Skip to main content
Log in

Lactic acid bacteria from a traditional starter (kpètè-kpètè) of Benin opaque sorghum beer: probiotic characteristics, cholesterol-lowering capacity, and exopolysaccharides production

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Four strains of lactic acid bacteria (LAB) viz Enterococcus faecalis, Lacticaseibacillus casei, Lactobacillus divergens, and Limosilactobacillus fermentum isolated from a starter of Benin opaque sorghum beer (kpètè-kpètè) were investigated for their abilities to assimilate cholesterol and their capabilities to produce exopolysaccharides (EPS) in vitro. Probiotic characteristics such as resistance to biological barriers, antimicrobial activity, aggregation, and hydrophobicity were also carried out. Results for the in vitro acid and bile resistance revealed that all four LAB strains can survive under simulated gastrointestinal conditions with a survival rate of up to 75.4%. They displayed variable inhibitory activities against some indicator pathogens, including Escherichia coli (two strains), Staphylococcus aureus (two strains), Klebsiella pneumoniae, Salmonella typhi, and Candida albicans. L. casei and L. divergens were able to remove more than 24% of cholesterol. Furthermore, all strains produced high exopolysaccharides, ranging from 199.63 to 375.33 mg/L. In vitro, the production of exopolysaccharides significantly correlated (p < 0.05) with cholesterol removal in MRS broth after 24 h. The highest hydrophobicity to xylene and chloroform was exhibited by L. casei (52.81%, 65.75%) and L. divergens (50.70%, 37.16%), respectively. The strains tested demonstrated their auto-aggregation and coaggregation abilities. There was a positive correlation between hydrophobicity and auto-aggregation performed by bacterial adherence to xylene. Overall, our findings suggested that L. casei and L. divergens were the most promising strains as probiotics but require further in vivo investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cardiovascular Disease; Fact Sheet N°317, Geneva, Switzerland, September, 2011. Available at: Http://Www.Who.Int/Mediacentre/Factsheets/Fs317/En/Print.Html (Accessed on 02 January 2018). World Health Organization (WHO). 2018, 2018.

  2. Kjeldsen EW, Thomassen JQ, Frikke-Schmidt R. 2022 HDL Cholesterol concentrations and risk of atherosclerotic cardiovascular disease – insights from randomized clinical trials and human genetics. Biochim Biophys Acta - Mol Cell Biol Lipids 1867. 10.1016/j.bbalip.2021.159063

  3. Liou L, Kaptoge S (2020) Association of Small, Dense LDL-cholesterol concentration and lipoprotein particle characteristics with coronary heart disease: a systematic review and meta-analysis. PLoS ONE 15:1–16. https://doi.org/10.1371/journal.pone.0241993

    Article  CAS  Google Scholar 

  4. Mortensen MB, Nordestgaard BG (2020) Elevated LDL Cholesterol and increased risk of myocardial infarction and atherosclerotic cardiovascular disease in individuals aged 70–100 years: a contemporary primary prevention cohort. Lancet 396:1644–1652. https://doi.org/10.1016/S0140-6736(20)32233-9

    Article  CAS  PubMed  Google Scholar 

  5. Zhang Y, Vittinghoff E, Pletcher MJ, Allen NB, Zeki Al Hazzouri A, Yaffe K, Balte PP, Alonso A, Newman AB, Ives DG et al (2019) Associations of blood pressure and cholesterol levels during young adulthood with later cardiovascular events. J Am Coll Cardiol 74:330–341. https://doi.org/10.1016/j.jacc.2019.03.529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Suarningsih NKA, Suindrayasa IM (2020) Awareness and level of knowledge in preventing coronary heart disease among community sample. J A Sustain Glob South 4:10. https://doi.org/10.24843/jsgs.2020.v04.i01.p03

