Skip to main content

Advertisement

Log in

Arbuscular mycorrhizal fungal diversity in phosphorus-deficient Alfisols of a dry North-western agro-ecosystem of Tamil Nadu, India

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Semi-arid tropical soils, characterized by low soil organic carbon (SOC) with limited available macronutrients and micronutrients for crop plants, are predicated to have a yield sustainability problem in the future due to intensive cropping and limited nutrient management adoptions. Arbuscular mycorrhizal fungi (AMF), the functional link between plant and soil, play a pivotal role in nutrient cycling, organic matter stabilization and soil structure and fertility improvement. Hence, so far unexplored or underutilized, native AMF could be a potential resource for fertility management of these semi-arid tropical soils. Hence, in the present investigation, we assessed the abundance and diversity of AMF in phosphorus-deficient agricultural soils of semi-arid tropics of southern India. Our results show that the spore density and infective propagules of AMF were relatively low in these soils. The morpho-typing of extracted AMF spores revealed that these soils were dominated by glomeraceae (six species of Glomus) while species of Gigaspora, Scutellospora and Acaulospora were found in low abundance. The diversity indices assessed for the AMF species were also globally low. The non-metric multi-dimensional scaling and hierarchical cluster analysis of species richness showed variation in the community composition of AMF in the soils. The principal component analysis of the assessed soil variables suggest that the available phosphorus (P), SOC and dehydrogenase and alkaline phosphatase activities had negative impact on spore density and infective propagules of AMF with no effect on species diversity. The regression analyses reveal that the available P is the significant soil variable that drives the AMF abundance and infectivity. This study opens the possibilities of effective utilization of native mycorrhizae for agriculture in semi-arid tropical soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adelman MJ, Morton JB (1986) Infectivity of vesicular-arbuscular mycorrhizal fungi: Influence of host-soil diluent combinations on MPN estimates and percentage colonization. Soil Biol Biochem 18(1):77–83. doi:10.1016/0038-0717(86)90106-9

    Article  Google Scholar 

  • Allison VJ, Goldberg DE (2002) Species-level versus community-level patterns of mycorrhizal dependence on phosphorus: an example of Simpson’s paradox. Funct Ecol 16(3):346–352. doi:10.1046/j.1365-2435.2002.00627.x

    Article  Google Scholar 

  • Augé RM (2004) Arbuscular mycorrhizae and soil/plant water relations. Can J Soil Sci 84(4):373–381. doi:10.4141/s04-002

    Article  Google Scholar 

  • Bainard LD, Koch AM, Gordon AM, Klironomos JN (2012) Temporal and compositional differences of arbuscular mycorrhizal fungal communities in conventional monocropping and tree-based intercropping systems. Soil Biol Biochem 45(0):172–180. doi:10.1016/j.soilbio.2011.10.008

    Article  CAS  Google Scholar 

  • Bedini S, Avio L, Sbrana C, Turrini A, Migliorini P, Vazzana C, Giovannetti M (2013) Mycorrhizal activity and diversity in a long-term organic Mediterranean agroecosystem. Biol Fertil Soils 49(7):781–790. doi:10.1007/s00374-012-0770-6

    Article  Google Scholar 

  • Bever JD, Morton JB, Antonovics J, Schultz PA (1996) Host-Dependent sporulation and species diversity of arbuscular mycorrhizal fungi in a Mown grassland. J Ecol 84(1):71–82. doi:10.2307/2261701

    Article  Google Scholar 

  • Boddington CL, Dodd JC (2000) The effect of agricultural practices on the development of indigenous arbuscular mycorrhizal fungi. I Field studies in an Indonesian ultisol. Plant Soil 218(1–2):137–144. doi:10.1023/a:1014966801446

    CAS  Google Scholar 

  • Bünemann EK, Steinebrunner F, Smithson PC, Frossard E, Oberson A (2004) Phosphorus dynamics in a highly weathered soil as revealed by isotopic labeling techniques. Soil Sci Soc Am J 68(5):1645–1655. doi:10.2136/sssaj2004.1645

