Skip to main content

Advertisement

Log in

A Systematic and Meta-Analysis of Mortality in Experimental Mouse Models Analyzing Delayed Cerebral Ischemia After Subarachnoid Hemorrhage

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Animal models are established to display the pathophysiological changes following subarachnoid hemorrhage (SAH). The aim of the present study was to determine case fatality in mouse delayed cerebral ischemia (DCI) models, to compare mortality in mouse DCI models to case fatality in human SAH patients, and to identify factors influencing mouse mortality. A systematic search of the PubMed database was performed to identify all studies that assessed mouse DCI models. Mortality rates and predictor variables were extracted and compared to the human case fatality after SAH as previously reported. Predictors for mouse mortality were identified through multivariate analysis. Forty-eight studies were included in the quantitative analysis. The mean overall mortality rate was 21% in mouse DCI models. However, the time period between induction of SAH and evaluation of mortality rates is a significant variable influencing the mortality rate in mouse SAH models. The experimental SAH model was the only significant predictor for mouse mortality after 48 h. In contrast, neither the genetic background nor the anesthetic changed the case fatality rate. Mouse mortality at 24, 48, and 72 h after experimental SAH in DCI models was significantly lower than human case fatality following aneurysmal SAH. The mean overall mortality rate in mouse DCI models is significantly lower than human case fatality following aneurysmal SAH. However, time between SAH induction and evaluation is a significant variable influencing the mortality rate in mouse SAH models. Further analyses will be required to establish whether and to which extent different DCI models affect mortality and reflect human pathophysiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hop JW, Rinkel GJ, Algra A, van Gijn J. Case-fatality rates and functional outcome after subarachnoid hemorrhage: a systematic review. Stroke. 1997;28:660–4.

    Article  CAS  PubMed  Google Scholar 

  2. Lovelock CE, Rinkel GJ, Rothwell PM. Time trends in outcome of subarachnoid hemorrhage: population-based study and systematic review. Neurology. 2010;74:1494–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Stegmayr B, Eriksson M, Asplund K. Declining mortality from subarachnoid hemorrhage: changes in incidence and case fatality from 1985 through 2000. Stroke. 2004;35:2059–63.

    Article  PubMed  Google Scholar 

  4. Steiger HJ, Beez T, Beseoglu K, Hanggi D, Kamp MA. Perioperative measures to improve outcome after subarachnoid hemorrhage-revisiting the concept of secondary brain injury. Acta Neurochir Suppl. 2015;120:211–6.

    PubMed  Google Scholar 

  5. Lang EW, Diehl RR, Mehdorn HM. Cerebral autoregulation testing after aneurysmal subarachnoid hemorrhage: the phase relationship between arterial blood pressure and cerebral blood flow velocity. Crit Care Med. 2001;29:158–63.

    Article  CAS  PubMed  Google Scholar 

  6. Seok J, Warren HS, Cuenca AG, Mindrinos MN, Baker HV, Xu W, Richards DR, McDonald-Smith GP, Gao H, Hennessy L, Finnerty CC, Lopez CM, Honari S, Moore EE, Minei JP, Cuschieri J, Bankey PE, Johnson JL, Sperry J, Nathens AB, Billiar TR, West MA, Jeschke MG, Klein MB, Gamelli RL, Gibran NS, Brownstein BH, Miller-Graziano C, Calvano SE, Mason PH, Cobb JP, Rahme LG, Lowry SF, Maier RV, Moldawer LL, Herndon DN, Davis RW, Xiao W, Tompkins RG, Inflammation, Host Response to Injury LSCRP. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci U S A. 2013;110:3507–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Takao K, Miyakawa T. Genomic responses in mouse models greatly mimic human inflammatory diseases. Proc Natl Acad Sci U S A. 2015;112:1167–72.

    Article  CAS  PubMed  Google Scholar 

  8. D’Abbondanza JA, Ai J, Lass E, Wan H, Brathwaite S, Tso MK, Lee C, Marsden PA, Macdonald RL. Robust effects of genetic background on responses to subarachnoid hemorrhage in mice. J Cereb Blood Flow Metab. 2015;36(11):1942–54.

    Article  PubMed  Google Scholar 

  9. D’Abbondanza JA, Lass E, Ai J, Loch Macdonald R. Mouse genetic background is associated with variation in secondary complications after subarachnoid hemorrhage. Acta Neurochir Suppl. 2015;120:29–33.

    PubMed  Google Scholar 

  10. Kamii H, Kato I, Kinouchi H, Chan PH, Epstein CJ, Akabane A, Okamoto H, Yoshimoto T. Amelioration of vasospasm after subarachnoid hemorrhage in transgenic mice overexpressing CuZn-superoxide dismutase. Stroke. 1999;30:867–72.