    Article  Google Scholar 

  7. Ma G, Ducatman A (2022) Perfluoroalkyl substance serum concentrations and cholesterol absorption-inhibiting medication ezetimibe. Toxics 10:1–10. https://doi.org/10.3390/toxics10120799

    Article  CAS  Google Scholar 

  8. Sudhop T, Lütjohann D, Von Bergmann K (2005) Sterol transporters: targets of natural sterols and new lipid lowering drugs. Pharmacol Ther 105:333–341. https://doi.org/10.1016/j.pharmthera.2004.10.011

    Article  CAS  PubMed  Google Scholar 

  9. Miura SI, Saku K (2008) Ezetimibe, a selective inhibitor of the transport of cholesterol. Intern Med 47:1165–1170. https://doi.org/10.2169/internalmedicine.47.1099

    Article  PubMed  Google Scholar 

  10. Lu M, Sun J, Zhao Y, Zhang H, Li X, Zhou J, Dang H, Zhang J, Huang W, Qi C et al (2022) Prevention of high-fat diet-induced hypercholesterolemia by lactobacillus reuteri Fn041 through promoting cholesterol and bile salt excretion and intestinal mucosal barrier functions. Front Nutr 9:1–14. https://doi.org/10.3389/fnut.2022.851541

    Article  ADS  CAS  Google Scholar 

  11. Ward NC, Watts GF, Eckel RH (2019) Statin toxicity: mechanistic insights and clinical implications. Circ Res 124:328–350. https://doi.org/10.1161/CIRCRESAHA.118.312782

    Article  CAS  PubMed  Google Scholar 

  12. Markowiak P, Ślizewska K. 2017 Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients 9:. https://doi.org/10.3390/nu9091021

  13. Nissen L, Chingwaru W, Sgorbati B, Biavati B, Cencic A (2009) Gut health promoting activity of new putative probiotic/protective Lactobacillus Spp. strains: a functional study in the small intestinal cell model. Int J Food Microbiol 135:288–294. https://doi.org/10.1016/j.ijfoodmicro.2009.08.027

    Article  CAS  PubMed  Google Scholar 

  14. Adefegha SA (2018) Functional foods and nutraceuticals as dietary intervention in chronic diseases; novel perspectives for health promotion and disease prevention. J Diet Suppl 15:977–1009. https://doi.org/10.1080/19390211.2017.1401573

    Article  PubMed  Google Scholar 

  15. Sikand G, Kris-Etherton P, Boulos NM. 2015 Impact of functional foods on prevention of cardiovascular disease and diabetes. Curr Cardiol Rep 17:. https://doi.org/10.1007/s11886-015-0593-9

  16. Langlois MR, Chapman MJ, Cobbaert C, Mora S, Remaley AT, Ros E, Watts GF, Borén J, Baum H, Bruckert E et al (2018) Quantifying atherogenic lipoproteins: current and future challenges in the era of personalized medicine and very low concentrations of Ldl cholesterol. a Consensus Statement from EAS and EFLM. Clin Chem 64:1006–1033. https://doi.org/10.1373/clinchem.2018.287037

    Article  CAS  PubMed  Google Scholar 

  17. Anandharaj M, Sivasankari B, Santhanakaruppu R, Manimaran M, Rani RP, Sivakumar S (2015) Determining the probiotic potential of cholesterol-reducing Lactobacillus and Weissella strains isolated from Gherkins (fermented cucumber) and South Indian Fermented Koozh. Res Microbiol 166:428–439. https://doi.org/10.1016/j.resmic.2015.03.002

    Article  CAS  PubMed  Google Scholar 

  18. Choi EA, Chang HC (2015) Cholesterol-lowering effects of a putative probiotic strain Lactobacillus Plantarum EM isolated from Kimchi. Lwt 62:210–217. https://doi.org/10.1016/j.lwt.2015.01.019