    Article  Google Scholar 

  • Cardoso IM, Kuyper TW (2006) Mycorrhizas and tropical soil fertility. Agric Ecosyst Environ 116(1–2):72–84. doi:10.1016/j.agee.2006.03.011

    Article  Google Scholar 

  • Chandrashekara CP, Patil VC, Sreenivasa MN (1995) VA-mycorrhiza mediated P effect on growth and yield of sunflower (Helianthus annuus L.) at different P levels. Plant Soil 176(2):325–328. doi:10.1007/bf00011797

    Article  CAS  Google Scholar 

  • Chelius MK, Triplett EW (1999) Rapid detection of arbuscular mycorrhizae in roots and soil of an intensively managed turfgrass system by PCR amplification of small subunit rDNA. Mycorrhiza 9(1):61–64. doi:10.1007/s005720050264

    Article  CAS  Google Scholar 

  • Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18(1):117–143. doi:10.1111/j.1442-9993.1993.tb00438.x

    Article  Google Scholar 

  • Cuenca G, Meneses E (1996) Diversity patterns of arbuscular mycorrhizal fungi associated with cacao in Venezuela. Plant Soil 183(2):315–322. doi:10.1007/bf00011447

    Article  CAS  Google Scholar 

  • Cuenca G, De Andrade Z, Meneses E (2001) The presence of aluminum in arbuscular mycorrhizas of Clusia multiflora exposed to increased acidity. Plant Soil 231(2):233–241. doi:10.1023/a:1010335013335

    Article  CAS  Google Scholar 

  • Curaqueo G, Barea JM, Acevedo E, Rubio R, Cornejo P, Borie F (2011) Effects of different tillage system on arbuscular mycorrhizal fungal propagules and physical properties in a Mediterranean agroecosystem in central Chile. Soil Till Res 113(1):11–18. doi:10.1016/j.still.2011.02.004

    Article  Google Scholar 

  • Daniell TJ, Husband R, Fitter AH, Young JPW (2001) Molecular diversity of arbuscular mycorrhizal fungi colonising arable crops. FEMS Microbiol Ecol 36(2–3):203–209. doi:10.1111/j.1574-6941.2001.tb00841.x

    Article  CAS  PubMed  Google Scholar 

  • Diallo AT, Samb PI, Ducousso M (1999) Arbuscular mycorrhizal fungi in the semi-arid areas of Senegal. Eur J Soil Biol 35(2):65–75. doi:10.1016/S1164-5563(99)00110-7

    Article  Google Scholar 

  • Douds DD Jr, Millner PD (1999) Biodiversity of arbuscular mycorrhizal fungi in agroecosystems. Agric Ecosyst Environ 74(1–3):77–93. doi:10.1016/S0167-8809(99)00031-6

    Article  Google Scholar 

  • Ellis JR, Mason SC, Roder W (1992) Grain sorghum-soybean rotation and fertilization influence on vesicular-arbuscular mycorrhizal fungi. Soil Sci Soc Am J 56(3):789–794. doi:10.2136/sssaj1992.03615995005600030019x

    Article  Google Scholar 

  • Ezawa T, Yamamoto K, Yoshida S (2000) Species composition and spore density of indigenous vesicular-arbuscular mycorrhizal fungi under different conditions of P-fertility as revealed by soybean trap culture. Soil Sci Plant Nutr 46(2):291–297. doi:10.1080/00380768.2000.10408785

    Google Scholar 

  • Fisher R, Yates F (1970) Statistical tables for biological, agricultural and medicinal research, 6th edn. Hafner, Davien

    Google Scholar 

  • Gai JP, Christie P, Cai XB, Fan JQ, Zhang JL, Feng G, Li XL (2009) Occurrence and distribution of arbuscular mycorrhizal fungal species in three types of grassland community of the Tibetan Plateau. Ecol Res 24(6):1345–1350. doi:10.1007/s11284-009-0618-1

    Article  Google Scholar 

  • Gerdemann JW, Nicolson TH (1963) Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Trans Br Mycol Soc 46(2):235–244. doi:10.1016/S0007-1536(63)80079-0

    Article  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) Paleontological Statistics software package for education and data analysis. Palaeontol Electron 4(1):1–9