    Article  CAS  PubMed  Google Scholar 

  11. Kamp MA, Dibue M, Sommer C, Steiger HJ, Schneider T, Hanggi D. Evaluation of a murine single-blood-injection SAH model. PLoS One. 2014;9:e114946.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 2010;8:e1000412.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Altay O, Hasegawa Y, Sherchan P, Suzuki H, Khatibi NH, Tang J, Zhang JH. Isoflurane delays the development of early brain injury after subarachnoid hemorrhage through sphingosine-related pathway activation in mice. Crit Care Med. 2012;40:1908–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Altay O, Suzuki H, Hasegawa Y, Ostrowski RP, Tang J, Zhang JH. Isoflurane on brain inflammation. Neurobiol Dis. 2014;62:365–71.

    Article  CAS  PubMed  Google Scholar 

  15. Altay T, Smithason S, Volokh N, Rasmussen PA, Ransohoff RM, Provencio JJ. A novel method for subarachnoid hemorrhage to induce vasospasm in mice. J Neurosci Methods. 2009;183:136–40.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Atangana EN, Homburg D, Vajkoczy P, Schneider UC. Mouse cerebral magnetic resonance imaging fails to visualize brain volume changes after experimental subarachnoid hemorrhage. Acta Neurochir. 2015;157:37–42.

    Article  PubMed  Google Scholar 

  17. Ayer R, Jadhav V, Sugawara T, Zhang JH. The neuroprotective effects of cyclooxygenase-2 inhibition in a mouse model of aneurysmal subarachnoid hemorrhage. Acta Neurochir Suppl. 2011;111:145–9.

    Article  CAS  PubMed  Google Scholar 

  18. Buhler D, Azghandi S, Schuller K, Plesnila N. Effect of decompressive craniectomy on outcome following subarachnoid hemorrhage in mice. Stroke. 2015;46:819–26.

    Article  PubMed  Google Scholar 

  19. Buhler D, Schuller K, Plesnila N. Protocol for the induction of subarachnoid hemorrhage in mice by perforation of the circle of Willis with an endovascular filament. Transl Stroke Res. 2014;5:653–9.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chaichana KL, Levy AP, Miller-Lotan R, Shakur S, Tamargo RJ. Haptoglobin 2-2 genotype determines chronic vasospasm after experimental subarachnoid hemorrhage. Stroke. 2007;38:3266–71.

    Article  CAS  PubMed  Google Scholar 

  21. Egashira Y, Hua Y, Keep RF, Xi G. Acute white matter injury after experimental subarachnoid hemorrhage: potential role of lipocalin 2. Stroke. 2014;45:2141–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Egashira Y, Xi G, Chaudhary N, Hua Y, Pandey AS. Acute brain injury after subarachnoid hemorrhage. World Neurosurg. 2015;84:22–5.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Egashira Y, Zhao H, Hua Y, Keep RF, Xi G. White matter injury after subarachnoid hemorrhage: role of blood-brain barrier disruption and matrix metalloproteinase-9. Stroke. 2015;46:2909–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Feiler S, Friedrich B, Scholler K, Thal SC, Plesnila N. Standardized induction of subarachnoid hemorrhage in mice by intracranial pressure monitoring. J Neurosci Methods. 2010;190:164–70.

    Article  PubMed  Google Scholar 

  25. Feiler S, Plesnila N, Thal SC, Zausinger S, Scholler K. Contribution of matrix metalloproteinase-9 to cerebral edema and functional outcome following experimental subarachnoid hemorrhage. Cerebrovasc Dis. 2011;32:289–95.

    Article  CAS  PubMed  Google Scholar 

  26. Friedrich B, Michalik R, Oniszczuk A, Abubaker K, Kozniewska E, Plesnila N. CO2 has no therapeutic effect on early microvasospasm after experimental subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2014;34:e1–6.

    Article  PubMed  Google Scholar 

  27. Friedrich B, Muller F, Feiler S, Scholler K, Plesnila N. Experimental subarachnoid hemorrhage causes early and long-lasting microarterial constriction and microthrombosis: an in-vivo microscopy study. J Cereb Blood Flow Metab. 2012;32:447–55.

    Article  CAS  PubMed  Google Scholar 

  28. Froehler MT, Kooshkabadi A, Miller-Lotan R, Blum S, Sher S, Levy A, Tamargo RJ. Vasospasm after subarachnoid hemorrhage in haptoglobin 2-2 mice can be prevented with a glutathione peroxidase mimetic. J Clin Neurosci. 2010;17:1169–72.

    Article  CAS  PubMed  Google Scholar 

  29. Fujimoto M, Shiba M, Kawakita F, Shimojo N, Imanaka-Yoshida K, Yoshida T, Kanamaru K, Taki W, Suzuki H. Vasoconstrictive effect of tenascin-C on cerebral arteries in rats. Acta Neurochir Suppl. 2015;120:99–103.

    PubMed  Google Scholar 

  30. Garzon-Muvdi T, Pradilla G, Ruzevick JJ, Bender M, Edwards L, Grossman R, Zhao M, Rudek MA, Riggins G, Levy A, Tamargo RJ. A glutamate receptor antagonist, S-4-carboxyphenylglycine (S-4-CPG), inhibits vasospasm after subarachnoid hemorrhage in haptoglobin 2-2 mice [corrected]. Neurosurg. 2013;73:719–29.

