibronectin via beta1 integrins regulates p27kip1 levels and contributes to cell adhesion mediated drug resistance (CAM-DR). Oncogene 19(38):4319–4327. https://doi.org/10.1038/sj.onc.1203782

    Article  PubMed  CAS  Google Scholar 

  100. Shain KH, Dalton WS (2001) Cell adhesion is a key determinant in de novo multidrug resistance (MDR): new targets for the prevention of acquired MDR. Mol Cancer Ther 1(1):69–78

    PubMed  CAS  Google Scholar 

  101. Wang GL, Semenza GL (1995) Purification and characterization of hypoxia-inducible factor 1. J Biol Chem 270(3):1230–1237

    Article  PubMed  CAS  Google Scholar 

  102. Pouyssegur J, Dayan F, Mazure NM (2006) Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature 441(7092):437–443. https://doi.org/10.1038/nature04871

    Article  PubMed  CAS  Google Scholar 

  103. Rice GC, Hoy C, Schimke RT (1986) Transient hypoxia enhances the frequency of dihydrofolate reductase gene amplification in Chinese hamster ovary cells. Proc Natl Acad Sci USA 83(16):5978–5982

    Article  PubMed  CAS  Google Scholar 

  104. Rice GC, Ling V, Schimke RT (1987) Frequencies of independent and simultaneous selection of Chinese hamster cells for methotrexate and doxorubicin (adriamycin) resistance. Proc Natl Acad Sci USA 84(24):9261–9264

    Article  PubMed  CAS  Google Scholar 

  105. Comerford KM, Wallace TJ, Karhausen J, Louis NA, Montalto MC, Colgan SP (2002) Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene. Cancer Res 62(12):3387–3394

    PubMed  CAS  Google Scholar 

  106. Kennedy KA (1987) Hypoxic cells as specific drug targets for chemotherapy. Anti-Cancer Drug Des 2(2):181–194

    CAS  Google Scholar 

  107. Raghunand N, He X, van Sluis R, Mahoney B, Baggett B, Taylor CW, Paine-Murrieta G, Roe D, Bhujwalla ZM, Gillies RJ (1999) Enhancement of chemotherapy by manipulation of tumour pH. Br J Cancer 80(7):1005–1011. https://doi.org/10.1038/sj.bjc.6690455

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Raghunand N, Mahoney BP, Gillies RJ (2003) Tumor acidity, ion trapping and chemotherapeutics. II. pH-dependent partition coefficients predict importance of ion trapping on pharmacokinetics of weakly basic chemotherapeutic agents. Biochem Pharmacol 66(7):1219–1229

    Article  PubMed  CAS  Google Scholar 

  109. Cowan DS, Tannock IF (2001) Factors that influence the penetration of methotrexate through solid tissue. Intl J Cancer 91(1):120–125

    Article  CAS  Google Scholar 

  110. Cooper GM (2000) The cell: a molecular approach, 2nd edn. Sinauer Associates, Boston University, Sunderland (MA)

    Google Scholar 

  111. Spears CP (1995) Clinical resistance to antimetabolites. Hematol/Oncol Clin N Am 9(2):397–413

    Article  CAS  Google Scholar 

  112. Kickhoefer VA, Rajavel KS, Scheffer GL, Dalton WS, Scheper RJ, Rome LH (1998) Vaults are up-regulated in multidrug-resistant cancer cell lines. J Biol Chem 273(15):8971–8974

    Article  PubMed  CAS  Google Scholar 

  113. List AF, Spier CS, Grogan TM, Johnson C, Roe DJ, Greer JP, Wolff SN, Broxterman HJ, Scheffer GL, Scheper RJ, Dalton WS (1996) Overexpression of the major vault transporter protein lung-resistance protein predicts treatment outcome in acute myeloid leukemia. Blood 87(6):2464–2469

    PubMed  CAS  Google Scholar 

  114. Steuart CD, Burke PJ (1971) Cytidine deaminase and the development of resistance to arabinosyl cytosine. Nature 233(38):109–110

