Skip to main content

Advertisement

Log in

Mycorrhizal activity and diversity in a long-term organic Mediterranean agroecosystem

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

In organic agriculture, soil fertility and productivity rely on biological processes carried out by soil microbes, which represent the key elements of agroecosystem functioning. Arbuscular mycorrhizal fungi (AMF), fundamental microorganisms for soil fertility, plant nutrition and health, may play an important role in organic agriculture by compensating for the reduced use of fertilizers and pesticides. Though, AMF activity and diversity following conversion from conventional to organic farming are poorly investigated. Here we studied AMF abundance, diversity and activity in short- and long-term organically and conventionally managed Mediterranean arable agroecosystems. Our results show that both AMF population activity, as assessed by the mycorrhizal inoculum potential (MIP) assay, the percentage of colonized root length of the field crop (maize) and glomalin-related soil protein (GRSP) content were higher in organically managed fields and increased with time since transition to organic farming. Here, we showed an increase of GRSP content in arable organic systems and a strong correlation with soil MIP values. The analysis of AMF spores showed differences among communities of the three microagroecosystems in terms of species richness and composition as suggested by a multivariate analysis. All our data indicate that AMF respond positively to the transition to organic farming by a progressive enhancement of their activity that seems independent from the species richness of the AMF communities. Our study contributes to the understanding of the effects of agricultural managements on AMF, which represent a promising tool for the implementation of sustainable agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alguacil MM, Lumini E, Roldán A, Salinas-García JR, Bonfante P, Bianciotto V (2008) The impact of tillage practices on arbuscular mycorrhizal fungal diversity in subtropical crops. Ecol Appl 18:527–536

    Article  PubMed  CAS  Google Scholar 

  • Allen MF, Hipps LE, Wooldridge GL (1989) Wind dispersal and subsequent establishment of VA mycorrhizal fungi across a successional arid landscape. Landscape Ecol 2:165–171

    Article  Google Scholar 

  • Bedini S, Avio L, Argese E, Giovannetti M (2007) Effects of long-term land use on arbuscular mycorrhizal fungi and glomalin-related soil protein. Agric Ecosyst Environ 120:463–466

    Article  CAS  Google Scholar 

  • Bedini S, Cristani C, Avio L, Sbrana C, Turrini A, Giovannetti M (2008) Influence of organic farming on arbuscular mycorrhizal fungal populations in a Mediterranean agro-ecosystem. In: Neuhoff D et al (eds) Cultivating the future based on science, vol 1, Organic Crop Production Proceedings of the Second Scientific Conference of the International Society of Organic Agriculture Research (ISOFAR). ISOFAR, Bonn, FiBL, Frick, pp 172–175

    Google Scholar 

  • Bedini S, Pellegrino E, Avio L, Pellegrini S, Bazzoffi P, Argese E, Giovannetti M (2009) Changes in soil aggregation and glomalin-related soil protein content as affected by the arbuscular mycorrhizal fungal species Glomus mosseae and Glomus intraradices. Soil Biol Biochem 41:1491–1496

    Article  CAS  Google Scholar 

  • Bremner JM (1996) Nitrogen-Total. In: Sparks DL (Ed) Methods of Soils Analysis. Part 3. Chemical Methods. SSSA and ASA, SSSA Book Ser 5, Madison, WI, pp 1085–1121

  • Brito I, Goss MJ, de Carvalho M, Chatagnier O, van Tuinen D (2012) Impact of tillage system on arbuscular mycorrhizal fungal communities in the soil under Mediterranean conditions. Soil Till Res 121:63–67

    Article  Google Scholar 

  • Calvente R, Cano C, Ferrol N, Azcón-Aguilar C, Barea JM (2004) Analysing natural diversity of arbuscular mycorrhizal fungi in olive tree (Olea europaea L.) plantations and assessment of the effectiveness of native fungal isolates as inoculants for commercial cultivars of olive plantlets. Appl Soil Ecol 26:11–19

    Article  Google Scholar 

  • Ceccarelli N, Curadi M, Martelloni L, Sbrana C, Picciarelli P, Giovannetti M (2010) Mycorrhizal colonization impacts on phenolic content and antioxidant properties of artichoke leaves and flower heads two years after field transplant. Plant Soil 335:311–323

    Article  CAS  Google Scholar 

  • Cesaro P, van Tuinen D, Copetta A, Chatagnier O, Berta G, Gianinazzi S, Lingua G (2008) Preferential colonization of Solanum tuberosum L. roots by the fungus Glomus intraradices in arable soil of a potato farming area. Appl Environ Microbiol 74:5776–5783