    Article  CAS  Google Scholar 

  19. Tulumoğlu Ş, Kariptaş E, Erdem B (2023) Lactobacillus Spp. isolated from prebiotic-derived raw goat milk: probiotic characteristics, cholesterol assimilation and folate production. Biotechnol Lett 45:47–56. https://doi.org/10.1007/s10529-022-03314-2

    Article  CAS  PubMed  Google Scholar 

  20. Horáčková Š, Plocková M, Demnerová K (2018) Importance of microbial defence systems to bile salts and mechanisms of serum cholesterol reduction. Biotechnol Adv 36:682–690. https://doi.org/10.1016/j.biotechadv.2017.12.005

    Article  CAS  PubMed  Google Scholar 

  21. Zheng J, Wittouck S, Salvetti E, Franz CMAP, Harris HMB, Mattarelli P, O’Toole PW, Pot B, Vandamme P, Walter J et al (2020) A taxonomic note on the genus Lactobacillus: description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int J Syst Evol Microbiol 70:2782–2858. https://doi.org/10.1099/ijsem.0.004107

    Article  CAS  PubMed  Google Scholar 

  22. Chabi IB, Kayodé APP, Agbobatinkpo BP, Adénilé A (2016) Antimicrobial activities of a multi-species probiotic ingredient derived from opaque sorghum beer during its propagation in a starchy career model. African J Microbiol Res 10:1351–1357. https://doi.org/10.5897/AJMR2014.7285

    Article  CAS  Google Scholar 

  23. Chabi IB, Kayodé APP, Agbobatinkpo BP, Adénilé A, Mamadou OA, Vieira-Dalodé G, Baba-Moussa L, Codjia JTC (2016) Use of response surface methodology to optimize the drying conditions of a bioactive ingredient derived from the African opaque sorghum beer. African J Biotechnol 15:2234–2242. https://doi.org/10.5897/ajb2016.15484

    Article  Google Scholar 

  24. González L, Sandoval H, Sacristán N, Castro JM, Fresno JM, Tornadijo ME (2007) Identification of lactic acid bacteria isolated from genestoso cheese throughout ripening and study of their antimicrobial activity. Food Control 18:716–722. https://doi.org/10.1016/j.foodcont.2006.03.008

    Article  CAS  Google Scholar 

  25. Tok E, Aslim B (2010) Cholesterol removal by some lactic acid bacteria that can be used as probiotic. Microbiol Immunol 54:257–264. https://doi.org/10.1111/j.1348-0421.2010.00219.x

    Article  CAS  PubMed  Google Scholar 

  26. Syakila RN, Lim SM, Agatonovic-Kustrin S, Lim FT, Ramasamy K (2019) In vitro assessment of Pediococci- and Lactobacilli-induced cholesterol-lowering effect using digitally enhanced high-performance thin-layer chromatography and confocal microscopy. Anal Bioanal Chem 411:1181–1192. https://doi.org/10.1007/s00216-018-1544-2

    Article  CAS  PubMed  Google Scholar 

  27. Del Re B, Sgorbati B, Miglioli M, Palenzona D (2000) Adhesion, autoaggregation and hydrophobicity of 13 strains of Bifidobacterium Longum. Lett Appl Microbiol 31:438–442. https://doi.org/10.1046/j.1365-2672.2000.00845.x

    Article  PubMed  Google Scholar 

  28. Handley PS, Harty DW, Wyatt JE, Brown CR, Doran JP, Gibbs AC (1987) A comparison of the adhesion, coaggregation and cell-surface hydrophobicity properties of fibrillar and fimbriate strains of fibrillar and fimbriate strains of Streptococcus salivarius. J Gen Microbiol 133(11):3207–3217

    CAS  PubMed  Google Scholar 

  29. Liu H, Wang S, Cai Y, Guo X, Cao Z, Zhang Y, Liu S, Yuan W, Zhu W, Zheng Y et al (2016) Dietary administration of Bacillus Subtilis HAINUP40 enhances growth, digestive enzyme activities, innate immune responses and disease resistance of tilapia. Oreochromis Niloticus Fish Shellfish Immunol. https://doi.org/10.1016/j.fsi.2016.12.003