    Article  Google Scholar 

  31. Guvenc Tuna B, Lachkar N, de Vos J, Bakker EN, VanBavel E. Cerebral artery remodeling in rodent models of subarachnoid hemorrhage. J Vasc Res. 2015;52:103–15.

    Article  CAS  PubMed  Google Scholar 

  32. Hanafy KA. The role of microglia and the TLR4 pathway in neuronal apoptosis and vasospasm after subarachnoid hemorrhage. J Neuroinflammation. 2013;10:83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Huang L, Wan J, Chen Y, Wang Z, Hui L, Li Y, Xu D, Zhou W. Inhibitory effects of p38 inhibitor against mitochondrial dysfunction in the early brain injury after subarachnoid hemorrhage in mice. Brain Res. 2013;1517:133–40.

    Article  CAS  PubMed  Google Scholar 

  34. Inagawa T, Trends in incidence and case fatality rates of aneurysmal subarachnoid hemorrhage in Izumo City, Japan, between 1980-1989 and 1990-1998. Stroke. 2001 Jul;32(7):1499–507.

  35. Immonen-Räihä P, Mähönen M, Tuomilehto J, Salomaa V, Kaarsalo E, Narva EV, Salmi K, Sarti C, Sivenius J, Alhainen K, Torppa J. Trends in case-fatality of stroke in Finland during 1983 to 1992. Stroke. 1997 Dec;28(12):2493-9.

  36. Ishikawa M, Kusaka G, Yamaguchi N, Sekizuka E, Nakadate H, Minamitani H, Shinoda S, Watanabe E. Platelet and leukocyte adhesion in the microvasculature at the cerebral surface immediately after subarachnoid hemorrhage. Neurosurg. 2009;64:546–53.

    Article  Google Scholar 

  37. Kummer TT, Magnoni S, MacDonald CL, Dikranian K, Milner E, Sorrell J, Conte V, Benetatos JJ, Zipfel GJ, Brody DL. Experimental subarachnoid haemorrhage results in multifocal axonal injury. Brain. 2015;138:2608–18.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Li T, Sun KJ, Wang HD, Zhou ML, Ding K, Lu XY, Wei WT, Wang CX, Zhou XM. Tert-butylhydroquinone ameliorates early brain injury after experimental subarachnoid hemorrhage in mice by enhancing Nrf2-independent autophagy. Neurochem Res. 2015;40:1829–38.

    Article  CAS  PubMed  Google Scholar 

  39. Li T, Wang H, Ding Y, Zhou M, Zhou X, Zhang X, Ding K, He J, Lu X, Xu J, Wei W. Genetic elimination of Nrf2 aggravates secondary complications except for vasospasm after experimental subarachnoid hemorrhage in mice. Brain Res. 2014;1558:90–9.

    Article  CAS  PubMed  Google Scholar 

  40. Lin CL, Calisaneller T, Ukita N, Dumont AS, Kassell NF, Lee KS. A murine model of subarachnoid hemorrhage-induced cerebral vasospasm. J Neurosci Methods. 2003;123:89–97.

    Article  PubMed  Google Scholar 

  41. Lin CL, Dumont AS, Calisaneller T, Kwan AL, Hwong SL, Lee KS. Monoclonal antibody against E selectin attenuates subarachnoid hemorrhage-induced cerebral vasospasm. Surg Neurol. 2005;64:201–5. discussion 205-206

    Article  PubMed  Google Scholar 

  42. Liu L, Fujimoto M, Kawakita F, Nakano F, Imanaka-Yoshida K, Yoshida T, Suzuki H. Anti-vascular endothelial growth factor treatment suppresses early brain injury after subarachnoid hemorrhage in mice. Mol Neurobiol. 2016;53:4529–38.

    Article  CAS  PubMed  Google Scholar 

  43. Liu S, Tang J, Ostrowski RP, Titova E, Monroe C, Chen W, Lo W, Martin R, Zhang JH. Oxidative stress after subarachnoid hemorrhage in gp91phox knockout mice. Can J Neurol Sci. 2007;34:356–61.

    Article  PubMed  PubMed Central  Google Scholar 

  44. McConnell ED, Wei HS, Reitz KM, Kang H, Takano T, Vates GE, Nedergaard M. Cerebral microcirculatory failure after subarachnoid hemorrhage is reversed by hyaluronidase. J Cereb Blood Flow Metab. 2015;36(9):1537–52.

    Article  PubMed  Google Scholar 

  45. McGirt MJ, Lynch JR, Parra A, Sheng H, Pearlstein RD, Laskowitz DT, Pelligrino DA, Warner DS. Simvastatin increases endothelial nitric oxide synthase and ameliorates cerebral vasospasm resulting from subarachnoid hemorrhage. Stroke. 2002;33:2950–6.