    Google Scholar 

  • Helgason T, Daniell TJ, Husband R, Fitter AH, Young JPW (1998) Ploughing up the wood-wide web? Nature 394(6692):431–431

    Article  CAS  PubMed  Google Scholar 

  • Jansa J, Mozafar A, Anken T, Ruh R, Sanders I, Frossard E (2002) Diversity and structure of AMF communities as affected by tillage in a temperate soil. Mycorrhiza 12(5):225–234. doi:10.1007/s00572-002-0163-z

    Article  CAS  PubMed  Google Scholar 

  • Jasper DA, Abbott LK, Robson AD (1989) Soil disturbance reduces the infectivity of external hyphae of vesicular—arbuscular mycorrhizal fungi. New Phytol 112(1):93–99. doi:10.1111/j.1469-8137.1989.tb00313.x

    Article  Google Scholar 

  • Johnson J-M, Houngnandan P, Kane A, Sanon KB, Neyra M (2013) Diversity patterns of indigenous arbuscular mycorrhizal fungi associated with rhizosphere of cowpea (Vigna unguiculata (L.) Walp.) in Benin, West Africa. Pedobiologia 56(3):121–128. doi:10.1016/j.pedobi.2013.03.003

    Article  Google Scholar 

  • Kahiluoto H, Ketoja E, Vestberg M (2000) Promotion of utilization of arbuscular mycorrhiza through reduced P fertilization 1. Bioassays in a growth chamber. Plant Soil 227(1–2):191–206. doi:10.1023/a:1026555717663

    Article  CAS  Google Scholar 

  • Kahiluoto H, Ketoja E, Vestberg M, Saarela I (2001) Promotion of AM utilization through reduced P fertilization 2. Field studies. Plant Soil 231(1):65–79. doi:10.1023/a:1010366400009

    Article  CAS  Google Scholar 

  • Karasawa T, Takebe M (2012) Temporal or spatial arrangements of cover crops to promote arbuscular mycorrhizal colonization and P uptake of upland crops grown after nonmycorrhizal crops. Plant Soil 353(1–2):355–366. doi:10.1007/s11104-011-1036-z

    Article  CAS  Google Scholar 

  • Khalil S, Loynachan TE, McNabb HS (1992) Colonization of soybean by mycorrhizal fungi and spore populations in Iowa soils. Agron J 84(5):832–836. doi:10.2134/agronj1992.00021962008400050014x

    Article  Google Scholar 

  • Klein DA, Loh TC, Goulding RL (1971) A rapid procedure to evaluate the dehydrogenase activity of soils low in organic matter. Soil Biol Biochem 3(4):385–387. doi:10.1016/0038-0717(71)90049-6

    Article  CAS  Google Scholar 

  • Kruskal J (1964) Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29(1):1–27. doi:10.1007/bf02289565

    Article  Google Scholar 

  • Kurle JE, Pfleger FL (1996) Management influences on arbuscular mycorrhizal fungal species composition in a corn-soybean rotation. Agron J 88(2):155–161. doi:10.2134/agronj1996.00021962008800020007x

    Article  Google Scholar 

  • Land S, Schönbeck F (1991) Influence of different soil types on abundance and seasonal dynamics of vesicular arbuscular mycorrhizal fungi in arable soils of North Germany. Mycorrhiza 1(1):39–44. doi:10.1007/bf00205901

    Article  Google Scholar 

  • Lingua G, D’Agostino G, Massa N, Antosiano M, Berta G (2002) Mycorrhiza-induced differential response to a yellows disease in tomato. Mycorrhiza 12(4):191–198. doi:10.1007/s00572-002-0171-z

    Article  PubMed  Google Scholar 

  • Mathimaran N, Ruh R, Vullioud P, Frossard E, Jansa J (2005) Glomus intraradices dominates arbuscular mycorrhizal communities in a heavy textured agricultural soil. Mycorrhiza 16(1):61–66. doi:10.1007/s00572-005-0014-9

