Skip to main content
Log in

Shooting for the moon: using tissue-mimetic hydrogels to gain new insight on cancer biology and screen therapeutics

  • Biomaterials for 3D Cell Biology Prospective Article
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Tissue engineering holds great promise for advancing cancer research and achieving the goals of the Cancer Moonshot by providing better models for basic research and testing novel therapeutics. This paper focuses on the use of hydrogel biomaterials due to their unique ability to entrap cells in three-dimensional (3D) matrix that mimics tissues and can be programmed with physical and chemical cues to recreate key aspects of tumor microenvironments. The chemistry of some commonly used hydrogel platforms is discussed, and important examples of their use in tissue engineering 3D cancer models are highlighted. Challenges and opportunities for future research are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. D. Hanahan and R.A. Weinberg: Hallmarks of cancer: the next generation. Cell 144, 646 (2011).

    Article  CAS  Google Scholar 

  2. T.K. Schuessler, X.Y. Chan, H.J. Chen, K. Ji, K.M. Park, A. Roshan-Ghias, P. Sethi, A. Thakur, X. Tian, A. Villasante, I.K. Zervantonakis, N.M. Moore, L.A. Nagahara, and N.Z. Kuhn: Biomimetic tissue-engineered systems for advancing cancer research: NCI strategic workshop report. Cancer Res. 74, 5359 (2014).

    Article  CAS  Google Scholar 

  3. W.C. Hahn, S.A. Stewart, M.W. Brooks, S.G. York, E. Eaton, A. Kurachi, R.L. Beijersbergen, J.H.M. Knoll, M. Meyerson, and R.A. Weinberg: Inhibition of telomerase limits the growth of human cancer cells. Nat. Med. 5, 1164 (1999).

    Article  CAS  Google Scholar 

  4. J.L. Leight, M.A. Wozniak, S. Chen, M.L. Lynch, and C.S. Chen: Matrix rigidity regulates a switch between TGF-β1-induced apoptosis and epithelial-mesenchymal transition. Mol. Biol. Cell 23, 781 (2012).

    Article  CAS  Google Scholar 

  5. J. Heyer, L.N. Kwong, S.W. Lowe, and L. Chin: Non-germline genetically engineered mouse models for translational cancer research. Nat. Rev. Cancer 10, 470 (2010).

    Article  CAS  Google Scholar 

  6. N.E. Sharpless and R.A. DePinho: The mighty mouse: genetically engineered mouse models in cancer drug development. Nat. Rev. Drug Discov. 5, 741 (2006).

    Article  CAS  Google Scholar 

  7. A. Rangarajan and R.A. Weinberg: Comparative biology of mouse versus human cells: modelling human cancer in mice. Nat. Rev. Cancer 3, 952 (2003).

    Article  CAS  Google Scholar 

  8. I.W.Y. Mak, N. Evaniew, and M. Ghert: Lost in translation: animal models and clinical trials in cancer treatment. Am. J. Transl. Res. 6, 114 (2014).

    Google Scholar 

  9. O.W. Petersen, L. Rønnov-Jessen, A.R. Howlett, and M.J. Bissell: Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells. Proc. Natl. Acad. Sci. U. S. A. 89, 9064 (1992).

    Article  CAS  Google Scholar 

  10. J. Debnath, S.K. Muthuswamy, and J.S. Brugge: Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods 30, 256 (2003).

    Article  CAS  Google Scholar 

  11. A. Albini, I. Iwamoto, H.K. Kleinman, G.R. Martin, S.A. Aaronson, J.M. Kozlowski, and R.N. McEwan: A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Res. 47, 3239 (1987).

    CAS  Google Scholar 

  12. C.S. Hughes, L.M. Postovit, and G.A. Lajoie: Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics 10, 1886 (2010).

    Article  CAS  Google Scholar 

  13. A.S. Hoffman: Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 64, 18 (2012).

    Article  Google Scholar 

  14. C.M. Magin, D.L. Alge, and K.S. Anseth: Bio-inspired 3D microenvironments: a new dimension in tissue engineering. Biomed. Mater. 11, 22001 (2016).

    Article  Google Scholar 

  15. M.A. Azagarsamy and K.S. Anseth: Bioorthogonal click chemistry: an indispensable tool to create multifaceted cell culture scaffolds. ACS Macro Lett. 2, 5 (2013).