    Article  CAS  PubMed  Google Scholar 

  46. McGirt MJ, Parra A, Sheng H, Higuchi Y, Oury TD, Laskowitz DT, Pearlstein RD, Warner DS. Attenuation of cerebral vasospasm after subarachnoid hemorrhage in mice overexpressing extracellular superoxide dismutase. Stroke. 2002;33:2317–23.

    Article  CAS  PubMed  Google Scholar 

  47. Mesis RG, Wang H, Lombard FW, Yates R, Vitek MP, Borel CO, Warner DS, Laskowitz DT. Dissociation between vasospasm and functional improvement in a murine model of subarachnoid hemorrhage. Neurosurg Focus. 2006;21:E4.

    Article  PubMed  Google Scholar 

  48. Milner E, Holtzman JC, Friess S, Hartman RE, Brody DL, Han BH, Zipfel GJ. Endovascular perforation subarachnoid hemorrhage fails to cause Morris water maze deficits in the mouse. J Cereb Blood Flow Metab. 2014;34

  49. Milner E, Johnson AW, Nelson JW, Harries MD, Gidday JM, Han BH, Zipfel GJ. HIF-1alpha mediates isoflurane-induced vascular protection in subarachnoid hemorrhage. Ann Clin Transl Neurol. 2015;2:325–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mino M, Kamii H, Fujimura M, Kondo T, Takasawa S, Okamoto H, Yoshimoto T. Temporal changes of neurogenesis in the mouse hippocampus after experimental subarachnoid hemorrhage. Neurol Res. 2003;25:839–45.

    Article  PubMed  Google Scholar 

  51. Mo H, Chen Y, Huang L, Zhang H, Li J, Zhou W. Neuroprotective effect of tea polyphenols on oxyhemoglobin induced subarachnoid hemorrhage in mice. Oxidative Med Cell Longev. 2013;2013:743938.

    Article  Google Scholar 

  52. Momin EN, Schwab KE, Chaichana KL, Miller-Lotan R, Levy AP, Tamargo RJ. Controlled delivery of nitric oxide inhibits leukocyte migration and prevents vasospasm in haptoglobin 2-2 mice after subarachnoid hemorrhage. Neurosurg. 2009;65:937–45.

    Article  Google Scholar 

  53. Muroi C, Fujioka M, Mishima K, Irie K, Fujimura Y, Nakano T, Fandino J, Keller E, Iwasaki K, Fujiwara M. Effect of ADAMTS-13 on cerebrovascular microthrombosis and neuronal injury after experimental subarachnoid hemorrhage. J Thromb Haemost. 2014;12:505–14.

    Article  CAS  PubMed  Google Scholar 

  54. Muroi C, Hugelshofer M, Seule M, Keller E. The impact of nonsteroidal anti-inflammatory drugs on inflammatory response after aneurysmal subarachnoid hemorrhage. Neurocrit Care. 2014;20:240–6.

    Article  CAS  PubMed  Google Scholar 

  55. Parra A, McGirt MJ, Sheng H, Laskowitz DT, Pearlstein RD, Warner DS. Mouse model of subarachnoid hemorrhage associated cerebral vasospasm: methodological analysis. Neurol Res. 2002;24:510–6.

    Article  PubMed  Google Scholar 

  56. Pisapia JM, Xu X, Kelly J, Yeung J, Carrion G, Tong H, Meghan S, El-Falaky OM, Grady MS, Smith DH, Zaitsev S, Muzykantov VR, Stiefel MF, Stein SC. Microthrombosis after experimental subarachnoid hemorrhage: time course and effect of red blood cell-bound thrombin-activated pro-urokinase and clazosentan. Exp Neurol. 2012;233:357–63.

    Article  CAS  PubMed  Google Scholar 

  57. Pradilla G, Garzon-Muvdi T, Ruzevick JJ, Bender M, Edwards L, Momin EN, Thompson RC, Tamargo RJ. Systemic L-citrulline prevents cerebral vasospasm in haptoglobin 2-2 transgenic mice after subarachnoid hemorrhage. Neurosurg. 2012;70:747–56.

    Article  Google Scholar 

  58. Provencio JJ, Altay T, Smithason S, Moore SK, Ransohoff RM. Depletion of Ly6G/C (+) cells ameliorates delayed cerebral vasospasm in subarachnoid hemorrhage. J Neuroimmunol. 2011;232:94–100.

    Article  CAS  PubMed  Google Scholar 

  59. Sabri M, Ai J, Lakovic K, D’Abbondanza J, Ilodigwe D, Macdonald RL. Mechanisms of microthrombi formation after experimental subarachnoid hemorrhage. Neuroscience. 2012;224:26–37.

    Article  CAS  PubMed  Google Scholar 

  60. Sabri M, Ai J, Lakovic K, Macdonald RL. Mechanisms of microthrombosis and microcirculatory constriction after experimental subarachnoid hemorrhage. Acta Neurochir Suppl. 2013;115:185–92.