    Article  CAS  PubMed  Google Scholar 

  • Mathimaran N, Ruh R, Jama B, Verchot L, Frossard E, Jansa J (2007) Impact of agricultural management on arbuscular mycorrhizal fungal communities in Kenyan ferralsol. Agric Ecosyst Environ 119(1–2):22–32. doi:10.1016/j.agee.2006.06.004

    Article  Google Scholar 

  • McGonigle TP, Miller MH (1999) Winter survival of extraradical hyphae and spores of arbuscular mycorrhizal fungi in the field. Appl Soil Ecol 12(1):41–50. doi:10.1016/S0929-1393(98)00165-6

    Article  Google Scholar 

  • Mohammad A, Mitra B, Khan AG (2004) Effects of sheared-root inoculum of Glomus intraradices on wheat grown at different phosphorus levels in the field. Agric Ecosyst Environ 103(1):245–249. doi:10.1016/j.agee.2003.09.017

    Google Scholar 

  • Montero-Sommerfeld H, Díaz LM, Alvarez M, Añazco Villanueva C, Matus F, Boon N, Boeckx P, Huygens D (2013) High winter diversity of arbuscular mycorrhizal fungal communities in shallow and deep grassland soils. Soil Biol Biochem 65(0):236–244. doi:10.1016/j.soilbio.2013.06.002

    Article  CAS  Google Scholar 

  • Negrete-Yankelevich S, Maldonado-Mendoza I, Lázaro-Castellanos J, Sangabriel-Conde W, Martínez-Álvarez J (2013) Arbuscular mycorrhizal root colonization and soil P availability are positively related to agrodiversity in Mexican maize polycultures. Biol Fertil Soils 49(2):201–212. doi:10.1007/s00374-012-0710-5

    Article  Google Scholar 

  • Norman M, Pearson C, Searle P (1995) The ecology of tropical food crops. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Oehl F, Sieverding E, Ineichen K, Mäder P, Boller T, Wiemken A (2003) Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of central Europe. Appl Environ Microbiol 69(5):2816–2824. doi:10.1128/aem.69.5.2816-2824.2003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Oehl F, Sieverding E, Mäder P, Dubois D, Ineichen K, Boller T, Wiemken A (2004) Impact of long-term conventional and organic farming on the diversity of arbuscular mycorrhizal fungi. Oecologia 138(4):574–583. doi:10.1007/s00442-003-1458-2

    Article  PubMed  Google Scholar 

  • Oehl F, Laczko E, Bogenrieder A, Stahr K, Bösch R, van der Heijden M, Sieverding E (2010) Soil type and land use intensity determine the composition of arbuscular mycorrhizal fungal communities. Soil Biol Biochem 42(5):724–738. doi:10.1016/j.soilbio.2010.01.006

    Article  CAS  Google Scholar 

  • Olsen SR, Cole CV, Watanabe FS, Dean AL (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA, Circular no, 939

    Google Scholar 

  • Olsson PA, Thingstrup I, Jakobsen I, Bååth E (1999) Estimation of the biomass of arbuscular mycorrhizal fungi in a linseed field. Soil Biol Biochem 31(13):1879–1887. doi:10.1016/S0038-0717(99)00119-4

    Article  CAS  Google Scholar 

  • Onguene NA, Kuyper TW (2001) Mycorrhizal associations in the rain forest of South Cameroon. For Ecol Manage 140(2–3):277–287. doi:10.1016/S0378-1127(00)00322-4

    Article  Google Scholar 

  • Paula MA, Urquiaga S, Siqueira JO, Döbereiner J (1992) Synergistic effects of vesicular-arbuscular mycorrhizal fungi and diazotrophic bacteria on nutrition and growth of sweet potato (Ipomoea batatas). Biol Fertil Soils 14(1):61–66. doi:10.1007/bf00336304

    Article  CAS  Google Scholar 

  • Pellegrino E, Bedini S (2014) Enhancing ecosystem services in sustainable agriculture: Biofertilization and biofortification of chickpea (Cicer arietinum L.) by arbuscular mycorrhizal fungi. Soil Biol Biochem 68:429–439. doi:10.1016/j.soilbio.2013.09.030