    Article  CAS  Google Scholar 

  16. K.T. Nguyen and J.L. West: Photopolymerizable hydrogels for tissue engineering applications. Biomaterials 23, 4307 (2002).

    Article  CAS  Google Scholar 

  17. K.Y. Lee and D.J. Mooney: Hydrogels for tissue engineering. Chem. Rev. 101, 1869 (2001).

    Article  CAS  Google Scholar 

  18. B.D. Fairbanks, M.P. Schwartz, C.N. Bowman, and K.S. Anseth: Photoinitiated polymerization of PEG-diacrylate with lithium phenyl-2,4,6-trimethylbenzoylphosphinate: polymerization rate and cytocompatibility. Biomaterials 30, 6702 (2009).

    Article  CAS  Google Scholar 

  19. C.M. Nimmo and M.S. Shoichet: Regenerative biomaterials that “click”: simple, aqueous-based protocols for hydrogel synthesis, surface immobilization, and 3D patterning. Bioconjug. Chem. 22, 2199 (2011).

    Article  CAS  Google Scholar 

  20. C.-C. Lin, A. Raza, and H. Shih: PEG hydrogels formed by thiol-ene photo-click chemistry and their effect on the formation and recovery of insulin-secreting cell spheroids. Biomaterials 32, 9685 (2011).

    Article  CAS  Google Scholar 

  21. A.D. Shubin, T.J. Felong, D. Graunke, C.E. Ovitt, and D.S.W. Benoit: Development of poly(ethylene glycol) hydrogels for salivary gland tissue engineering applications. Tissue Eng. A 21, 1733 (2015).

    Article  CAS  Google Scholar 

  22. R. Parenteau-Bareil, R. Gauvin, and F. Berthod: Collagen-based biomaterials for tissue engineering applications. Materials (Basel) 3, 1863 (2010).

    Article  CAS  Google Scholar 

  23. D. Loessner, C. Meinert, E. Kaemmerer, L.C. Martine, K. Yue, P.A. Levett, T.J. Klein, F.P.W. Melchels, A. Khademhosseini, and D.W. Hutmacher: Functionalization, preparation and use of cell-laden gelatin methacryloyl-based hydrogels as modular tissue culture platforms. Nat. Protoc. 11, 727 (2016).

    Article  CAS  Google Scholar 

  24. X. Xu, A.K. Jha, D.A. Harrington, M.C. Farach-Carson, and X. Jia: Hyaluronic acid-based hydrogels: from a natural polysaccharide to complex networks. Soft Matter 8, 3280 (2012).

    Article  CAS  Google Scholar 

  25. A.D. Augst, H.J. Kong, and D.J. Mooney: Alginate hydrogels as biomaterials. Macromol. Biosci. 6, 623 (2006).

    Article  CAS  Google Scholar 

  26. O. Jeon, K.H. Bouhadir, J.M. Mansour, and E. Alsberg: Photocrosslinked alginate hydrogels with tunable biodegradation rates and mechanical properties. Biomaterials 30, 2724 (2009).

    Article  CAS  Google Scholar 

  27. J. Zhu: Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. Biomaterials 31, 4639 (2010).

    Article  CAS  Google Scholar 

  28. M.P. Lutolf, J.L. Lauer-Fields, H.G. Schmoekel, T. Metters, F.E. Weber, G.B. Fields, and J. Hubbell: Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proc. Natl. Acad. Sci. U. S. A. 100, 5413 (2003).

    Article  CAS  Google Scholar 

  29. E.A. Phelps, N.O. Enemchukwu, V.F. Fiore, J.C. Sy, N. Murthy, T.A. Sulchek, T.H. Barker, and A.J. Garcia: Maleimide cross-linked bioactive PEG hydrogel exhibits improved reaction kinetics and cross-linking for cell encapsulation and in situ delivery. Adv. Mater. 24, 64 (2012).

    Article  CAS  Google Scholar 

  30. A.E. Rydholm, K.S. Anseth, and C.N. Bowman: Effects of neighboring sulfides and pH on ester hydrolysis in thiol-acrylate photopolymers. Acta Biomater. 3, 449 (2007).