    PubMed  Google Scholar 

  61. Sabri M, Ai J, Lass E, D’Abbondanza J, Macdonald RL. Genetic elimination of eNOS reduces secondary complications of experimental subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2013;33:1008–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sabri M, Jeon H, Ai J, Tariq A, Shang X, Chen G, Macdonald RL. Anterior circulation mouse model of subarachnoid hemorrhage. Brain Res. 2009;1295:179–85.

    Article  CAS  PubMed  Google Scholar 

  63. Saito A, Kamii H, Kato I, Takasawa S, Kondo T, Chan PH, Okamoto H, Yoshimoto T. Transgenic CuZn-superoxide dismutase inhibits NO synthase induction in experimental subarachnoid hemorrhage. Stroke. 2001;32:1652–7.

    Article  CAS  PubMed  Google Scholar 

  64. Schallner N, Pandit R, LeBlanc 3rd R, Thomas AJ, Ogilvy CS, Zuckerbraun BS, Gallo D, Otterbein LE, Hanafy KA. Microglia regulate blood clearance in subarachnoid hemorrhage by heme oxygenase-1. J Clin Invest. 2015;125:2609–25.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Schneider UC, Davids AM, Brandenburg S, Muller A, Elke A, Magrini S, Atangana E, Turkowski K, Finger T, Gutenberg A, Gehlhaar C, Bruck W, Heppner FL, Vajkoczy P. Microglia inflict delayed brain injury after subarachnoid hemorrhage. Acta Neuropathol. 2015;130:215–31.

    Article  PubMed  Google Scholar 

  66. Scholler K, Feiler S, Anetsberger S, Kim SW, Plesnila N. Contribution of bradykinin receptors to the development of secondary brain damage after experimental subarachnoid hemorrhage. Neurosurg. 2011;68:1118–23.

    Article  Google Scholar 

  67. Sehba FA, Flores R, Muller A, Friedrich V, Chen JF, Britz GW, Winn HR, Bederson JB. Adenosine A (2A) receptors in early ischemic vascular injury after subarachnoid hemorrhage. Laboratory investigation J Neurosurg. 2010;113:826–34.

    PubMed  Google Scholar 

  68. Sheng H, Reynolds JD, Auten RL, Demchenko IT, Piantadosi CA, Stamler JS, Warner DS. Pharmacologically augmented S-nitrosylated hemoglobin improves recovery from murine subarachnoid hemorrhage. Stroke. 2011;42:471–6.

    Article  CAS  PubMed  Google Scholar 

  69. Sheng H, Spasojevic I, Tse HM, Jung JY, Hong J, Zhang Z, Piganelli JD, Batinic-Haberle I, Warner DS. Neuroprotective efficacy from a lipophilic redox-modulating Mn(III) N-hexylpyridylporphyrin, MnTnHex-2-PyP: rodent models of ischemic stroke and subarachnoid hemorrhage. J Pharmacol Exp Ther. 2011;338:906–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Siler DA, Berlow YA, Kukino A, Davis CM, Nelson JW, Grafe MR, Ono H, Cetas JS, Pike M, Alkayed NJ. Soluble epoxide hydrolase in hydrocephalus, cerebral edema, and vascular inflammation after subarachnoid hemorrhage. Stroke. 2015;46:1916–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Siler DA, Gonzalez JA, Wang RK, Cetas JS, Alkayed NJ. Intracisternal administration of tissue plasminogen activator improves cerebrospinal fluid flow and cortical perfusion after subarachnoid hemorrhage in mice. Transl Stroke Res. 2014;5:227–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Smeeton NC, Heuschmann PU, Rudd AG, McEvoy AW, Kitchen ND, Sarker SJ, Wolfe CD. Incidence of hemorrhagic stroke in black Caribbean, black African, and white populations: the South London stroke register, 1995-2004. Stroke. 2007 Dec;38(12):3133-8.

  73. Smithason S, Moore SK, Provencio JJ. Low-dose lipopolysaccharide injection prior to subarachnoid hemorrhage modulates delayed deterioration associated with vasospasm in subarachnoid hemorrhage. Acta Neurochir Suppl. 2013;115:253–8.

    PubMed  PubMed Central  Google Scholar 

  74. Suzuki H, Sozen T, Hasegawa Y, Chen W, Zhang JH. Caspase-1 inhibitor prevents neurogenic pulmonary edema after subarachnoid hemorrhage in mice. Stroke. 2009;40:3872–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tait MJ, Saadoun S, Bell BA, Verkman AS, Papadopoulos MC. Increased brain edema in aqp4-null mice in an experimental model of subarachnoid hemorrhage. Neuroscience. 2010;167:60–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Truelsen T, Bonita R, Gronbaek M, Sehnohr P, Boysen G (1998) Stroke incidence and case fatality in two populations: the Auckland Stroke Study and the Copenhagen City Heart Study. Neuroepidemiology 17:132–138

  77. Tso MK, Lass E, Ai J, Loch Macdonald R. Valproic acid treatment after experimental subarachnoid hemorrhage. Acta Neurochir Suppl. 2015;120:81–5.