    Article  PubMed  CAS  Google Scholar 

  • Daniell TJ, Husband R, Fitter AH, Young JPW (2001) Molecular diversity of arbuscular mycorrhizal fungi colonising arable crops. FEMS Microbiol Ecol 36:203–209

    Article  PubMed  CAS  Google Scholar 

  • Douds DD, Johnson NC (2007) Contributions of arbuscular mycorrhizas to soil biological fertility. In: Abbott LK, Murphy DV (eds) Soil biological fertility: a key to sustainable land use in agriculture. Springer, Berlin, pp 129–162

    Google Scholar 

  • Feldmann F, Boyle C (1999) Weed mediated stability of arbuscular mycorrhizal effectiveness in maize monocultures. Angew Botanik 73:1–5

    Google Scholar 

  • Fracchia S, Krapovickas L, Aranda-Rickert A, Valentinuzzi VS (2011) Dispersal of arbuscular mycorrhizal fungi and dark septate endophytes by Ctenomys cf. knighti (Rodentia) in the northern Monte Desert of Argentina. J Arid Environ 75:1016–1023. doi:10.1016/j.jaridenv.2011.04.034

    Article  Google Scholar 

  • Franke-Snyder M, Douds DD, Galvez L, Phillips JG, Wagoner P, Drinkwater L, Morton JB (2001) Diversity of communities of arbuscular mycorrhizal (AM) fungi present in conventional versus low-input agricultural sites in eastern Pennsylvania, USA. Appl Soil Ecol 16:35–48

    Article  Google Scholar 

  • Galván GA, Parádi I, Burger K, Baar J, Kuyper TW, Scholten OE, Kik C (2009) Molecular diversity of arbuscular mycorrhizal fungi in onion roots from organic and conventional farming systems in the Netherlands. Mycorrhiza 19:317–328

    Article  PubMed  Google Scholar 

  • Galvez L, Douds DD Jr, Drinkwater LE, Wagoner P (2001) Effect of tillage and farming system upon VAM fungus populations and mycorrhizas and nutrient uptake of maize. Plant Soil 118:299–308

    Article  Google Scholar 

  • Gavito ME, Miller MH (1998) Changes in mycorrhiza development in maize induced by crop management practices. Plant Soil 198:185–192

    Article  CAS  Google Scholar 

  • Gerdemann JW, Nicolson TH (1963) Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Trans Br Mycol Soc 46:235–244

    Article  Google Scholar 

  • Gillespie AW, Farrell RE, Walley FL, Ross ARS, Leinweber P, Eckhardt KU, Regier TZ, Blyth RIR (2011) Glomalin-related soil protein contains non-mycorrhizal-related heat-stable proteins, lipids and humic materials. Soil Biol Biochem 43:766–777. doi:10.1016/j.soilbio.2010.12.010

    Article  CAS  Google Scholar 

  • Giovannetti M, Avio L (2002) Biotechnology of arbuscular mycorrhizas. In: Khachatourians GG, Arora DK (eds) Applied mycology and biotechnology. Agriculture and Food Production. Elsevier, Amsterdam, pp 275–310, 2

    Chapter  Google Scholar 

  • Giovannetti M, Gianinazzi-Pearson V (1994) Biodiversity in arbuscular mycorrhizal fungi. Mycol Res 98:705–715

    Article  Google Scholar 

  • Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular-arbuscular mycorrhizal infection in roots. New Phytol 84:489–500

    Article  Google Scholar 

  • Giovannetti M, Avio L, Barale R, Ceccarelli N, Cristofani R, Iezzi A, Mignolli F, Picciarelli P, Pinto B, Reali D, Sbrana C, Scarpato R (2012) Nutraceutical value and safety of tomato fruits produced by mycorrhizal plants. Br J Nutr 107:242–251

    Article  PubMed  CAS  Google Scholar 

  • Göllner M, Friedel J, Freyer B (2005) Arbuscular mycorrhiza of winter wheat under different duration of organic farming. In: Researching sustainable systems. Proceedings of the 1st scientific conference of the international society of organic agriculture research (ISOFAR). Adelaide, Australia, pp 92–96

    Google Scholar 

  • Gosling P, Hodge A, Goodlass G, Bending GD (2006) Arbuscular mycorrhizal fungi and organic farming. Agric Ecosyst Environ 113:17–35