    Article  CAS  Google Scholar 

  31. B.D. Fairbanks, M.P. Schwartz, A.E. Halevi, C.R. Nuttelman, C.N. Bowman, and K.S. Anseth: A versatile synthetic extracellular matrix mimic via Thiol-Norbornene photopolymerization. Adv. Mater. 21, 5005 (2009).

    Article  CAS  Google Scholar 

  32. B.J. Gill, D.L. Gibbons, L.C. Roudsari, J.E. Saik, Z.H. Rizvi, J.D. Roybal, J.M. Kurie, and J.L. West: A synthetic matrix with independently tunable biochemistry and mechanical properties to study epithelial morphogenesis and EMT in a lung adenocarcinoma model. Cancer Res. 72, 6013 (2012).

    Article  CAS  Google Scholar 

  33. L.C. Roudsari, S.E. Jeffs, A.S. Witt, B.J. Gill, and J.L. West: A 3D poly(ethylene glycol)-based tumor angiogenesis model to study the influence of vascular cells on lung tumor cell behavior. Sci. Rep. 6, 32726 (2016).

    Article  CAS  Google Scholar 

  34. C.S. Ki, T.-Y. Lin, M. Korc, and C.-C. Lin: Thiol-ene hydrogels as desmoplasia-mimetic matrices for modeling pancreatic cancer cell growth, invasion, and drug resistance. Biomaterials 35, 9668 (2014).

    Article  CAS  Google Scholar 

  35. Y. Liang, J. Jeong, R.J. DeVolder, C. Cha, F. Wang, Y.W. Tong, and H. Kong: A cell-instructive hydrogel to regulate malignancy of 3D tumor spheroids with matrix rigidity. Biomaterials 32, 9308 (2011).

    Article  CAS  Google Scholar 

  36. X. Xu, C. Liu, Y. Liu, N. Li, X. Guo, S. Wang, G. Sun, W. Wang, and X. Ma: Encapsulated human hepatocellular carcinoma cells by alginate gel beads as an in vitro metastasis model. Exp. Cell Res. 319, 2135 (2013).

    Article  CAS  Google Scholar 

  37. T.-Y. Lin, C.S. Ki, and C.-C. Lin: Manipulating hepatocellular carcinoma cell fate in orthogonally cross-linked hydrogels. Biomaterials 35, 6898 (2014).

    Article  CAS  Google Scholar 

  38. C. Fischbach, H.J. Kong, S.X. Hsiong, M.B. Evangelista, W. Yuen, and D.J. Mooney: Cancer cell angiogenic capability is regulated by 3D culture and integrin engagement. Proc. Natl. Acad. Sci. U. S. A. 106, 399 (2009).

    Article  CAS  Google Scholar 

  39. S. Sieh, A.V. Taubenberger, S.C. Rizzi, M. Sadowski, M.L. Lehman, A. Rockstroh, J. An, J.A. Clements, C.C. Nelson, and D.W. Hutmacher: Phenotypic characterization of prostate cancer LNCaP cells cultured within a bioengineered microenvironment. PLoS ONE 7, e40217 (2012).

    Article  CAS  Google Scholar 

  40. X. Xu, L.A. Gurski, C. Zhang, D.A. Harrington, M.C. Farach-Carson, and X. Jia: Recreating the tumor microenvironment in a bilayer, hyaluronic acid hydrogel construct for the growth of prostate cancer spheroids. Biomaterials 33, 9049 (2012).

    Article  CAS  Google Scholar 

  41. D. Loessner, K.S. Stok, M.P. Lutolf, D.W. Hutmacher, J.A. Clements, and S.C. Rizzi: Bioengineered 3D platform to explore cell-ECM interactions and drug resistance of epithelial ovarian cancer cells. Biomaterials 31, 8494 (2010).

    Article  CAS  Google Scholar 

  42. Z. Yang and X. Zhao: A 3D model of ovarian cancer cell lines on peptide nanofiber scaffold to explore the cell-scaffold interaction and chemotherapeutic resistance of anticancer drugs. Int. J. Nanomed. 5, 303 (2011).

    Article  Google Scholar 

  43. E. Kaemmerer, F.P.W. Melchels, B.M. Holzapfel, T. Meckel, D.W. Hutmacher, and D. Loessner: Gelatine methacrylamide-based hydrogels: an alternative three-dimensional cancer cell culture system. Acta Biomater. 10, 2551 (2014).