    CAS  Google Scholar 

  115. Carlson RW, Sikic BI (1983) Continuous infusion or bolus injection in cancer chemotherapy. Ann Internal Med 99(6):823–833

    Article  CAS  Google Scholar 

  116. Cassidy J (1994) Chemotherapy administration: doses, infusions and choice of schedule. Ann Oncol 5(Suppl 4):25–29 (discussion 29–30)

    Article  PubMed  Google Scholar 

  117. Marangolo M, Bengala C, Conte PF, Danova M, Pronzato P, Rosti G, Sagrada P (2006) Dose and outcome: the hurdle of neutropenia (Review). Oncol Rep 16(2):233–248

    PubMed  CAS  Google Scholar 

  118. Ribatti D (2008) Judah Folkman, a pioneer in the study of angiogenesis. Angiogenesis 11(1):3–10. https://doi.org/10.1007/s10456-008-9092-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Kyle AH, Huxham LA, Yeoman DM, Minchinton AI (2007) Limited tissue penetration of taxanes: a mechanism for resistance in solid tumors. Clin Cancer Res 13(9):2804–2810. https://doi.org/10.1158/1078-0432.CCR-06-1941

    Article  PubMed  CAS  Google Scholar 

  120. Minchinton AI, Tannock IF (2006) Drug penetration in solid tumours. Nat Rev Cancer 6(8):583–592. https://doi.org/10.1038/nrc1893

    Article  PubMed  CAS  Google Scholar 

  121. Matsumoto S, Batra S, Saito K, Yasui H, Choudhuri R, Gadisetti C, Subramanian S, Devasahayam N, Munasinghe JP, Mitchell JB, Krishna MC (2011) Antiangiogenic agent sunitinib transiently increases tumor oxygenation and suppresses cycling hypoxia. Cancer Res 71(20):6350–6359. https://doi.org/10.1158/0008-5472.CAN-11-2025

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Cordon-Cardo C, O’Brien JP, Casals D, Rittman-Grauer L, Biedler JL, Melamed MR, Bertino JR (1989) Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites. Proc Natl Acad Sci USA 86(2):695–698

    Article  PubMed  CAS  Google Scholar 

  123. Schinkel AH, Smit JJ, van Tellingen O, Beijnen JH, Wagenaar E, van Deemter L, Mol CA, van der Valk MA, Robanus-Maandag EC, te Riele HP et al (1994) Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell 77(4):491–502

    Article  PubMed  CAS  Google Scholar 

  124. Benzekry S, Pasquier E, Barbolosi D, Lacarelle B, Barlesi F, Andre N, Ciccolini J (2015) Metronomic reloaded: theoretical models bringing chemotherapy into the era of precision medicine. Semin Cancer Biol 35:53–61. https://doi.org/10.1016/j.semcancer.2015.09.002

    Article  PubMed  Google Scholar 

  125. Pasquier E, Kavallaris M, Andre N (2010) Metronomic chemotherapy: new rationale for new directions. Nat Rev Clin Oncol 7(8):455–465. https://doi.org/10.1038/nrclinonc.2010.82

    Article  PubMed  Google Scholar 

  126. Callaghan R, Luk F, Bebawy M (2014) Inhibition of the multidrug resistance P-glycoprotein: time for a change of strategy? Drug Metabol Dispos 42(4):623–631. https://doi.org/10.1124/dmd.113.056176

    Article  CAS  Google Scholar 

  127. Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, Santos A, Doncheva NT, Roth A, Bork P, Jensen LJ, von Mering C (2017) The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res 45(D1):D362–D368. https://doi.org/10.1093/nar/gkw937

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr. A.G. Georgakilas acknowledges funding from DAAD Grant “DNA Damage and Repair and Their Relevance to Carcinogenesis” (No. 57339330).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Efthymios Kyrodimos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikolaou, M., Pavlopoulou, A., Georgakilas, A.G. et al. The challenge of drug resistance in cancer treatment: a current overview. Clin Exp Metastasis 35, 309–318 (2018). https://doi.org/10.1007/s10585-018-9903-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-018-9903-0

Keywords

Navigation