Skip to main content
Log in

In vitro evaluation of the cholesterol-reducing ability of a potential probiotic Bacillus spp

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

The cholesterol removal ability of three potential probiotic Bacillus spp., namely, B. flexus MCC 2458, B. flexus MCC 2427 and B. licheniformis MCC 2514, has been studied. All the three isolates were deprived of bile salt hydrolase enzyme, but they were still able to remove cholesterol by other mechanisms which were strain-dependent. B. flexus MCC 2427 used cholesterol oxidase (2.5 U/mL) for cholesterol removal, whereas B. flexus MCC 2458 underwent co-precipitation in the presence of bile. B. licheniformis MCC 2514 was involved in cholesterol assimilation, which was also confirmed through an increase in saturated and unsaturated fatty acid contents in the cellular lipid profile. An interesting observation was that the cell-free supernatants of all three isolates exhibited cholesterol-reducing ability and that all were stable at both acidic and alkaline pH. Although the cultures were observed to differ in behavior, their hypocholesterolemic effect satisfies a criterion for their potential application in the food and pharmaceutical industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aloglu H, Oner Z (2006) Assimilation of cholesterol in broth, cream, and butter by probiotic bacteria. Eur J Lipid Sci Technol 108(9):709–713

    Article  CAS  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method for total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  PubMed  Google Scholar 

  • Brashears MM, Gilliland SE, Buck LM (1998) Bile salt deconjugation and cholesterol removal from media by Lactobacillus casei. J Dairy Sci 81:2103–2110

    Article  CAS  PubMed  Google Scholar 

  • Corzo G, Gilliland SE (1999) Bile salt hydrolase activity of three strains of Lactobacillus acidophilus. J Dairy Sci 82:472–480

    Article  CAS  PubMed  Google Scholar 

  • De Preter V, Vanhoutte T, Huys G, Swings J, De Vuyst L, Rutgeerts P, Verbeke K (2007) Effects of Lactobacillus casei Shirota, Bifidobacterium breve, and oligofructose-enriched inulin on colonic nitrogen-protein metabolism in healthy humans. Am J Physiol Gastrointest Liver Physiol 292:358–368

    Article  Google Scholar 

  • Dunn-Emke S, Weidner G, Ornish D (2001) Benefits of a low-fat plant-based diet. Obes Res 9(11):731

    Article  CAS  PubMed  Google Scholar 

  • Du Toit M, Franz CMAP, Dicks LMT, Schillinger U, Haberer P, Warlies B, Ahrens F, Holzapfel WH (1998) Characterization and selection of probiotic lactobacilli for a preliminary minipig feeding trial and their effect on serum cholesterol levels, faeces pH, and faeces moisture content. Int J Food Microbiol 40:93–104

    Article  PubMed  Google Scholar 

  • Florentin M, Liberopoulos EN, Elisaf MS (2008) Ezetimibe-associated adverse effects: what the clinician needs to know. Int J Clin Pract 62(1):88–96

    Article  CAS  PubMed  Google Scholar 

  • Gilliland SE, Nelson CR, Maxwell C (1985) Assimilation of cholesterol by Lactobacillus acidophilus. Appl Environ Microbiol 49:377–380

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haberer P, Du Toit M, Dicks LMT, Ahrens F, Holzapfel WH (2003) Effect of potentially probiotic lactobacilli on faecal enzyme activity in minipigs on a high-cholesterol diet-a preliminary in vivo trial. Int J Food Microbiol 87:287–291

    Article  CAS  PubMed  Google Scholar 

  • Kawase M, Hashimoto H, Hosoda M, Morita H, Hosono A (2000) Effect of administration of fermented milk containing whey protein concentrate to rats and healthy men on serum lipids and blood pressure. J Dairy Sci 83:255–263

    Article  CAS  PubMed  Google Scholar 

  • Kim KP, Rhee CH, Park HD (2002) Degradation of cholesterol by Bacillus subtilis SFF34 isolated from Korean traditional fermented flatfish. Lett Appl Microbiol 35:468–472

    Article  CAS  PubMed  Google Scholar 

  • Kim Y, Whang JY, Whang KY, Oh S, Kim SH (2008) Characterization of the cholesterol-reducing activity in a cell-free supernatant of Lactobacillus acidophilus ATCC 43121. Biosci Biotechnol Biochem 72(6):1483–1490

    Article  CAS  PubMed  Google Scholar 

  • Kimoto H, Ohmomo S, Okamoto T (2002) Cholesterol removal from media by lactococci. J Dairy Sci 85(12):3182–3188

    Article  CAS  PubMed  Google Scholar 

  • Klaver FAM, Van der Meer R (1993) The assumed estimation of cholesterol removal by Lactobacilli and Bifidobacterium bifidum is due to their bile salt deconjugation activity. Appl Environ Microbiol 59:1120–1124

  • Kumar M, Nagpal R, Kumar R, Hemalatha R, Verma V, Kumar A, Chakraborty C, Singh B, Marotta F, Jain S, Yadav H (2012) Cholesterol-lowering probiotics as potential biotherapeutics for metabolic diseases. Exp Diabetes Res 2012:902–917. doi:10.1155/2012/902917

    Article  Google Scholar 

  • Lambert JM, Bongers RS, de Vos WM, Kleerebezem M (2008) Functional analysis of four bile salt hydrolase and penicillin acylase family members in Lactobacillus plantarum WCFS1. Appl Environ Microbiol 74:4719–4726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liong MT, Shah NP (2005) Bile salt deconjugation ability, bile salt hydrolase activity and cholesterol coprecipitation ability of lactobacilli strains. Int Dairy J 15:391–398