    Article  CAS  Google Scholar 

  44. D. Holmes: The cancer that rises with the Sun. Nature 515, S110 (2014).

    Article  Google Scholar 

  45. A.M. Glazer, R.R. Winkelmann, A.S. Farberg, and D.S. Rigel: Analysis of trends in US melanoma incidence and mortality. JAMA Dermatol. 153, 225 (2017).

    Article  Google Scholar 

  46. K.B. Reed, J.D. Brewer, C.M. Lohse, K.E. Bringe, C.N. Pruitt, and L.E. Gibson: Increasing incidence of melanoma among young adults: an epidemiological study in Olmsted County, Minnesota. Mayo Clin. Proc. 87, 328 (2012).

    Article  Google Scholar 

  47. E.Y. Tokuda, J.L. Leight, and K.S. Anseth: Modulation of matrix elasticity with PEG hydrogels to study melanoma drug responsiveness. Biomaterials 35, 4310 (2014).

    Article  CAS  Google Scholar 

  48. S.P. Singh, M.P. Schwartz, E.Y. Tokuda, Y. Luo, R.E. Rogers, M. Fujita, N.G. Ahn, and K.S. Anseth: A synthetic modular approach for modeling the role of the 3D microenvironment in tumor progression. Sci. Rep. 5, 1 (2015).

    Article  Google Scholar 

  49. E.Y. Tokuda, C.E. Jones, and K.S. Anseth: PEG-peptide hydrogels reveal differential effects of matrix microenvironmental cues on melanoma drug sensitivity. Integr. Biol. 9, 76 (2017).

    Article  CAS  Google Scholar 

  50. R. Kalluri and M. Zeisberg: Fibroblasts in cancer. Nat. Rev. Cancer 6, 392 (2006).

    Article  CAS  Google Scholar 

  51. J.L. Leight, E.Y. Tokuda, C.E. Jones, A.J. Lin, and K.S. Anseth: Multifunctional bioscaffolds for 3D culture of melanoma cells reveal increased MMP activity and migration with BRAF kinase inhibition. Proc. Natl. Acad. Sci. U. S. A. 112, 5366 (2015).

    Article  CAS  Google Scholar 

  52. J.A. Sosman, K.B. Kim, L. Schuchter, R. Gonzalez, A.C. Pavlick, J.S. Weber, G.A. McArthur, T.E. Hutson, S.J. Moschos, K.T. Flaherty, P. Hersey, R. Kefford, D. Lawrence, I. Puzanov, K.D. Lewis, R.K. Amaravadi, B. Chmielowski, H.J. Lawrence, Y. Shyr, F. Ye, J. Li, K.B. Nolop, R.J. Lee, A.K. Joe, and A. Ribas: Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. N. Engl. J. Med. 366, 707 (2012).

    Article  CAS  Google Scholar 

  53. J.P. Thakkar, T.A. Dolecek, C. Horbinski, Q.T. Ostrom, D.D. Lightner, J.S. Barnholtz-Sloan, and J.L. Villano: Epidemiologic and molecular prognostic review of glioblastoma. Cancer Epidemiol. Biomark. Prev. 23, 1985 (2014).

    Article  CAS  Google Scholar 

  54. A.M.P. Omuro, S. Faivre, and E. Raymond: Lessons learned in the development of targeted therapy for malignant gliomas. Mol. Cancer Ther. 6, 1909 (2007).

    Article  CAS  Google Scholar 

  55. T.A. Ulrich, E.M. de Juan Pardo, and S. Kumar: The mechanical rigidity of the extracellular matrix regulates the structure, motility, and proliferation of glioma cells. Cancer Res. 69, 4167 (2009).

    Article  CAS  Google Scholar 

  56. A. Pathak and S. Kumar: Independent regulation of tumor cell migration by matrix stiffness and confinement. Proc. Natl. Acad. Sci. U. S. A. 109, 10334 (2012).

    Article  CAS  Google Scholar 

  57. S.S. Verbridge, N.W. Choi, Y. Zheng, D.J. Brooks, A.D. Stroock, and C. Fischbach: Oxygen-controlled three-dimensional cultures to analyze tumor angiogenesis. Tissue Eng. A 16, 2133 (2010).