    PubMed  Google Scholar 

  78. Vecchione C, Frati A, Di Pardo A, Cifelli G, Carnevale D, Gentile MT, Carangi R, Landolfi A, Carullo P, Bettarini U, Antenucci G, Mascio G, Busceti CL, Notte A, Maffei A, Cantore GP, Lembo G. Tumor necrosis factor-alpha mediates hemolysis-induced vasoconstriction and the cerebral vasospasm evoked by subarachnoid hemorrhage. Hypertension. 2009;54:150–6.

    Article  CAS  PubMed  Google Scholar 

  79. Vellimana AK, Milner E, Azad TD, Harries MD, Zhou ML, Gidday JM, Han BH, Zipfel GJ. Endothelial nitric oxide synthase mediates endogenous protection against subarachnoid hemorrhage-induced cerebral vasospasm. Stroke. 2011;42:776–82.

    Article  CAS  PubMed  Google Scholar 

  80. Vergouwen MD, Knaup VL, Roelofs JJ, de Boer OJ, Meijers JC. Effect of recombinant ADAMTS-13 on microthrombosis and brain injury after experimental subarachnoid hemorrhage. J Thromb Haemost. 2014;12:943–7.

    Article  CAS  PubMed  Google Scholar 

  81. Wakade C, King MD, Laird MD, Alleyne Jr CH, Dhandapani KM. Curcumin attenuates vascular inflammation and cerebral vasospasm after subarachnoid hemorrhage in mice. Antioxid Redox Signal. 2009;11:35–45.

    Article  CAS  PubMed  Google Scholar 

  82. Wang H, James ML, Venkatraman TN, Wilson LJ, Lyuboslavsky P, Myers SJ, Lascola CD, Laskowitz DT. pH-sensitive NMDA inhibitors improve outcome in a murine model of SAH. Neurocrit Care. 2014;20:119–31.

    Article  CAS  PubMed  Google Scholar 

  83. Xu T, Zhang WG, Sun J, Zhang Y, Lu JF, Han HB, Zhou CM, Yan JH. Protective effects of thrombomodulin on microvascular permeability after subarachnoid hemorrhage in mouse model. Neuroscience. 2015;299:18–27.

    Article  CAS  PubMed  Google Scholar 

  84. Yagi K, Lidington D, Wan H, Fares JC, Meissner A, Sumiyoshi M, Ai J, Foltz WD, Nedospasov SA, Offermanns S, Nagahiro S, Macdonald RL, Bolz SS. Therapeutically targeting tumor necrosis factor-alpha/sphingosine-1-phosphate signaling corrects myogenic reactivity in subarachnoid hemorrhage. Stroke. 2015;46:2260–70.

    Article  CAS  PubMed  Google Scholar 

  85. Yang L, Wang F, Han H, Yang L, Zhang G, Fan Z. Functionalized graphene oxide as a drug carrier for loading pirfenidone in treatment of subarachnoid hemorrhage. Colloids Surf B Biointerfaces. 2015;129:21–9.

    Article  CAS  PubMed  Google Scholar 

  86. Yeung PK, Shen J, Chung SS, Chung SK. Targeted over-expression of endothelin-1 in astrocytes leads to more severe brain damage and vasospasm after subarachnoid hemorrhage. BMC Neurosci. 2013;14:131.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Altay O, Suzuki H, Hasegawa Y, Caner B, Krafft PR, Fujii M, Tang J, Zhang JH. Isoflurane attenuates blood-brain barrier disruption in ipsilateral hemisphere after subarachnoid hemorrhage in mice. Stroke. 2012;43:2513–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Liu Z, Liu L, Zhang Z, Chen Z, Zhao B. Cholesterol-reducing agents for aneurysmal subarachnoid haemorrhage. Cochrane Database Syst Rev. 2013;4:CD008184.

    Google Scholar 

  89. Muroi C, Fujioka M, Okuchi K, Fandino J, Keller E, Sakamoto Y, Mishima K, Iwasaki K, Fujiwara M. Filament perforation model for mouse subarachnoid hemorrhage: surgical-technical considerations. Br J Neurosurg. 2014;28:722–32.

    Article  PubMed  Google Scholar 

  90. Vergouwen MD. Participants in the International Multi-Disciplinary Consensus Conference on the Critical Care Management of Subarachnoid Hemorrhage. Vasospasm versus delayed cerebral ischemia as an outcome event in clinical trials and observational studies. Neurocrit Care (2011), 15:308–11.

  91. Vibo R, Korv J, Roose M. The Third Stroke Registry in Tartu, Estonia, from 2001 to 2003. Acta Neurol Scand. 2007;116:31–6.

  92. Hallstrom B, Jonsson AC, Nerbrand C, Norrving B, Lindgren A. Stroke incidence and survival in the beginning of the 21st century in southern Sweden: comparisons with the late 20th century and projections into the future. Stroke. 2008;39:10–5.