    Article  PubMed  Google Scholar 

  30. Wang C, Lin P, Ng C, Shyu Y (2010) Probiotic properties of Lactobacillus strains isolated from the feces of breast-fed infants and Taiwanese pickled cabbage. Anaerobe 16:578–585. https://doi.org/10.1016/j.anaerobe.2010.10.003

    Article  CAS  PubMed  Google Scholar 

  31. Cheok YY, Yie C, Lee Q, Cheong HC, Vadivelu J, Looi CY (2021) An overview of Helicobacter Pylori survival tactics in the hostile human stomach environment. Braz J Microbiol 9:2502

    CAS  Google Scholar 

  32. Cassani L, Gomez-Zavaglia A, Simal-Gandara J. 2019 Technological strategies ensuring the safe arrival of beneficial microorganisms to the gut: from food processing and storage to their passage through the gastrointestinal tract. Food Res Int 108852. https://doi.org/10.1016/j.foodres.2019.108852

  33. Maria B, De Souza S, Borgonovi TF, Casarotti SN, Todorov SD, Lúcia A, Penna B (2019) Lactobacillus Casei and Lactobacillus Fermentum strains isolated from mozzarella cheese: probiotic potential, safety, acidifying kinetic parameters and viability under gastrointestinal tract conditions. Probiotics Antimicrob Proteins 2:382–396

    Google Scholar 

  34. Yang E, Fan L, Yan J, Jiang Y, Doucette C, Fillmore S, Walker B. 2018 Influence of culture media, PH and temperature on growth and bacteriocin production of bacteriocinogenic lactic acid bacteria. AMB Express: https://doi.org/10.1186/s13568-018-0536-0

  35. Wang C, Lin P, Ng C, Shyu Y (2010) Anaerobe probiotic properties of Lactobacillus strains isolated from the feces of breast-fed infants and Taiwanese pickled cabbage. Anaerobe 16:578–585. https://doi.org/10.1016/j.anaerobe.2010.10.003

    Article  CAS  PubMed  Google Scholar 

  36. Tulumoglu S, Nur Z, Beyatli Y, Simsek O, Cinar B, Yas E (2013) Probiotic properties of lactobacilli species isolated from children’s feces. Anaerobe 24:36–42. https://doi.org/10.1016/j.anaerobe.2013.09.006

    Article  CAS  PubMed  Google Scholar 

  37. N’Tcha C, Vieira-Dalode G, Agbobatinkpo BP, Kayode APP, Adeyemi AD, Codjia JTC, Baba-Moussa L (2015) Caractérisation physico risation physico risation physico-chimique et chimique et chimique et microbiologique microbiologique du« kpètè-kpètè»un ferment des bi un ferment des bi un ferment des bières traditionnelles res traditionnelles produites au bé produites au Bénin. Ann Sci Agron 19:69–88

    Google Scholar 

  38. Terpou A, Papadaki A, Lappa IK, Kachrimanidou V, Bosnea LA, Kopsahelis N (2019) Probiotics in food systems : significance and emerging strategies towards improved viability and delivery of enhanced beneficial value. Nutrients 11(7):1591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pe A, Chaia REZ, Gonza S, Oliver G (2000) Viability and β -galactosidase activity of dairy propionibacteria subjected to digestion by artificial gastric and intestinal fluids. J Food Prot 63:1214–1221. https://doi.org/10.4315/0362-028X-63.9.1214

    Article  Google Scholar 

  40. Jumazhanova M, Kakimova Z, Zharykbasov Y, Kassymov S, Zhumadilova G, Muratbayev A, Tashybayeva M, Suychinov A (2023) Effect of the encapsulation process on the viability of probiotics in a simulated gastrointestinal tract model medium. Processes 11:1–15. https://doi.org/10.3390/pr11092757

