Skip to main content

Advertisement

Log in

Biological Networks in Ischemic Tolerance — Rethinking the Approach to Clinical Conditioning

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

The adaptive response (conditioning) to environmental stressors evokes evolutionarily conserved programs in uni- and multicellular organisms that result in increased fitness and resistance to stressor induced injury. Although the concept of conditioning has been around for a while, its translation into clinical therapies targeting neurovascular diseases has only recently begun. The slow pace of clinical adoption might be partially explained by our poor understanding of underpinning mechanisms and of the complex responses of the organism to the stressor. At the 2nd Translational Preconditioning Meeting, participants engaged in an intense discussion addressing whether the time has come to more aggressively implement clinical conditioning protocols in the treatment of cerebrovascular diseases or whether it would be better to wait until preclinical data would help to minimize clinical empiricism. This review addresses the complex involvement of biological networks in establishing ischemic tolerance at the organism level using two clinically promising conditioning modalities, namely remote ischemic preconditioning, and per- or post-conditioning, as examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Yenari M, Kitagawa K, Lyden P, Perez-Pinzon M. Metabolic downregulation: A key to successful neuroprotection? Stroke. 2008;39:2910–7.

    PubMed  CAS  Google Scholar 

  2. Dirnagl U, Becker K, Meisel A. Preconditioning and tolerance against cerebral ischaemia: From experimental strategies to clinical use. Lancet Neurol. 2009;8:398–412.

    PubMed  CAS  Google Scholar 

  3. O'Rourke B. Evidence for mitochondrial K+ channels and their role in cardioprotection. Circ Res. 2004;94:420–32.

    PubMed  Google Scholar 

  4. Gidday JM. Cerebral preconditioning and ischaemic tolerance. Nat Rev Neurosci. 2006;7:437–48.

    PubMed  CAS  Google Scholar 

  5. Zhao H. The protective effect of ischemic postconditioning against ischemic injury: From the heart to the brain. J Neuroimmune Pharmacol. 2007;2:313–8.

    PubMed  Google Scholar 

  6. Ovize M, Baxter GF, Di Lisa F, Ferdinandy P, Garcia-Dorado D, Hausenloy DJ, et al. Postconditioning and protection from reperfusion injury: where do we stand? Position paper from the Working Group of Cellular Biology of the Heart of the European Society of Cardiology. Cardiovasc Res. 2010;87:406–23.

    PubMed  CAS  Google Scholar 

  7. Perez-Pinzon MA, Stetler RA, Fiskum G. Novel mitochondrial targets for neuroprotection. J Cereb Blood Flow Metab. 2012;32:1362–76.

    PubMed  CAS  Google Scholar 

  8. Calabrese EJ. Converging concepts: Adaptive response, preconditioning, and the Yerkes–Dodson law are manifestations of hormesis. Ageing Res Rev. 2008;7:8–20.

    PubMed  CAS  Google Scholar 

  9. Mattson MP. Hormesis defined. Ageing Res Rev. 2008;7:1–7.

    PubMed  CAS  Google Scholar 

  10. Przyklenk K, Bauer B, Ovize M, Kloner RA, Whittaker P. Regional ischemic ‘preconditioning’ protects remote virgin myocardium from subsequent sustained coronary occlusion. Circulation. 1993;87:893–9.

    PubMed  CAS  Google Scholar 

  11. Gho BC, Schoemaker RG, van den Doel MA, Duncker DJ, Verdouw PD. Myocardial protection by brief ischemia in noncardiac tissue. Circulation. 1996;94:2193–200.

    PubMed  CAS  Google Scholar 

  12. Bolte CS, Liao S, Gross GJ, Schultz Jel J. Remote preconditioning-endocrine factors in organ protection against ischemic injury. Endocr Metab Immune Disord Drug Targets. 2007;7:167–75.

    PubMed  CAS  Google Scholar 

  13. Pang CY, Forrest CR, Mounsey R. Pharmacologic intervention in ischemia-induced reperfusion injury in the skeletal muscle. Microsurgery. 1993;14:176–82.

