Skip to main content
Log in

Phosphorus threshold for arbuscular mycorrhizal colonization of crops and tree seedlings

  • Short Communication
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

The study was conducted to investigate the effect of phosphorus (P) concentrations (0, 5, 10, 20, 50, and 100 μg g−1) on growth and arbuscular mycorrhizal (AM) colonization of two crops (a rainy season crop, Phaseolus mungo Roxb. var. PU-35 and a winter crop, Triticum aestivum L. var. WH-147) and seedlings of two multipurpose tree species (Eucalyptus tereticornis Sm. [Clone C-7, ITC, Bhadrachalam] and Albizia procera Benth.). Plant growth parameters (shoot length, dry weight) and P uptake increased significantly after inoculations with AM fungi (Acaulospora scrobiculata Trappe, Glomus cerebriforme McGee, and Glomus intraradices Schenck and Smith) in P. mungo, T. aestivum, E. tereticornis, and A. procera. Best results were obtained with G. cerebriforme in P. mungo and A. procera, and A. scrobiculata in T. aestivum, and G. intraradices in E. tereticornis. Results on effect of P application on mycorrhizal dependency (MD) of studied crop and tree species showed that decrease in MD with increase in P concentrations in non-nitrogen-fixing species (T. aestivum and E. tereticornis) was higher than in nitrogen-fixing species (P. mungo and A. procera). Threshold P concentrations for maximum benefits from the AM symbiosis in above-mentioned plant species varied from 5 to 20 μg g−1 and corresponding peaks of arbuscules, vesicles, sporocarp formation, colonization index, and spore count per 100 g sand were noticed. Thus, the results showed that the recorded plant growth peaks were due to AM colonization of crops and tree rhizosphere. Inoculations with AMF were more important than P application (explaining 14–78% variation in plant growth) for P. mungo, T. aestivum, and A. procera (forward selection method), whereas P application was more important for growth in E. tereticornis. Therefore, inoculating plants with a suitable AM inoculant could result in a benefit comparable to high P input and lead to a significant saving of inorganic P fertilizer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Amijee F, Tinker PB, Stribley DP (1989) The development of endomycorrhizal root systems. VII. A detailed study of effects of soil phosphorus on colonization. New Phytol 111:435–446

    Article  Google Scholar 

  • Asimi S, Gianinazzi-Pearson V, Gianinazzi S (1980) Influence of increasing soil phosphorus levels on interactions between vesicular arbuscular mycorrhizae and Rhizobium in soybeans. Can J Bot 58:2200–2205

    Article  CAS  Google Scholar 

  • Azcon R, Amebrosano E, Charest C (2003) Nutrient acquisition in mycorrhizal lettuce plants under different phosphorus and nitrogen concentration. Plant Sci 165:1137–1145

    Article  CAS  Google Scholar 

  • Baird JM, Walley FL, Shirtliffe SJ (2010) Arbuscular mycorrhizal fungi colonization and phosphorus nutrition in organic field pea and lentil. Mycorrhiza 20:541–549

    Article  PubMed  Google Scholar 

  • Baon JB, Smith SE, Alston AM, Wheeler RD (1992) Phosphorus efficiency of three cereals as related to indigenous mycorrhizal infection. Aust J Agr Res 43:479–491

    Article  CAS  Google Scholar 

  • Cardoso IM, Kuyper TW (2006) Mycorrhizas and tropical soil fertility. Agr Ecosyst Environ 116:72–84

    Article  Google Scholar 

  • Cardoso IM, Boddington CL, Janssen BH, Oenema O, Kuyper TW (2006) Differential access to phosphorus pools of an Oxisol by mycorrhizal and non-mycorrhizal maize. Comm Soil Sci Plant Anal 37:1537–1551

    Article  CAS  Google Scholar 

  • Cavagnaro TR, Smith FA, Smith SE, Jakobsen I (2005) Functional diversity in arbuscular mycorrhizas: exploitation of soil patches with different phosphate enrichment differs among fungal species. Plant Cell Environ 28:642–650

    Article  CAS  Google Scholar 

  • Covacevich F, Echeverría HE, Aguirrezabal LAN (2007) Soil available phosphorus status determines indigenous mycorrhizal colonization of field and glasshouse-grown spring wheat from Argentina. Appl Soil Ecol 35:1–9