    Article  CAS  Google Scholar 

  41. Wu M, Pan T, Wu Y, Chang S, Chang M, Hu C (2010) International Journal of Food Microbiology exopolysaccharide activities from probiotic Bi Fi dobacterium : immunomodulatory effects ( on J774A. 1 macrophages ) and antimicrobial properties. Int J Food Microbiol 144:104–110. https://doi.org/10.1016/j.ijfoodmicro.2010.09.003

    Article  CAS  PubMed  Google Scholar 

  42. Zhou Y, Cui Y, Qu X, SC. 2018 Carbohydr Polym https://doi.org/10.1016/j.carbpol.2018.11.093

  43. Deepak V, Ram Kumar Pandian S, Sivasubramaniam SD, Nellaiah H, Sundar K (2016) Optimization of anticancer exopolysaccharide production from probiotic lactobacillus acidophilus by response surface methodology. Prep Biochem Biotechnol 46:288–297. https://doi.org/10.1080/10826068.2015.1031386

    Article  CAS  PubMed  Google Scholar 

  44. Pham PL, Dupont I, Roy D, Lapointe G, Cerning J. 2000 Production of exopolysaccharide by Lactobacillus Rhamnosus R and analysis of its enzymatic degradation during prolonged fermentation production of exopolysaccharide by Lactobacillus Rhamnosus R and analysis of its enzymatic degradation during prolonged Fe. https://doi.org/10.1128/AEM.66.6.2302-2310.2000.Updated

  45. Ruas-Madiedo P, de los Reyes-Gavilán CG, (2005) Invited review: methods for the screening, isolation, and characterization of Exopolysaccharides produced. J Dairy Sci 8:843–856. https://doi.org/10.3168/jds.S0022-0302(05)72750-8

    Article  Google Scholar 

  46. Liong MT, Shah NP (2005) Acid and bile tolerance and cholesterol removal ability of Lactobacilli strains. J Dairy Sci 88:55–66. https://doi.org/10.3168/jds.S0022-0302(05)72662-X

    Article  CAS  PubMed  Google Scholar 

  47. Lye H, Kuan C, Ewe J, Fung W, Liong M. 2009 The improvement of hypertension by probiotics : effects on cholesterol , diabetes , renin , and phytoestrogens. 3755–3775. https://doi.org/10.3390/ijms10093755

  48. Kaizu H (1992) Of ropy fermented 57:1–2

    Google Scholar 

  49. Zannini E, Jeske S, Lynch K, Arendt EK (2018) Development of novel quinoa-based yoghurt fermented with dextran producer Weissella Cibaria MG1. Int J Food Microbiol 268:19–26. https://doi.org/10.1016/j.ijfoodmicro.2018.01.001

    Article  CAS  PubMed  Google Scholar 

  50. Lorusso A, Coda R, Montemurro M, Rizzello CG (2018) Use of selected lactic acid bacteria and quinoa flour for manufacturing novel yogurt-like beverages. Foods 7:1–20. https://doi.org/10.3390/foods7040051

    Article  CAS  Google Scholar 

  51. Sirilun S, Chaiyasut C, Kantachote D, Luxananil P (2016) Characterisation of non human origin probiotic Lactobacillus Plantarum with cholesterol- lowering property. Adv J Microbiol Res 4:994–1000

    Google Scholar 

  52. Costabile A, Buttarazzi I, Kolida S, Quercia S, Baldini J, Swann JR, Brigidi P, Gibson GR (2017) An in vivo assessment of the cholesterol- lowering efficacy of Lactobacillus Plantarum ECGC 13110402 in normal to mildly hypercholesterolaemic adults. Plos One 12(12):e0187964.1–21