    PubMed  CAS  Google Scholar 

  14. Kadambi A, Skalak TC. Role of leukocytes and tissue-derived oxidants in short-term skeletal muscle ischemia–reperfusion injury. Am J Physiol Heart Circ Physiol. 2000;278:H435–43.

    PubMed  CAS  Google Scholar 

  15. Kharbanda RK, Peters M, Walton B, Kattenhorn M, Mullen M, Klein N, et al. Ischemic preconditioning prevents endothelial injury and systemic neutrophil activation during ischemia–reperfusion in humans in vivo. Circulation. 2001;103:1624–30.

    PubMed  CAS  Google Scholar 

  16. Dharap A, Vemuganti R. Ischemic pre-conditioning alters cerebral microRNAs that are upstream to neuroprotective signaling pathways. J Neurochem. 2010;113:1685–91.

    PubMed  CAS  Google Scholar 

  17. Lee ST, Chu K, Jung KH, Yoon HJ, Jeon D, Kang KM, et al. MicroRNAs induced during ischemic preconditioning. Stroke. 2010;41:1646–51.

    PubMed  Google Scholar 

  18. Lusardi TA, Farr CD, Faulkner CL, Pignataro G, Yang T, Lan J, et al. Ischemic preconditioning regulates expression of microRNAs and a predicted target, MeCP2, in mouse cortex. J Cereb Blood Flow Metab. 2010;30:744–56.

    PubMed  CAS  Google Scholar 

  19. Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet. 2010;11:597–610.

    PubMed  CAS  Google Scholar 

  20. Pritchard CC, Cheng HH, Tewari M. MicroRNA profiling: Approaches and considerations. Nat Rev Genet. 2012;13:358–69.

    PubMed  CAS  Google Scholar 

  21. Huda R, Chung DH, Mathru M. Ischemic preconditioning at a distance: Altered gene expression in mouse heart and other organs following brief occlusion of the mesenteric artery. Heart Lung Circ. 2005;14:36–43.

    PubMed  CAS  Google Scholar 

  22. Dickson EW, Lorbar M, Porcaro WA, Fenton RA, Reinhardt CP, Gysembergh A, et al. Rabbit heart can be “preconditioned” via transfer of coronary effluent. Am J Physiol. 1999;277:H2451–7.

    PubMed  CAS  Google Scholar 

  23. Hu S, Dong H, Zhang H, Wang S, Hou L, Chen S, et al. Noninvasive limb remote ischemic preconditioning contributes neuroprotective effects via activation of adenosine A1 receptor and redox status after transient focal cerebral ischemia in rats. Brain Res. 2012;1459:81–90.

    PubMed  CAS  Google Scholar 

  24. Zhao HG, Sun XC, Xian XH, Li WB, Zhang M, Li QJ. The role of nitric oxide in the neuroprotection of limb ischemic preconditioning in rats. Neurochem Res. 2007;32:1919–26.

    PubMed  CAS  Google Scholar 

  25. Rehni AK, Singh N, Jaggi AS. Possible involvement of insulin, endogenous opioids and calcitonin gene-related peptide in remote ischaemic preconditioning of the brain. Yakugaku Zasshi. 2007;127:1013–20.

    PubMed  Google Scholar 

  26. Vlasov TD, Korzhevskii DE, Polyakova EA. Ischemic preconditioning of the rat brain as a method of endothelial protection from ischemic/repercussion injury. Neurosci Behav Physiol. 2005;35:567–72.

    PubMed  CAS  Google Scholar 

  27. Dong H-L, Zhang Y, Su B-X, Zhu Z-H, Gu Q-H, Sang H-F, et al. Limb remote ischemic preconditioning protects the spinal cord from ischemia–reperfusion injury: A newly identified nonneuronal but reactive oxygen species-dependent pathway. Anesthesiology. 2010;112:881–91.