    Article  Google Scholar 

  • de Carvalho AMX, de Castro TR, Cardoso IM, Kuyper TW (2010) Mycorrhizal associations in agroforestry systems. In: Dion P (ed) Soil biology, vol 21, Soil biology and agriculture in the tropics. Springer-Verlag, Berlin, Heidelberg, pp 185–208

    Google Scholar 

  • de Miranda JCC, Harris PJ (1994) Effects of soil phosphorus on spore germination and hyphal growth of arbuscular mycorrhizal fungi. New Phytol 128:103–108

    Article  CAS  Google Scholar 

  • de Miranda JCC, Harris PJ, Wild A (1989) Effects of soil and plant phosphorus concentrations on vesicular-arbuscular mycorrhizae in sorghum plants. New Phytol 112:405–410

    Article  Google Scholar 

  • Foley JA, De Fries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309:570–574

    Article  PubMed  CAS  Google Scholar 

  • Gerdemann JW, Nicolson TH (1963) Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Trans Br Mycol Soc 46:235–244

    Article  Google Scholar 

  • Gianinazzi S, Gollotte A, Binet MN, van Tuinen D, Redecker D, Wipf D (2010) Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20:519–530

    Article  PubMed  Google Scholar 

  • Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol 84:489–500

    Article  Google Scholar 

  • Hinsinger P (2001) Bioavailability of soil inorganic P in the rhizosphere as affected by root induced chemical changes: a review. Plant Soil 237:173–195

    Article  CAS  Google Scholar 

  • Ingleby K, Wilson EJ, Munro ERC, Cavers S (2007) Mycorrhizas in agroforestry: spread and sharing of arbuscular mycorrhizal fungi between trees and crops: complementary use of molecular and microscopic approaches. Plant Soil 294:125–136

    Article  CAS  Google Scholar 

  • International Culture Collection of Vesicular Arbuscular Mycorrhizal Fungi (2006) http://www.invam.caf.wvu.edu/. Accessed 5 July 2006

  • Jackson ML (1973) Soil chemical analysis. Prentice Hall of India, New Delhi

    Google Scholar 

  • Jakobsen I, Chen BD, Munkvold L, Lundsgaard T, Zhu YG (2005) Contrasting phosphate acquisition of mycorrhizal fungi with that of root hairs using the root hairless barley mutant. Plant Cell Environ 28:928–938

    Article  CAS  Google Scholar 

  • Janos DP (2006) Plant responsiveness to mycorrhizas differs from dependence upon mycorrhizas. Mycorrhiza 17:75–91

    Article  Google Scholar 

  • Kahiluoto H, Ketoja E, Vestnerg M (2000) Promotion of utilization of arbuscular mycorrhiza through reduced P fertilization. 1. Bioassays in a growth chamber. Plant Soil 227:191–206

    Article  CAS  Google Scholar 

  • Klironomos JN (2003) Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84:2292–2301

    Article  Google Scholar 

  • Koide RT (1991) Nutrient supply, nutrient demand and plant response to mycorrhizal infection. New Phytol 117:365–386

    Article  CAS  Google Scholar 

  • Koide RT, Li M (1990) On host regulation of the vesicular arbuscular mycorrhizal symbiosis. New Phytol 114:59–65

    Article  Google Scholar 

  • Landis FC, Fraser LH (2008) A new model of carbon and phosphorus transfers in arbuscular mycorrhizas. New Phytol 177:466–479

    PubMed  CAS  Google Scholar 

  • Ma Q, Rengel Z (2008) Phosphorus acquisition and wheat growth are influenced by shoot phosphorus status and soil phosphorus distribution in a split-root system. J Plant Nutr Soil Sci 171:266–271

    Article  CAS  Google Scholar 

  • Menge JA, Steirle D, Bagyaraj DJ, Johnson ELV, Leonard RT (1978) Phosphorus concentrations in plants responsible for inhibition of mycorrhizal infection. New Phytol 80:575–578

    Article  CAS  Google Scholar 

  • Mohammad A, Mitra B, Khan AG (2004) Effects of sheared root inoculum of Glomus intraradices on wheat grown at different phosphorus levels in the field. Agr Ecosyst Environ 103:245–249

    Article  Google Scholar 

  • Muleta D, Assefa F, Nemomissa S, Granhall U (2008) Distribution of arbuscular mycorrhizal fungi spores in soils of smallholder agroforestry and monocultural coffee systems in southwestern Ethiopia. Biol Fertil Soils 44:653–659