    Article  Google Scholar 

  • Gosling P, Ozaki A, Jones J, Turner M, Rayns F, Bending GD (2010) Organic management of tilled agricultural soils results in a rapid increase in colonisation potential and spore populations of arbuscular mycorrhizal fungi. Agric Ecosyst Environ 139:273–279

    Article  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological Statistics Software Package for Education and Data Analysis. Palaeontol Electronica 4:1–9

    Google Scholar 

  • Hijri I, Sýkorová Z, Oehl F, Ineichen K, Mäder P, Wiemken A, Redecker D (2006) Communities of arbuscular mycorrhizal fungi in arable soils are not necessarily low in diversity. Mol Ecol 15:2277–2289

    Article  PubMed  CAS  Google Scholar 

  • IFOAM (2006) The IFOAM basic standards for organic production and processing. version 2005. IFOAM Publications, Germany

    Google Scholar 

  • ISMEA (2008) Il biologico nel bacino Mediterraneo: politiche normative e mercati per un’agricoltura di qualità. ISMEA Publications, Italy

    Google Scholar 

  • Johnson NC (1993) Can fertilization of soil select less mutualistic mycorrhizae. Ecol Appl 3:749–757

    Article  Google Scholar 

  • Kabir Z, Koide RT (2000) The effect of dandelion or a cover crop on mycorrhiza inoculum potential, soil aggregation and yield of maize. Agric Ecosyst Environ 78:167–174

    Article  Google Scholar 

  • Kahiluoto H, Ketoja E, Vestberg M (2000) Promotion of AM utilization through reduced P fertilization. 1. Bioassays in a growth chamber. Plant Soil 227:191–206

    Article  CAS  Google Scholar 

  • Kahiluoto H, Ketoja E, Vestberg M, Saarela I (2001) Promotion of AM utilization through reduced P fertilization. 2. Field studies. Plant Soil 231:65–79

    Article  CAS  Google Scholar 

  • Krüger M, Krüger C, Walker C, Stockinger H, Schüßler A (2012) Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. New Phytol 193:970–984. doi:10.1111/j.1469-8137.2011.03962.x

    Article  PubMed  Google Scholar 

  • Lampkin N (1990) Organic farming. Farming Press Books, Ipswich, UK

    Google Scholar 

  • Lekberg Y, Koide RT (2005) Is plant performance limited by abundance of arbuscular mycorrhizal fungi? A meta-analysis of studies published between 1988 and 2003. New Phytol 168:189–204

    Article  PubMed  CAS  Google Scholar 

  • Lulli L, Lorenzoni P, Arretini A (1980) Esempi di cartografia tematica e di cartografia derivata (Sezione Lucignano, Foglio Firenze). La carta dei suoli, la loro capacità d'uso, l'attitudine dei suoli all'olivo e al Sangiovese. C.N.R., Progetto Finalizzato Conservazione del Suolo, Istituto Sperimentale per lo Studio e la Difesa del Suolo, Firenze

  • Mäder P, Edenhofer S, Boller T, Wiemken A, Niggli U (2000) Arbuscular mycorrhizae in a long-term field trial comparing low-input (organic, biological) and high-input (conventional) farming systems in a crop rotation. Biol Fert Soils 31:150–156

    Article  Google Scholar 

  • Mäder P, Fliessbach A, Dubois D, Gunst L, Fried P, Niggli U (2002) Soil fertility and biodiversity in organic farming. Science 296:1694–1697. doi:10.1126/science.1071148

    Article  PubMed  Google Scholar 

  • Matson PA, Parton WJ, Power AG, Swift MJ (1997) Agricultural intensification and ecosystem properties. Science 277:504–509. doi:10.1126/science.277.5325.504

    Article  PubMed  CAS  Google Scholar 

  • Mazzoncini M, Canali S, Giovannetti M, Castagnoli M, Tittarelli F, Antichi D, Nannelli R, Cristani C, Bàrberi P (2010) Comparison of organic and conventional stockless arable systems: a multidisciplinary approach to soil quality evaluation. Appl Soil Ecol 44:124–132

    Article  Google Scholar 

  • Mehlich A (1984) Mehlich 3 soil test extractant: a modification of the Mehlich 2 extractant. Comm Soil Sci Plant Anal 15:1409–1416

    Article  CAS  Google Scholar 

  • Migliorini P, Vazzana C (2007) Biodiversity indicators for sustainability evaluation of conventional and organic agro-ecosystems. Ital J Agron 2:105–110

    Google Scholar 

  • Mozafar A, Anken T, Ruh R, Frossard E (2000) Tillage intensity, mycorrhizal and non- mycorrhizal fungi, and nutrient concentrations in maize, wheat, and canola. Agron J 92:1117–1124