    PubMed  Google Scholar 

  28. Zhou Y, Fathali N, Lekic T, Ostrowski RP, Chen C, Martin RD, et al. Remote limb ischemic postconditioning protects against neonatal hypoxic–ischemic brain injury in rat pups by the opioid receptor/Akt pathway. Stroke. 2011;42:439–44.

    PubMed  CAS  Google Scholar 

  29. Iadecola C, Kahles T, Gallo EF, Anrather J. Neurovascular protection by ischaemic tolerance: Role of nitric oxide. J Physiol (Lond). 2011;589:4137–45.

    CAS  Google Scholar 

  30. Muller B, Kleschyov AL, Alencar JL, Vanin A, Stoclet JC. Nitric oxide transport and storage in the cardiovascular system. Ann N Y Acad Sci. 2002;962:131–9.

    PubMed  CAS  Google Scholar 

  31. Steensrud T, Li J, Dai X, Manlhiot C, Kharbanda RK, Tropak M, et al. Pretreatment with the nitric oxide donor SNAP or nerve transection blocks humoral preconditioning by remote limb ischemia or intra-arterial adenosine. Am J Physiol Heart Circ Physiol. 2010;299:H1598–603.

    PubMed  CAS  Google Scholar 

  32. Liem DA, Verdouw PD, Ploeg H, Kazim S, Duncker DJ. Sites of action of adenosine in interorgan preconditioning of the heart. Am J Physiol Heart Circ Physiol. 2002;283:H29–37.

    PubMed  CAS  Google Scholar 

  33. Costa F, Sulur P, Angel M, Cavalcante J, Haile V, Christman B, et al. Intravascular source of adenosine during forearm ischemia in humans: Implications for reactive hyperemia. Hypertension. 1999;33:1453–7.

    PubMed  CAS  Google Scholar 

  34. Moser GH, Schrader J, Deussen A. Turnover of adenosine in plasma of human and dog blood. Am J Physiol. 1989;256:C799–806.

    PubMed  CAS  Google Scholar 

  35. Schoemaker RG, van Heijningen CL. Bradykinin mediates cardiac preconditioning at a distance. Am J Physiol Heart Circ Physiol. 2000;278:H1571–6.

    PubMed  CAS  Google Scholar 

  36. Jones WK, Fan G-C, Liao S, Zhang J-M, Wang Y, Weintraub NL, et al. Peripheral nociception associated with surgical incision elicits remote nonischemic cardioprotection via neurogenic activation of protein kinase C signaling. Circulation. 2009;120:S1–9.

    PubMed  CAS  Google Scholar 

  37. Dickson EW, Blehar DJ, Carraway RE, Heard SO, Steinberg G, Przyklenk K. Naloxone blocks transferred preconditioning in isolated rabbit hearts. J Mol Cell Cardiol. 2001;33:1751–6.

    PubMed  CAS  Google Scholar 

  38. Zhang SZ, Wang NF, Xu J, Gao Q, Lin GH, Bruce IC, et al. Kappa-opioid receptors mediate cardioprotection by remote preconditioning. Anesthesiology. 2006;105:550–6.

    PubMed  CAS  Google Scholar 

  39. Lagneux C, Lamontagne D. Involvement of cannabinoids in the cardioprotection induced by lipopolysaccharide. Br J Pharmacol. 2001;132:793–6.

    PubMed  CAS  Google Scholar 

  40. Bouchard J-F, Lépicier P, Lamontagne D. Contribution of endocannabinoids in the endothelial protection afforded by ischemic preconditioning in the isolated rat heart. Life Sci. 2003;72:1859–70.

    PubMed  CAS  Google Scholar 

  41. Wagner JA, Abesser M, Harvey-White J, Ertl G. 2-Arachidonylglycerol acting on CB1 cannabinoid receptors mediates delayed cardioprotection induced by nitric oxide in rat isolated hearts. J Cardiovasc Pharmacol. 2006;47:650–5.