    Article  CAS  Google Scholar 

  • Pellegrino E, Bedini S, Avio L, Bonari E, Giovannetti M (2011) Field inoculation effectiveness of native and exotic arbuscular mycorrhizal fungi in a Mediterranean agricultural soil. Soil Biol Biochem 43(2):367–376. doi:10.1016/j.soilbio.2010.11.002

    Article  CAS  Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55(1):158–161

    Article  Google Scholar 

  • Rathore VP, Singh HP (1995) Quantification and correlation of vesicular-arbuscular mycorrhizal propagules with soil properties of some mollisols of northern India. Mycorrhiza 5(3):201–203. doi:10.1007/bf00203338

    Article  Google Scholar 

  • Reddell P, Yun Y, Shipton WA (1997) Cluster roots and mycorrhizae in Casuarina cunninghamiana: Their occurrence and formation in relation to phosphorus supply. Aust J Bot 45(1):41–51. doi:10.1071/BT96049

    Article  Google Scholar 

  • Rillig MC, Steinberg PD (2002) Glomalin production by an arbuscular mycorrhizal fungus: a mechanism of habitat modification? Soil Biol Biochem 34(9):1371–1374. doi:10.1016/S0038-0717(02)00060-3

    Article  CAS  Google Scholar 

  • Rodríguez-Echeverría S, Hol WHG, Freitas H, Eason WR, Cook R (2008) Arbuscular mycorrhizal fungi of Ammophila arenaria (L.) Link: Spore abundance and root colonisation in six locations of the European coast. Eur J Soil Biol 44(1):30–36. doi:10.1016/j.ejsobi.2007.01.003

    Article  Google Scholar 

  • Sanchez PA, Palm CA, Buol SW (2003) Fertility capability soil classification: a tool to help assess soil quality in the tropics. Geoderma 114(3–4):157–185. doi:10.1016/S0016-7061(03)00040-5

    Article  CAS  Google Scholar 

  • Scheltema M, Abbott L, Robson A (1987) Seasonal variation in the infectivity of VA mycorrhizal fungi in annual pastures in a Mediterranean environment. Aust J Agric Res 38(4):707–715. doi:10.1071/AR9870707

    Article  Google Scholar 

  • Schnoor T, Lekberg Y, Rosendahl S, Olsson P (2011) Mechanical soil disturbance as a determinant of arbuscular mycorrhizal fungal communities in semi-natural grassland. Mycorrhiza 21(3):211–220. doi:10.1007/s00572-010-0325-3

    Article  PubMed  Google Scholar 

  • Shukla A, Kumar A, Jha A, Ajit RDVKN (2012) Phosphorus threshold for arbuscular mycorrhizal colonization of crops and tree seedlings. Biol Fertil Soils 48(1):109–116. doi:10.1007/s00374-011-0576-y

    Article  CAS  Google Scholar 

  • Sieverding E (1991) Vesicular-arbuscular mycorrhiza management in tropical agrosystems. Technical Cooperation Federal Republic of Germany, Eschborn, Gmbh

    Google Scholar 

  • Singh R, Adholeya A (2013) Diversity of AM (Arbuscular mycorrhizal) fungi in wheat agro-climatic regions of India. Virol Mycol 2:116. doi:10.4172/2161-0517.1000116

    Google Scholar 

  • Sjöberg J, Persson P, Mårtensson A, Mattsson L, Adholeya A, Alström S (2004) Occurrence of Glomeromycota spores and some arbuscular mycorrhiza fungal species in arable fields in Sweden. Acta Agric Scand B Soil Plant Sci 54(4):202–212. doi:10.1080/09064710410030294

    Google Scholar 

  • Smith S, Read D (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, Cambridge, UK

    Google Scholar 

  • Smithson P, Giller K (2002) Appropriate farm management practices for alleviating N and P deficiencies in low-nutrient soils of the tropics. Plant Soil 245(1):169–180. doi:10.1023/a:1020685728547

    Article  CAS  Google Scholar 

  • Staddon PL, Thompson K, Jakobsen I, Grime JP, Askew AP, Fitter AH, Staddon PL, Thompson K, Jakobsen I, Grime JP, Askew AP, Fitter AH (2003) Mycorrhizal fungal abundance is affected by long-term climatic manipulations in the field. Global Change Biol 9:186–194