    Article  CAS  Google Scholar 

  • Na Bhadalung N, Suwanarit A, Dell B, Nopamornbodi O, Thamchaipenet A, Rungchuang J (2005) Effects of long-term NP-fertilization on abundance and diversity of arbuscular mycorrhizal fungi under a maize cropping system. Plant Soil 270:371–382

    Article  Google Scholar 

  • Nelson DW, Sommers LE (1996) Total carbon, organic carbon, and organic matter. In: Sparks DL (Ed) Methods of Soils Analysis. Part 3. Chemical Methods. SSSA and ASA, SSSA Book Ser 5, Madison, WI, pp 961–1010

  • Oehl F, Sieverding E, Ineichen K, Mäder P, Boller T, Wiemken A (2003) Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of central Europe. Appl Environ Microbiol 69:2816–2824

    Article  PubMed  CAS  Google Scholar 

  • Oehl F, Sieverding E, Mäder P, Dubois D, Ineichen K, Boller T, Wiemken A (2004) Impact of long-term conventional and organic farming on the diversity or arbuscular mycorrhizal fungi. Oecologia 138:574–583

    Article  PubMed  Google Scholar 

  • Oehl F, Laczko E, Bogenrieder A, Stahr K, Bösch R, van der Heijden MGA, Sieverding E (2010) Soil type and land use intensity determine the composition of arbuscular mycorrhizal fungal communities. Soil Biol Biochem 42:724–732. doi:10.1016/j.soilbio.2010.01.006

    Article  CAS  Google Scholar 

  • Oehl F, da Silva GA, Goto BT, Sieverding E (2011) Glomeromycota: three new genera and glomoid species reorganized. Mycotaxon 116:75–120

    Article  Google Scholar 

  • Olsen SR Sommers LE (1982) Phosphorus. In: Page AL (Ed) Methods of soil analysis. Part 2. Chemical and microbiological properties, 2nd edn, Agronomy Monograph No. 9 ASA, Madison, WI, pp 403–430

  • Phillips JM, Hayman DS (1970) Improved procedure for clearing roots and staining parasites and vesicular–arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–161

    Article  Google Scholar 

  • Purin S, Klauberg-Filho O, Sturmer SL (2006) Mycorrhizae activity and diversity in conventional and organic apple orchards from Brazil. Soil Biol Biochem 38:1831–1839

    Article  CAS  Google Scholar 

  • Püschel D, Rydlová J, Vosátka M (2008) Does the sequence of plant dominants affect mycorrhiza development in simulated succession on spoil banks? Plant Soil 302:273–282. doi:10.1007/s11104-007-9480-5

    Article  Google Scholar 

  • Rasmann C, Graham JH, Chellemi DO, Datnoff LE, Larsen J (2009) Resilient populations of root fungi occur within five tomato production systems in southeast Florida. Appl Soil Ecol 43:22–31

    Article  Google Scholar 

  • Raviv M (2010) The use of mycorrhiza in organically-grown crops under semi arid conditions: a review of benefits, constraints and future challenges. Symbiosis 52:65–74. doi:10.1007/s13199-010-0089-8

    Article  Google Scholar 

  • Rillig MC (2004) Arbuscular mycorrhizae, glomalin and soil quality. Can J Soil Sci 84:355–363

    Article  Google Scholar 

  • Rillig MC, Ramsey PW, Morris S, Paul EA (2003) Glomalin, an arbuscular-mycorrhizal fungal soil protein, responds to land-use change. Plant Soil 253:293–299

    Article  CAS  Google Scholar 

  • Rosier CL, Andrew T, Rillig MC (2006) Glomalin-related soil protein: assessment of current detection and quantification tools. Soil Biol Biochem 38:2205–2211. doi:10.1016/j.soilbio.2006.01.021

    Article  CAS  Google Scholar 

  • Ryan MH, Kirkegaard JA (2012) The agronomic relevance of arbuscular mycorrhizas in the fertility of Australian extensive cropping systems. Agr Ecosys Environ. 163:37–53. doi:10.1016/j.agee.2012.03.011

  • Ryan MH, Tibbet M (2008) The role of arbuscular mycorrhizas in organic farming. In: Kirchmann H, Bergström L (eds) Organic crop production: ambition and limitations. Springer, Berlin, pp 189–229