    Article  Google Scholar 

  53. Angelin J, Kavitha M (2020) Exopolysaccharides from probiotic bacteria and their health potential. Int J Biol Macromol 162:853–865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Karska-wysocki B, Bazo M, Smoragiewicz W (2010) Antibacterial activity of Lactobacillus Acidophilus and Lactobacillus Casei against methicillin- resistant Staphylococcus aureus ( MRSA ). Microbiol Res 165:674–686. 10.1016/j.micres.2009.11.008

    Article  PubMed  Google Scholar 

  55. Makras L, Triantafyllou V, Fayol-Messaoudi D, Adriany T (2006) Kinetic analysis of the antibacterial activity of probiotic Lactobacilli towards Salmonella Enterica Serovar Typhimurium reveals a role for lactic acid and other inhibitory compounds. Res Microbiol 157:241–247. https://doi.org/10.1016/j.resmic.2005.09.002

    Article  CAS  PubMed  Google Scholar 

  56. Zhang Y, Zhang L, Du M, Yi H, Guo C, Tuo Y, Han X, Li J, Zhang L, Yang L (2011) Antimicrobial activity against Shigella Sonnei and probiotic properties of wild Lactobacilli from fermented food. Microbiol Res 167:27–31. https://doi.org/10.1016/j.micres.2011.02.006

    Article  CAS  PubMed  Google Scholar 

  57. Franz CMAP, Belkum MJ Van, Holzapfel WH, Abriouel H, Antonio G. 2007 Diversity of Enterococcal Bacteriocins and their grouping in a new classi ¢ cation scheme. https://doi.org/10.1111/j.1574-6976.2007.00064.x

  58. Cebrián R, Baños A, Valdivia E, Pérez-pulido R, Martínez-bueno M, Maqueda M (2012) Characterization of functional, safety, and probiotic properties of Enterococcus Faecalis UGRA10, a new AS-48-producer strain. Food Microbiol 30:59–67. https://doi.org/10.1016/j.fm.2011.12.002

    Article  CAS  PubMed  Google Scholar 

  59. Yuan Y, Hays MP, Hardwidge R, Kim J (2017) RSC Advances surface characteristics in Fl Uencing bacterial adhesion to polymeric substrates †. RSC Adv 7:14254–14261. https://doi.org/10.1039/C7RA01571B

    Article  ADS  CAS  Google Scholar 

  60. Pan WH, Li PL, Liu Z (2006) The correlation between surface hydrophobicity and adherence of Bifidobacterium strains from centenarians’ faeces. Anaerobe 12:148–152. https://doi.org/10.1016/j.anaerobe.2006.03.001

    Article  CAS  PubMed  Google Scholar 

  61. Rahman M, Kim W, Kumura H, Shimazaki K. 2008 In vitro effects of bovine lactoferrin on autoaggregation ability and surface hydrophobicity of bifidobacteria. 14: 73–77. https://doi.org/10.1016/j.anaerobe.2008.01.002

  62. Tyfa A, Kunicka-Styczyńska A, Zabielska J (2015) Evaluation of hydrophobicity and quantitative analysis of biofilm formation by Alicyclobacillus Sp. Acta Biochim Pol 62(4):785–790

    Article  CAS  PubMed  Google Scholar 

  63. Schär-Zammaretti P, Ubbink J (2003) The cell wall of lactic acid bacteria: surface constituents and macromolecular conformations. Biophys J 85:4076–4092. https://doi.org/10.1016/S0006-3495(03)74820-6

    Article  PubMed  PubMed Central  Google Scholar 

  64. Martín R, Olivares M, Marín ML, Fernández L, Xaus J, Rodríguez JM (2005) Probiotic potential of 3 Lactobacilli strains isolated from breast milk. J Hum Lact 21(1):8–17. https://doi.org/10.1177/0890334404272393

    Article  PubMed  Google Scholar 

  65. Ahmad V, Zafar ANM, Haseeb M, Sajid M (2014) Anaerobe antimicrobial potential of bacteriocin producing Lysinibacillus Jx416856 against foodborne bacterial and fungal pathogens, isolated from fruits and vegetable waste. Anaerobe 27:87–95. https://doi.org/10.1016/j.anaerobe.2014.04.001