    Article  CAS  Google Scholar 

  • Liong MT, Shah NP (2006) Effects of a Lactobacillus casei synbiotic on serum lipoprotein, intestinal microflora, and organic acids in rats. J Dairy Sci 89:1390–1399

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Hsu J, Wang W (1983) Production of cholesterol oxidase by antibiotic resistant mutant and a constitutive mutant Arthrobacter simplex B-7. Proc Natl Sci Counc Repub China B 7:225–260

    Google Scholar 

  • Lye HS, Rusul G, Liong MT (2010a) Mechanisms of cholesterol removal by lactobacilli under conditions that mimic the human gastrointestinal tract. Int Dairy J 20:169–175

    Article  CAS  Google Scholar 

  • Lye HS, Rusul G, Liong MT (2010b) Removal of cholesterol by lactobacilli via incorporation of and conversion to coprostanol. J Dairy Sci 93:1383–1392

    Article  CAS  PubMed  Google Scholar 

  • MacLachlan J, Wotherspoon ATL, Ansell RO, Brooks CJW (2000) Cholesterol oxidase: sources, physical properties and analytical applications. J Steroid Biochem Mol Biol 72:169–195

    Article  CAS  PubMed  Google Scholar 

  • Manson JE, Tosteson H, Ridker PM, Satterfield S, Hebert P, O'Connor GT (1992) The primary prevention of myocardial infarction. New Engl J Med 326:1406–1416

    Article  CAS  PubMed  Google Scholar 

  • Noh DO, Kim SH, Gilliland SE (1997) Incorporation of cholesterol into the cellular membrane of Lactobacillus acidophilus ATCC 43121. J Dairy Sci 80:3107–3113

    Article  CAS  PubMed  Google Scholar 

  • Pazzucconi F, Dorigotti F, Gianfranceschi G, Campagnoli G, Sirtori M, Franceschini G, Sirtori CR (1995) Therapy with HMG CoA reductase inhibitors: characteristics of the long-term permanence of hypocholesterolemic activity. Atherosclerosis 117:189–198

    Article  CAS  PubMed  Google Scholar 

  • Pereira DI, McCartney AL, Gibson GR (2003) An in vitro study of the probiotic potential of a bile salt hydrolyzing Lactobacillus fermentum strain, and determination of its cholesterol-lowering properties. Appl Environ Microbiol 69:4743–4752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pereira DIA, Gibson GR (2002) Cholesterol assimilation by lactic acid bacteria and bifidobacteria isolated from the human gut. Appl Environ Microbiol 68:4689–4693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Remagni MC, Paladino M, Locci F, Romeo FV, Zago M, Povolo M, Contarini G, Carminati D (2013) Cholesterol removal capability of lactic acid bacteria and related cell membrane fatty acid modifications. Folia Microbiol 58(6):443–449

    Article  CAS  Google Scholar 

  • Rhee CH, Kim KP, Park HD (2002) Two novel extracellular cholesterol oxidase of Bacillus sp. isolated from fermented flatfish. Biotechnol Lett 24:1385–1389

    Article  CAS  Google Scholar 

  • Richmond W (1973) Preparation and properties of a cholesterol oxidase from Norcardia sp. and its application to the enzymatic assay of total cholesterol in serum. Clin Chem 19:1350–1356

    CAS  PubMed  Google Scholar 

  • Rudel LL, Morris MD (1973) Determination of cholesterol using O-phtaldealdehyde. J Lipid Res 14:364–366

  • Shobharani P, Halami PM (2014) Cellular fatty acid profile and H+-ATPase activity to assess acid tolerance of Bacillus sp. for potential probiotic functional attributes. Appl Microbiol Biotechnol 98:9045–9058

    Article  CAS  PubMed  Google Scholar 

  • Sima A, Stancu C (2001) Statins: mechanism of action and effect. J Cell Mol Med 5(4):378–387

    Article  PubMed  Google Scholar 

  • Sojo M, Bru R, Lopez-Molina D, Garcia-Carmona F, Argulles JC (1997) Cell-linked and extracellular cholesterol oxidase activities from Rhodococcus erythropolis, isolation and physiological characterization. Appl Microbiol Biotechnol 47:583–589

    Article  CAS  PubMed  Google Scholar 

  • Statsoft Inc. (1999) Statistics for Windows. Statsoft Inc., Tulsa

    Google Scholar 

  • Tomioka H, Kagawa M, Nakamura S (1976) Some enzymatic properties of 3b-hydroxy steroid oxidase produced by Streptomyces violascens. J Biochem 79:903–915

    CAS  PubMed  Google Scholar 

  • Yang S, Zhang H (2012) Optimization of cholesterol oxidase production by Brevibacterium sp. employing response surface methodology. Afr J Biotechnol 11(33):8316–8322

    CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Director, CSIR-CFTRI, for granted use of all facilities. SRP thanks the SERB–Department of Science and Technology, Govt of India, New Delhi for sponsoring the start-up project grant (Project No. SR/FT/LS-203/2009).

Conflict of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prakash Motiram Halami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shobharani, P., Halami, P.M. In vitro evaluation of the cholesterol-reducing ability of a potential probiotic Bacillus spp. Ann Microbiol 66, 643–651 (2016). https://doi.org/10.1007/s13213-015-1146-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-015-1146-6

Keywords

Navigation