    Chapter  Google Scholar 

  • Ryan MH, Chilvers GA, Dumaresq DC (1994) Colonisation of wheat by VA-mycorrhizal fungi was found to be higher on a farm managed in an organic manner than on a conventional neighbour. Plant Soil 160:33–40

    Article  Google Scholar 

  • Ryan MH, Small DR, Ash JE (2000) Phosphorus controls the level of colonisation by arbuscular mycorrhizal fungi in conventional and biodynamic irrigated dairy pastures. Austr J Exp Agric 40:663–670

    Article  Google Scholar 

  • Sasvári Z, Hornok L, Posta K (2011) The community structure of arbuscular mycorrhizal fungi in roots of maize grown in a 50-year monoculture. Biol Fert Soils 47:167–176. doi:10.1007/s00374-010-0519-z

    Article  Google Scholar 

  • Scullion J, Eason WR, Scott EP (1998) The effectivity of arbuscular mycorrhizal fungi from high input conventional and organic grassland and grass–arable rotations. Plant Soil 204:243–254

    Article  CAS  Google Scholar 

  • Sieverding E (1989) Ecology of VAM fungi in tropical agrosystems. Agric Ecosyst Environ 28:369–390

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic Press, London

    Google Scholar 

  • Smukler SM, Jackson LE, Murphree L, Yokota R, Koike ST, Smith RF (2008) Transition to large-scale organic vegetable production in the Salinas Valley, California. Agric Ecosyst Environ 126:168–188

    Article  Google Scholar 

  • Thingstrup I, Rubaek G, Sibbesen E, Jakobsen I (1998) Flax (Linum usitatissimum L.) depends on arbuscular mycorrhizal fungi for growth and P uptake at intermediate but not high soil P levels in the field. Plant Soil 203:37–46

    Article  CAS  Google Scholar 

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677. doi:10.1038/nature01014

    Article  PubMed  CAS  Google Scholar 

  • Turrini A, Avio L, Bedini S, Giovannetti M (2008) In situ collection of endangered arbuscular mycorrhizal fungi in a Mediteranean UNESCO Biosphere Reserve. Biodivers Conserv 17:643–657. doi:10.1007/s10531-007-9288-x

    Article  Google Scholar 

  • Verbruggen E, Roling WFM, Gamper HA, Kowalchuk GA, Verhoef HA, van der Heijden MGA (2010) Positive effects of organic farming on below-ground mutualists: large-scale comparison of mycorrhizal fungal communities in agricultural soils. New Phytol 186:968–979

    Article  PubMed  CAS  Google Scholar 

  • Vereijken P (1994) Designing Prototypes. Progress Report 1 of the Research Network on 12 Integrated and Ecological Arable Farming System for EU and associated countries, AB-DLO, Wageningen, The Netherlands

  • Vereijken P (1997) A methodical way of prototyping integrated and ecological arable farming systems (I/EAFS) in interaction with pilot farms. Eur J Agron 7:235–250

    Article  Google Scholar 

  • Vereijken P (1999) Manual for prototyping integrated and ecological arable farming systems (I/EAFS) in interaction with pilot farms. AB-DLO, Wageningen, The Netherlands

    Google Scholar 

  • Whiffen LK, Midgley DJ, Mcgee PA (2007) Polyphenolic compounds interfere with quantification of protein in soil extracts using the Bradford method. Soil Biol Biochem 39:691–694. doi:10.1016/j.soilbio.2006.08.012

    Article  CAS  Google Scholar 

  • Wilson GWT, Rice CW, Rillig MC, Springer A, Hartnett DC (2009) Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: results from long-term field experiments. Ecol Lett 12:452–461

    Article  PubMed  Google Scholar 

  • Wright SF, Anderson RL (2000) Aggregate stability and glomalin in alternative crop rotations for the central Great Plains. Biol Fert Soils 31:249–253

    Article  CAS  Google Scholar 

  • Wright SF, Upadhyaya A (1998) A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant Soil 198:97–107

    Article  CAS  Google Scholar 

  • Wright SF, Starr JL, Paltineanu IC (1999) Changes in aggregate stability and concentration of glomalin during tillage managements transition. Soil Sci Soc Am J 63:1825–1829

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was carried out in the framework of the SIMBIOVEG (www.simbioveg.org) research project, funded by the Italian Ministry of University and Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuela Giovannetti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bedini, S., Avio, L., Sbrana, C. et al. Mycorrhizal activity and diversity in a long-term organic Mediterranean agroecosystem. Biol Fertil Soils 49, 781–790 (2013). https://doi.org/10.1007/s00374-012-0770-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-012-0770-6

Keywords

Navigation