  93. Lavados PM, Sacks C, Prina L, Escobar A, Tossi C, Araya F, et al. Incidence, case-fatality rate, and prognosis of ischaemic stroke subtypes in a predominantly Hispanic-Mestizo population in Iquique, Chile (PISCIS project): a community-based incidence study. Lancet Neurol. 2007;6:140–8.

  94. Islam MS, Anderson CS, Hankey GJ, Hardie K, Carter K, Broadhurst R, et al. Trends in incidence and outcome of stroke in Perth, Western Australia during 1989 to 2001: the Perth Community Stroke Study. Stroke. 2008;39:776–82.

  95. Smadja D, Cabre P, May F, Fanon JL, Rene-Corail P, Riocreux C, et al. ERMANCIA: Epidemiology of Stroke in Martinique, French West Indies: Part I: methodology, incidence, and 30-day case fatality rate. Stroke. 2001;32:2741–7.

  96. Syme PD, Byrne AW, Chen R, Devenny R, Forbes JF. Community-based stroke incidence in a Scottish population: the Scottish Borders Stroke Study. Stroke. 2005;36:1837–43.

  97. D’Alessandro G, Bottacchi E, Di Giovanni M, Martinazzo C, Sironi L, Lia C, et al. Temporal trends of stroke in Valle d’Aosta, Italy. Incidence and 30-day fatality rates. Neurol Sci. 2000;21:13–8.

  98. Di Carlo A, Inzitari D, Galati F, Baldereschi M, Giunta V, Grillo G, et al. A prospective community-based study of stroke in Southern Italy: the Vibo Valentia incidence of stroke study (VISS). Methodology, incidence and case fatality at 28 days, 3 and 12 months. Cerebrovasc Dis. 2003;16:410–7.

  99. Thrift AG, Dewey HM, Macdonell RA, McNeil JJ, Donnan GA. Incidence of the major stroke subtypes: initial findings from the North East Melbourne stroke incidence study (NEMESIS). Stroke. 2001;32:1732–8.

  100. Thrift AG, Dewey HM, Sturm JW, Srikanth VK, Gilligan AK, Gall SL, et al. Incidence of stroke subtypes in the North East Melbourne Stroke Incidence Study (NEMESIS): differences between men and women. Neuroepidemiology. 2009;32:11–8.

  101. Zhang LF, Yang J, Hong Z, Yuan GG, Zhou BF, Zhao LC, et al. Proportion of different subtypes of stroke in China. Stroke. 2003;34:2091–6.

  102. Keris V, Buks M, Macane I, Kalnina Z, Vetra A, Jurjane N, et al. Aneurysmal subarachnoid hemorrhage in Baltic population: experience from Latvia (1996–2000). Eur J Neurol. 2002;9:601–7.

  103. Stegmayr B, Eriksson M, Asplund K. Declining mortality from subarachnoid hemorrhage: changes in incidence and case fatality from 1985 through 2000. Stroke. 2004;35:2059–63.

  104. ACROSS. Epidemiology of aneurysmal subarachnoid hemorrhage in Australia and New Zealand: incidence and case fatality from the Australasian Cooperative Research on Subarachnoid Hemorrhage Study (ACROSS). Stroke. 2000;31:1843–50.

  105. Carolei A, Marini C, Di Napoli M, Di Gianfilippo G, Santalucia P, Baldassarre M, et al. High stroke incidence in the prospective community-based L’Aquila registry (1994–1998). First year’s results. Stroke. 1997;28:2500–6.

  106. Kolominsky-Rabas PL, Sarti C, Heuschmann PU, Graf C, Siemonsen S, Neundoerfer B, et al. A prospective community-based study of stroke in Germany—the Erlangen Stroke Project (ESPro): incidence and case fatality at 1, 3, and 12 months. Stroke. 1998;29:2501–6.

  107. Ellekjaer H, Holmen J, Indredavik B, Terent A. Epidemiology of stroke in Innherred, Norway, 1994 to 1996. Incidence and 30-day case-fatality rate. Stroke. 1997;28:2180–4.

  108. Labovitz DL, Halim AX, Brent B, Boden-Albala B, Hauser WA, Sacco RL. Subarachnoid hemorrhage incidence among Whites, Blacks and Caribbean Hispanics: the Northern Manhattan Study. Neuroepidemiology. 2006;26:147–50.

  109. Vemmos KN, Bots ML, Tsibouris PK, Zis VP, Takis CE, Grobbee DE, et al. Prognosis of stroke in the south of Greece: 1 year mortality, functional outcome and its determinants: the Arcadia Stroke Registry. J Neurol Neurosurg Psychiatry. 2000;69:595–600.

  110. Pobereskin LH. Incidence and outcome of subarachnoid haemorrhage: a retrospective population based study. J Neurol Neurosurg Psychiatry. 2001;70:340–3.

  111. Lauria G, Gentile M, Fassetta G, Casetta I, Agnoli F, Andreotta G, et al. Incidence and prognosis of stroke in the Belluno province, Italy First-year results of a community-based study. Stroke. 1995;26:1787–93.