    PubMed  CAS  Google Scholar 

  42. Ma L, Zhu Z, Zhao Y, Hou L, Wang Q, Xiong L, et al. Cannabinoid receptor type 2 activation yields delayed tolerance to focal cerebral ischemia. Curr Neurovasc Res. 2011;8:145–52.

    PubMed  CAS  Google Scholar 

  43. Hajrasouliha AR, Tavakoli S, Ghasemi M, Jabehdar-Maralani P, Sadeghipour H, Ebrahimi F, et al. Endogenous cannabinoids contribute to remote ischemic preconditioning via cannabinoid CB2 receptors in the rat heart. Eur J Pharmacol. 2008;579:246–52.

    PubMed  CAS  Google Scholar 

  44. Su B, Dong H, Ma R, Zhang X, Ding Q, Xiong L. Cannabinoid 1 receptor mediation of spinal cord ischemic tolerance induced by limb remote ischemia preconditioning in rats. J Thorac Cardiovasc Surg. 2009;138:1409–16.

    PubMed  CAS  Google Scholar 

  45. Doeuvre L, Plawinski L, Toti F, Angles-Cano E. Cell-derived microparticles: A new challenge in neuroscience. J Neurochem. 2009;110:457–68.

    PubMed  CAS  Google Scholar 

  46. Kauffman FC, Albuquerque EX. Effect of ischemia and denervation on metabolism of fast and slow mammalian skeletal muscle. Exp Neurol. 1970;28:46–63.

    PubMed  CAS  Google Scholar 

  47. Strecker T, Messlinger K, Weyand M, Reeh PW. Role of different proton-sensitive channels in releasing calcitonin gene-related peptide from isolated hearts of mutant mice. Cardiovasc Res. 2005;65:405–10.

    PubMed  CAS  Google Scholar 

  48. Ross RA. Anandamide and vanilloid TRPV1 receptors. Br J Pharmacol. 2003;140:790–801.

    PubMed  CAS  Google Scholar 

  49. Huang SM, Bisogno T, Trevisani M, Al-Hayani A, De Petrocellis L, Fezza F, et al. An endogenous capsaicin-like substance with high potency at recombinant and native vanilloid VR1 receptors. Proc Natl Acad Sci U S A. 2002;99:8400–5.

    PubMed  CAS  Google Scholar 

  50. Ren C, Yan Z, Wei D, Gao X, Chen X, Zhao H. Limb remote ischemic postconditioning protects against focal ischemia in rats. Brain Res. 2009;1288:88–94.

    PubMed  CAS  Google Scholar 

  51. Malhotra S, Naggar I, Stewart M, Rosenbaum DM. Neurogenic pathway mediated remote preconditioning protects the brain from transient focal ischemic injury. Brain Res. 2011;1386:184–90.

    PubMed  CAS  Google Scholar 

  52. Wei D, Ren C, Chen X, Zhao H. The chronic protective effects of limb remote preconditioning and the underlying mechanisms involved in inflammatory factors in rat stroke. PLoS One. 2012;7:e30892.

    PubMed  CAS  Google Scholar 

  53. Calvillo L, Vanoli E, Andreoli E, Besana A, Omodeo E, Gnecchi M, et al. Vagal stimulation, through its nicotinic action, limits infarct size and the inflammatory response to myocardial ischemia and reperfusion. J Cardiovasc Pharmacol. 2011;58:500–7.

    PubMed  CAS  Google Scholar 

  54. Katare RG, Ando M, Kakinuma Y, Arikawa M, Handa T, Yamasaki F, et al. Vagal nerve stimulation prevents reperfusion injury through inhibition of opening of mitochondrial permeability transition pore independent of the bradycardiac effect. J Thorac Cardiovasc Surg. 2009;137:223–31.