    Article  CAS  Google Scholar 

  58. D.T. Nguyen, Y. Fan, Y.M. Akay, and M. Akay: Investigating glioblastoma angiogenesis using a 3D in vitro GelMA microwell platform. IEEE Trans. Nanobiosci. 15, 289 (2016).

    Article  Google Scholar 

  59. D.T. Nguyen, Y. Fan, Y.M. Akay, and M. Akay: TNP-470 reduces glioblastoma angiogenesis in three dimensional GelMA microwell platform. IEEE Trans. Nanobiosci. 15, 683 (2016).

    Article  Google Scholar 

  60. B. Ananthanarayanan, Y. Kim, and S. Kumar: Elucidating the mechanobiology of malignant brain tumors using a brain matrix-mimetic hyaluronic acid hydrogel platform. Biomaterials 32, 7913 (2011).

    Article  CAS  Google Scholar 

  61. S.S. Rao, J. DeJesus, A.R. Short, J.J. Otero, A. Sarkar, and J.O. Winter: Glioblastoma behaviors in three-dimensional collagen-hyaluronan composite hydrogels. ACS Appl. Mater. Interfaces 5, 9276 (2013).

    Article  CAS  Google Scholar 

  62. S. Pedron, E. Becka, and B.A.C. Harley: Regulation of glioma cell phenotype in 3D matrices by hyaluronic acid. Biomaterials 34, 7408 (2013).

    Article  CAS  Google Scholar 

  63. S. Pedron, E. Becka, and B.A. Harley: Spatially gradated hydrogel platform as a 3D engineered tumor microenvironment. Adv. Mater. 27, 1567 (2015).

    Article  CAS  Google Scholar 

  64. S. Pedron and B.A.C. Harley: Impact of the biophysical features of a 3D gelatin microenvironment on glioblastoma malignancy. J. Biomater. Res. A 101A, 3404 (2013).

    CAS  Google Scholar 

  65. C. Wang, X. Tong, and F. Yang: Bioengineered 3D brain tumor model to elucidate the effects of matrix stiffness on glioblastoma cell behavior using PEG-based hydrogels. Mol. Pharm. 11, 2115 (2014).

    Article  CAS  Google Scholar 

  66. C. Wang, X. Tong, X. Jiang, and F. Yang: Effect of matrix metalloproteinase-mediated matrix degradation on glioblastoma cell behavior in 3D PEG-based hydrogels. J. Biomed. Mater. Res. A 105A, 770 (2017).

    Article  Google Scholar 

  67. C. Jiguet Jiglaire, N. Baeza-Kallee, E. Denicolaï, D. Barets, P. Metellus, L. Padovani, O. Chinot, D. Figarella-Branger, and C. Fernandez: Ex vivo cultures of glioblastoma in three-dimensional hydrogel maintain the original tumor growth behavior and are suitable for preclinical drug and radiation sensitivity screening. Exp. Cell Res. 321, 99 (2014).

    Article  CAS  Google Scholar 

  68. R.L. Siegel, K.D. Miller, and A. Jemal: Cancer statistics, 2016. CA. Cancer J. Clin. 66, 7 (2016).

    Article  Google Scholar 

  69. C. Woolston: Breast cancer. Nature 527, S101 (2015).

    Article  CAS  Google Scholar 

  70. A. Bleyer and H.G. Welch: Effect of three decades of screening mammography on breast-cancer incidence. N. Engl. J. Med. 367, 1998 (2012).

    Article  CAS  Google Scholar 

  71. S. Pradhan, I. Hassani, W.J. Seeto, and E.A. Lipke: PEG-fibrinogen hydrogels for three-dimensional breast cancer cell culture. J. Biomed. Mater. Res. A 105A, 236 (2017).

    Article  Google Scholar 

  72. P.A. Kenny, G.Y. Lee, C.A. Myers, R.M. Neve, J.R. Semeiks, P.T. Spellman, K. Lorenz, E.H. Lee, M.H. Barcellos-Hoff, O.W. Petersen, J.W. Gray, and M.J. Bissell: The morphologies of breast cancer cell lines in three-dimensional assays correlate with their profiles of gene expression. Mol. Oncol. 1, 84 (2007).