  112. Stegmayr B, Eriksson M, Asplund K. Declining mortality from subarachnoid hemorrhage: changes in incidence and case fatality from 1985 through 2000. Stroke. 2004;35:2059–63.

  113. Khan FA, Engstrom G, Jerntorp I, Pessah-Rasmussen H, Janzon L. Seasonal patterns of incidence and case fatality of stroke in Malmo, Sweden: the STROMA study. Neuroepidemiology. 2005;24:26–31.

  114. Broderick JP, Brott TG, Duldner JE, Tomsick T, Leach A. Initial and recurrent bleeding are the major causes of death following subarachnoid hemorrhage. Stroke. 1994;25:1342–7.

  115. Longstreth Jr WT, Nelson LM, Koepsell TD, van Belle G. Clinical course of spontaneous subarachnoid hemorrhage: a population-based study in King County, Washington. Neurology. 1993;43:712–8.

  116. Gross CR, Kase CS, Mohr JP, Cunningham SC, Baker WE. Stroke in south Alabama: incidence and diagnostic features—a population based study. Stroke. 1984;15:249–55.

  117. Marbacher S. Animal models for the study of subarachnoid hemorrhage: are we moving towards increased standardization? Transl Stroke Res. 2016;7:1–2.

    Article  PubMed  Google Scholar 

  118. Abla AA, Wilson DA, Williamson RW, Nakaji P, McDougall CG, Zabramski JM, Albuquerque FC, Spetzler RF. The relationship between ruptured aneurysm location, subarachnoid hemorrhage clot thickness, and incidence of radiographic or symptomatic vasospasm in patients enrolled in a prospective randomized controlled trial. J Neurosurg. 2014;120:391–7.

    Article  PubMed  Google Scholar 

  119. Shiue I, Arima H, Hankey GJ, Anderson CS. Location and size of ruptured intracranial aneurysm and serious clinical outcomes early after subarachnoid hemorrhage: a population-based study in Australasia. Cerebrovasc Dis. 2011;31:573–9.

    Article  PubMed  Google Scholar 

  120. Alkan T, Tureyen K, Ulutas M, Kahveci N, Goren B, Korfali E, Ozluk K. Acute and delayed vasoconstriction after subarachnoid hemorrhage: local cerebral blood flow, histopathology, and morphology in the rat basilar artery. Arch Physiol Biochem. 2001;109:145–53.

    Article  CAS  PubMed  Google Scholar 

  121. Bederson JB, Germano IM, Guarino L. Cortical blood flow and cerebral perfusion pressure in a new noncraniotomy model of subarachnoid hemorrhage in the rat. Stroke. 1995;26:1086–91.

    Article  CAS  PubMed  Google Scholar 

  122. Bederson JB, Levy AL, Ding WH, Kahn R, DiPerna CA, Jenkins 3rd AL, Vallabhajosyula P. Acute vasoconstriction after subarachnoid hemorrhage. Neurosurg. 1998;42:352–60.

    Article  CAS  Google Scholar 

  123. Prunell GF, Mathiesen T, Diemer NH, Svendgaard NA. Experimental subarachnoid hemorrhage: subarachnoid blood volume, mortality rate, neuronal death, cerebral blood flow, and perfusion pressure in three different rat models. Neurosurg. 2003;52:165–75.

    Google Scholar 

  124. Westermaier T, Jauss A, Eriskat J, Kunze E, Roosen K. Time-course of cerebral perfusion and tissue oxygenation in the first 6 h after experimental subarachnoid hemorrhage in rats. J Cereb Blood Flow Metab. 2009;29:771–9.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel A. Kamp.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Funding

TR’s position is funded through the MD-PhD Program of the Swiss National Science Foundation (SNSF), Bern, Switzerland (323530_158128).

Conflict of Interest

Dr. Maxine Dibué-Adjei is an employee of the LivaNova PLC. All other authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in the speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements) or non-financial interest (such as personal or professional relationships, affiliations, knowledge, or beliefs) in the subject matter or materials discussed in this manuscript.

Electronic supplementary material

Supplementary Figure 1

Funnel plot of mouse and human mortality after SAH. The supplementary Figure 1 shows Funnel plots of reported mouse (a) and human mortality (b) after SAH. (JPEG 35 kb)

Supplementary Figure 2

Decrease of human and mouse SAH-related mortality (%) over time. (JPEG 42 kb)

Supplementary Figure 3

Age, weight and mortality. The Supplementary Figure 3 shows the age (a) and weight (b) ranges of the included SAH mice and the related mortality rates. (JPEG 46 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamp, M.A., Lieshout, J.H.v., Dibué-Adjei, M. et al. A Systematic and Meta-Analysis of Mortality in Experimental Mouse Models Analyzing Delayed Cerebral Ischemia After Subarachnoid Hemorrhage. Transl. Stroke Res. 8, 206–219 (2017). https://doi.org/10.1007/s12975-016-0513-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-016-0513-3

Keywords

Navigation