    Article  Google Scholar 

  • Stocking MA (2003) Tropical soils and food security: The next 50 years. Science 302(5649):1356–1359. doi:10.1126/science.1088579

    Article  CAS  PubMed  Google Scholar 

  • Suchitra R, Kumutha K, Balachandar D (2012) Morpho-typing and molecular diversity of arbuscular mycorrhizal fungi in Sub-tropical soils of Coimbatore region, Tamil Nadu, India. Indian J Microbiol 52(2):145–152. doi:10.1007/s12088-011-0206-2

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tabatabai MA, Bremner JM (1969) Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol Biochem 1(4):301–307. doi:10.1016/0038-0717(69)90012-1

    Article  CAS  Google Scholar 

  • Tanu A, Prakash A, Adholeya A (2004) Effect of different organic manures/composts on the herbage and essential oil yield of Cymbopogon winterianus and their influence on the native AM population in a marginal alfisol. Bioresour Technol 92(3):311–319. doi:10.1016/S0960-8524(03)00198-6

    Article  CAS  PubMed  Google Scholar 

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418(6898):671–677

    Article  CAS  PubMed  Google Scholar 

  • Troeh ZI, Loynachan TE (2003) Endomycorrhizal fungal survival in continuous corn, soybean, and fallow. Agron J 95(1):224–230. doi:10.2134/agronj2003.2240

    Article  Google Scholar 

  • Vestberg M, Kahiluoto H, Wallius E (2011) Arbuscular mycorrhizal fungal diversity and species dominance in a temperate soil with long-term conventional and low-input cropping systems. Mycorrhiza 21(5):351–361. doi:10.1007/s00572-010-0346-y

    Article  PubMed  Google Scholar 

  • Walkley A, Black IA (1934) An examination of degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci 37(1):29–37

    Article  CAS  Google Scholar 

  • Wang Y, Vestberg M, Walker C, Hurme T, Zhang X, Lindström K (2008) Diversity and infectivity of arbuscular mycorrhizal fungi in agricultural soils of the Sichuan Province of mainland China. Mycorrhiza 18(2):59–68. doi:10.1007/s00572-008-0161-x

    Article  PubMed  Google Scholar 

  • Wold S, Esbensen K, Geladi P (1987) Principal component analysis. Chemom Intell Lab Syst 2:37–52

    Article  CAS  Google Scholar 

  • XLSTAT (2010) XLSTAT. Addinsoft SARL, Paris. http://www.xlstat.com

  • Yang H, Yuan Y, Zhang Q, Tang J, Liu Y, Chen X (2011) Changes in soil organic carbon, total nitrogen, and abundance of arbuscular mycorrhizal fungi along a large-scale aridity gradient. Catena 87(1):70–77. doi:10.1016/j.catena.2011.05.009

    Article  CAS  Google Scholar 

  • Zhu YG, Smith SE (2001) Seed phosphorus (P) content affects growth, and P uptake of wheat plants and their association with arbuscular mycorrhizal (AM) fungi. Plant Soil 231(1):105–112. doi:10.1023/a:1010320903592

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support from the Board of Research in Nuclear Sciences (BRNS), Department of Atomic Energy (DAE), Mumbai, India through research project (Sanction No. 2010/37B/38/BRNS) to carry out the investigation is thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dananjeyan Balachandar.

Additional information

R.T: Mycorrhizal diversity in P-deficient Alfisols

Supplementary material

Below is the link to the electronic supplementary material.

Table S1

(DOC 55 kb)

Table S2

(DOC 40 kb)

Table S3

(DOC 36 kb)

Table S4

(DOC 34 kb)

Fig. S1

(DOC 165 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cibichakravarthy, B., Kumutha, K. & Balachandar, D. Arbuscular mycorrhizal fungal diversity in phosphorus-deficient Alfisols of a dry North-western agro-ecosystem of Tamil Nadu, India. Ann Microbiol 65, 143–153 (2015). https://doi.org/10.1007/s13213-014-0845-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-014-0845-8

Keywords

Navigation