    Article  CAS  Google Scholar 

  73. S. Pradhan, J.M. Clary, D. Seliktar, and E.A. Lipke: A three-dimensional spheroidal cancer model based on PEG- fibrinogen hydrogel microspheres. Biomaterials 115, 141 (2017).

    Article  CAS  Google Scholar 

  74. M.S. Weiss, B.P. Bernabé, A. Shikanov, D.A. Bluver, M.D. Mui, S. Shin, L.J. Broadbelt, and L.D. Shea: The impact of adhesion peptides within hydrogels on the phenotype and signaling of normal and cancerous mammary epithelial cells. Biomaterials 33, 3548 (2012).

    Article  CAS  Google Scholar 

  75. A.V. Taubenberger, L.J. Bray, B. Haller, A. Shaposhnykov, M. Binner, U. Freudenberg, J. Guck, and C. Werner: 3D extracellular matrix interactions modulate tumour cell growth, invasion and angiogenesis in engineered tumour microenvironments. Acta Biomater. 36, 73 (2016).

    Article  CAS  Google Scholar 

  76. A.M. Kloxin, A.M. Kasko, C.N. Salinas, and K.S. Anseth: Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 324, 59 (2009).

    Article  CAS  Google Scholar 

  77. H. Wang, M.W. Tibbitt, S.J. Langer, L.A. Leinwand, and K.S. Anseth: Hydrogels preserve native phenotypes of valvular fibroblasts through an elasticity-regulated PI3K/AKT pathway. Proc. Natl. Acad. Sci. U.S.A. 110, 19336 (2013).

    Article  CAS  Google Scholar 

  78. C. Yang, M.W. Tibbitt, L. Basta, and K.S. Anseth: Mechanical memory and dosing influence stem cell fate. Nat. Mater. 13, 645 (2014).

    Article  CAS  Google Scholar 

  79. R.S. Stowers, S.C. Allen, K. Sanchez, C.L. Davis, N.D. Ebelt, C. van Den Berg, and L.J. Suggs: Extracellular matrix stiffening induces a malignant phenotypic transition in breast epithelial cells. Cell. Mol. Bioeng. 10, 114 (2017).

    Article  CAS  Google Scholar 

  80. J. Valdez, C.D. Cook, C. Chopko, A.J. Wang, A. Brown, M. Kumar, L. Stockdale, D. Rothenberg, K. Renggli, E. Gordon, D. Lauffenburger, F. White, and L. Griffith: On-demand dissolution of modular, synthetic extracellular matrix reveals local epithelial-stromal communication networks. Biomaterials 130, 90 (2017).

    Article  CAS  Google Scholar 

  81. A. Gasparian, L. Daneshian, H. Ji, E. Jabbari, and M. Shtutman: Purification of high-quality RNA from synthetic polyethylene glycol-based hydrogels. Anal. Biochem. 484, 1 (2015).

    Article  CAS  Google Scholar 

  82. A.M. Douglas, A.A. Fragkopoulos, M.K. Gaines, L.A. Lyon, A. Fernandez-Nieves, and T.H. Barker: Dynamic assembly of ultrasoft colloidal networks enables cell invasion within restrictive fibrillar polymers. Proc. Natl. Acad. Sci. U. S. A. 114, 885 (2017).

    Article  CAS  Google Scholar 

  83. L.J. Bray, M. Binner, A. Holzheu, J. Friedrichs, U. Freudenberg, D.W. Hutmacher, and C. Werner: Multi-parametric hydrogels support 3D in vitro bioengineered microenvironment models of tumour angiogenesis. Biomaterials 53, 609 (2015).

    Article  CAS  Google Scholar 

  84. S. Huang, M. Van Arsdall, S. Tedjarati, M. McCarty, W. Wu, R. Langley, and I.J. Fidler: Contributions of stromal metalloproteinase-9 to angiogenesis and growth of human ovarian carcinoma in mice. J. Natl. Cancer Inst. 94, 1134 (2002).

    Article  CAS  Google Scholar 

  85. E.Y. Lin, A. V. Nguyen, R.G. Russell, and J.W. Pollard: Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J. Exp. Med. 193, 727 (2001).

    Article  CAS  Google Scholar 

  86. J. Condeelis and J.W. Pollard: Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124, 263 (2006).

    Article  CAS  Google Scholar 

  87. K. Wittmann and C. Fischbach: Contextual control of adipose-derived stem cell function: implications for engineered tumor models. ACS Biomater. Sci. Eng. 3, 1483 (2017).