    Article  CAS  PubMed  Google Scholar 

  66. Carmen M, Jussi C (2008) Adhesion and aggregation properties of probiotic and pathogen strains. Eur Food Res Technol 1065–1073. https://doi.org/10.1007/s00217-007-0632-x

  67. Shruthi B, Deepa N, Somashekaraiah R, Adithi G, Divyashree S, Sreenivasa MY (2022) Exploring biotechnological and functional characteristics of probiotic yeasts : a review. Biotechnol Reports 34:e00716. https://doi.org/10.1016/j.btre.2022.e00716

    Article  CAS  Google Scholar 

  68. Krausova G, Hyrslova I, Hynstova I (2019) In vitro evaluation of adhesion capacity, hydrophobicity, and auto-aggregation of newly isolated potential probiotic strains. Ferment 5(4):100

    Article  CAS  Google Scholar 

  69. Farid W, Masud T, Sohail A, Ahmad N, Naqvi SMS, Khan S, Ali A, Khalifa SA, Hussain A, Ali S et al (2021) Gastrointestinal transit tolerance, cell surface hydrophobicity, and functional attributes of Lactobacillus Acidophilus strains isolated from indigenous dahi. Food Sci Nutr 9:5092–5102. https://doi.org/10.1002/fsn3.2468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Vukovic S (2003) Adhesion and aggregation ability of probiotic strain Lactobacillus Acidophilus M92. J Appl Microbiol 94(6):981–987

    Article  PubMed  Google Scholar 

  71. Pazhoohan M, Sadeghi F, Moghadami M, Soltanmoradi H (2020) Microbial pathogenesis antimicrobial and antiadhesive effects of Lactobacillus isolates of healthy human gut origin on enterotoxigenic Escherichia Coli ( ETEC ) and enteroaggregative Escherichia Coli ( EAEC ). Microb Pthogenes 148:104271. https://doi.org/10.1016/j.micpath.2020.104271

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The University of Abomey-Calavi (Projet BioZoo) supplied the financial assistance for this research. The authors thank Prof. Souaïbou Farougou and Dr. Philippe Sessou for their valuable technique assistance. The participation of the authors A.S.A. and C.M.G. was supported by the Taif University Researchers Supporting Project (TURSP-HC2023/4), Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

Ifagbémi Bienvenue Chabi: conceptualization, data curation, methodology, visualization, writing—original draft. Folachodé Ulrich Gildas Akogou: conceptualization, data curation, methodology, visualization, writing—original draft, writing—review and editing Oscar Zannou: data curation, methodology, visualization, writing—original draft, writing—review and editing. Jonas Assouhan Atchadé: data curation, methodology, visualization, writing—original draft, writing—review and editing. Désiré A. Adéyèmi: data curation, methodology, visualization, writing—review and editing. Abdulhakeem S. Alamri: data curation, methodology, visualization, writing—review and editing. Charis M. Galanakis: data curation, methodology, visualization, writing—review and editing. Adéchola Pierre Polycarpe Kayodé: conceptualization, data curation, funding acquisition, methodology, project administration, supervision, validation, visualization, writing—original draft, writing—review and editing.

Corresponding authors

Correspondence to Ifagbémi Bienvenue Chabi or Oscar Zannou.

Ethics declarations

Declarations

Ethical approval.

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chabi, I.B., Akogou, F.U.G., Zannou, O. et al. Lactic acid bacteria from a traditional starter (kpètè-kpètè) of Benin opaque sorghum beer: probiotic characteristics, cholesterol-lowering capacity, and exopolysaccharides production. Biomass Conv. Bioref. (2024). https://doi.org/10.1007/s13399-024-05381-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-024-05381-z

Keywords

Navigation