    Article  Google Scholar 

  • Mutuo PK, Cadisch G, Albrecht A, Palm CA, Verchot L (2005) Potential of agroforestry for carbon sequestration and mitigation of greenhouse gas emissions from soils in the tropics. Nutr Cycl Agroecosyst 71:43–54

    Article  CAS  Google Scholar 

  • Oehl F, Oberson A, Tagmann HU, Besson JM, Dubois D, Mader P, Roth HR, Frossard E (2002) Phosphorus budget and phosphorus availability in soils under organic and conventional farming. Nutr Cycl Agroecosyst 62:25–35

    Article  CAS  Google Scholar 

  • Pande M, Tarafdar JC (2004) Arbuscular mycorrhizal fungal diversity in neem based agroforestry systems in Rajasthan. Appl Soil Ecol 26:233–241

    Article  Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedure for clearing roots and staining parasitic and vesicular arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–161

    Article  Google Scholar 

  • Plenchette C, Fortin JA, Furlan V (1983) Growth responses of several plant species to mycorrhizae in a soil of moderate P fertility. I. Mycorrhizal dependency under field conditions. Plant Soil 70:199–209

    Article  CAS  Google Scholar 

  • Ravnskov S, Jakobsen I (1995) Functional compatibility in arbuscular mycorrhizas measured as hyphal P transport to the plant. New Phytol 129:611–618

    Article  Google Scholar 

  • Schroeder MS, Janos DP (2005) Plant growth, phosphorus nutrition, and root morphological responses to arbuscular mycorrhizas, phosphorus fertilization and intraspecific density. Mycorrhiza 15:203–216

    Article  PubMed  CAS  Google Scholar 

  • Shukla A, Kumar A, Jha A, Chaturvedi OP, Prasad R, Gupta A (2009) Effects of shade on arbuscular mycorrhizal colonization and growth of crops and tree seedlings in Central India. Agroforest Syst 76:95–109

    Article  Google Scholar 

  • Simard SW, Durall DM (2004) Mycorrhizal networks: a review of their extent, function, and importance. Can J Bot 82:1140–1165

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic, London

    Google Scholar 

  • Theuerl S, Buscot F (2010) Laccases: toward disentangling their diversity and functions in relation to soil organic matter cycling. Biol Fertil Soils 46:215–226

    Article  CAS  Google Scholar 

  • Thingstrup I, Rubaek G, Sibbesen E, Jakobsen I (1998) Flax (Linum usitatissimum L.) depends on arbuscular mycorrhizal fungi for growth and P uptake at intermediate but not high soil P levels in the field. Plant Soil 203:37–46

    Article  CAS  Google Scholar 

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677

    Article  PubMed  CAS  Google Scholar 

  • van der Heijden MGA, Streitwolf-Engel R, Riedl R, Siegrist S, Neudecker A, Ineichen K, Boller T, Wiemken A, Sanders IR (2006) The mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland. New Phytol 172:739–752

    Article  PubMed  Google Scholar 

  • Vierheilig H, Ocampo JA (1991) Susceptibility and effectiveness of vesicular arbuscular mycorrhizae in wheat cultivars under different growing conditions. Biol Fertil Soils 11:290–294

    Article  Google Scholar 

  • Wilkinson L, Coward M (2004) Linear models III-general linear models. In: SYSTAT II statistics II. SYSTAT software Inc., Richmond, p 139

    Google Scholar 

  • Wrage N, Lardy LC, Isselstein J (2010) Phosphorus, plant biodiversity and climate change. In: Lichtfouse E (ed) Sustainable agriculture reviews, vol 3, . Sociology, organic farming, climate change and soil science. Springer Science Business Media, pp 147–169

  • Young A (1997) Agroforestry for soil management, 2nd edn. ICRAF and CAB International, Wallingford

    Google Scholar 

Download references

Acknowledgments

The authors are thankful to Director, National Research Centre for Agroforestry, Jhansi for facilitating the research program and constant encouragement during the period of the study. The authors sincerely thank Dr OP Chaturvedi and Dr Rajendra Prasad for their useful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Shukla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shukla, A., Kumar, A., Jha, A. et al. Phosphorus threshold for arbuscular mycorrhizal colonization of crops and tree seedlings. Biol Fertil Soils 48, 109–116 (2012). https://doi.org/10.1007/s00374-011-0576-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-011-0576-y

Keywords

Navigation