    Article  CAS  Google Scholar 

  88. J.M. Heddleston, Z. Li, J.D. Lathia, S. Bao, A.B. Hjelmeland, and J.N. Rich: Hypoxia inducible factors in cancer stem cells. Br. J. Cancer 102, 789 (2010).

    Article  CAS  Google Scholar 

  89. B. Keith and M.C. Simon: Hypoxia-inducible factors, stem cells, and cancer. Cell 129, 465 (2007).

    Article  CAS  Google Scholar 

  90. J.M. Heddleston, Z. Li, R.E. McLendon, A.B. Hjelmeland, and J.N. Rich: The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype. Cell Cycle 8, 3274 (2009).

    Article  CAS  Google Scholar 

  91. S.J. Conley, E. Gheordunescu, P. Kakarala, B. Newman, H. Korkaya, A.N. Heath, S.G. Clouthier, and M.S. Wicha: Antiangiogenic agents increase breast cancer stem cells via the generation of tumor hypoxia. Proc. Natl. Acad. Sci. U. S. A. 109, 2784 (2012).

    Article  CAS  Google Scholar 

  92. D. Rodenhizer, E. Gaude, D. Cojocari, R. Mahadevan, C. Frezza, B.G. Wouters, and A.P. McGuigan: A three-dimensional engineered tumour for spatial snapshot analysis of cell metabolism and phenotype in hypoxic gradients. Nat. Mater. 15, 227 (2016).

    Article  CAS  Google Scholar 

  93. K.M. Park and S. Gerecht: Hypoxia-inducible hydrogels. Nat. Commun. 5, article number 4075 (2014).

    Article  CAS  Google Scholar 

  94. D.M. Lewis, K.M. Park, V. Tang, Y. Xu, K. Pak, T.S.K. Eisinger-Mathason, M.C. Simon, and S. Gerecht: Intratumoral oxygen gradients mediate sarcoma cell invasion. Proc. Natl. Acad. Sci. U. S. A. 113, 9292 (2016).

    Article  CAS  Google Scholar 

  95. J.D. Hartgerink, E. Beniash, and S.I. Stupp: Peptide-amphiphile nanofibers: a versatile scaffold for the preparation of self-assembling materials. Proc. Natl. Acad. Sci. U. S. A. 99, 5133 (2002).

    Article  CAS  Google Scholar 

  96. J.H. Collier and P.B. Messersmith: Self-assembling polymer-peptide conjugates: nanostructural tailoring. Adv. Mater. 16, 907 (2004).

    Article  CAS  Google Scholar 

  97. B.M. Baker, B. Trappmann, W.Y. Wang, M.S. Sakar, I.L. Kim, V.B. Shenoy, J.A. Burdick, and C.S. Chen: Cell-mediated fiber recruitment drives extracellular matrix mechanosensing in engineered fibrillar microenvironments. Nat. Mater. 14, 1262 (2015).

    Article  CAS  Google Scholar 

  98. M. Guvendiren and J.A. Burdick: Stiffening hydrogels to probe short- and long-term cellular responses to dynamic mechanics. Nat. Commun. 3, 792 (2012).

    Article  Google Scholar 

  99. J.L. Young and A.J. Engler: Hydrogels with time-dependent material properties enhance cardiomyocyte differentiation in vitro. Biomaterials 32, 1002 (2011).

    Article  CAS  Google Scholar 

  100. A.M. Rosales, K.M. Mabry, E.M. Nehls, and K.S. Anseth: Photoresponsive elastic properties of azobenzene-containing poly(ethylene-glycol)-based hydrogels. Biomacromoleules 16, 798 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Support for this work was provided by a Strategic Areas Interdisciplinary Research Seed Grant to DLA, ESW, and RJO from Texas A&M Engineering Experiment Station, the Dwight Look College of Engineering, and the Texas A&M University Division of Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel L. Alge.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holt, S.E., Sally Ward, E., Ober, R.J. et al. Shooting for the moon: using tissue-mimetic hydrogels to gain new insight on cancer biology and screen therapeutics. MRS Communications 7, 427–441 (2017). https://doi.org/10.1557/mrc.2017.86

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2017.86

Navigation