    PubMed  CAS  Google Scholar 

  55. Mioni C, Bazzani C, Giuliani D, Altavilla D, Leone S, Ferrari A, et al. Activation of an efferent cholinergic pathway produces strong protection against myocardial ischemia/reperfusion injury in rats. Crit Care Med. 2005;33:2621–8.

    PubMed  CAS  Google Scholar 

  56. Donato M, Buchholz B, Rodriguez M, Perez V, Inserte J, Garcia-Dorado D, et al. Role of the parasympathetic nervous system in cardioprotection by remote hindlimb ischemic preconditioning. Exp Physiol. 2012

  57. Basalay M, Barsukevich V, Mastitskaya S, Mrochek A, Pernow J, Sjoquist PO, et al. Remote ischaemic pre- and delayed postconditioning — similar degree of cardioprotection but distinct mechanisms. Exp Physiol. 2012;97:908–17.

    PubMed  CAS  Google Scholar 

  58. Mastitskaya S, Marina N, Gourine A, Gilbey MP, Spyer KM, Teschemacher AG, et al. Cardioprotection evoked by remote ischaemic preconditioning is critically dependent on the activity of vagal pre-ganglionic neurones. Cardiovasc Res. 2012;95:487–94.

    PubMed  CAS  Google Scholar 

  59. Brzozowski T, Konturek PC, Pajdo R, Kwiecien S, Sliwowski Z, Drozdowicz D, et al. Importance of brain–gut axis in the gastroprotection induced by gastric and remote preconditioning. J Physiol Pharmacol. 2004;55:165–77.

    PubMed  CAS  Google Scholar 

  60. Addison PD, Neligan PC, Ashrafpour H, Khan A, Zhong A, Moses M, et al. Noninvasive remote ischemic preconditioning for global protection of skeletal muscle against infarction. Am J Physiol Heart Circ Physiol. 2003;285:H1435–43.

    PubMed  CAS  Google Scholar 

  61. Gourine A, Mastitskaya S, Gilbey MP, Ackland GL, gourine AV. Remote preconditioning reflex. European Society of Cardiology Congress Reports. 2010;1–14.

  62. Redington KL, Disenhouse T, Strantzas SC, Gladstone R, Wei C, Tropak MB, et al. Remote cardioprotection by direct peripheral nerve stimulation and topical capsaicin is mediated by circulating humoral factors. Basic Res Cardiol. 2012;107:241.

    PubMed  Google Scholar 

  63. Shimizu M, Tropak M, Diaz RJ, Suto F, Surendra H, Kuzmin E, et al. Transient limb ischaemia remotely preconditions through a humoral mechanism acting directly on the myocardium: Evidence suggesting cross-species protection. Clin Sci. 2009;117:191–200.

    PubMed  CAS  Google Scholar 

  64. Iadecola C, Anrather J. The immunology of stroke: From mechanisms to translation. Nat Med. 2011;17:796–808.

    PubMed  CAS  Google Scholar 

  65. Newton K, Dixit VM. Signaling in innate immunity and inflammation. Cold Spring Harbor Perspectives in Biology. 2012;4:

  66. Leung PY, Stevens SL, Packard AE, Lessov NS, Yang T, Conrad VK, et al. Toll-like receptor 7 preconditioning induces robust neuroprotection against stroke by a novel type I interferon-mediated mechanism. Stroke. 2012;43:1383–9.

    PubMed  CAS  Google Scholar 

  67. Pradillo JM, Fernandez-Lopez D, Garcia-Yebenes I, Sobrado M, Hurtado O, Moro MA, et al. Toll-like receptor 4 is involved in neuroprotection afforded by ischemic preconditioning. J Neurochem. 2009;109:287–94.

    PubMed  CAS  Google Scholar 

  68. Cho S, Park EM, Zhou P, Frys K, Ross ME, Iadecola C. Obligatory role of inducible nitric oxide synthase in ischemic preconditioning. J Cereb Blood Flow Metab. 2005;25:493–501.

    PubMed  CAS  Google Scholar 

  69. Vartanian K, Stenzel-Poore M. Toll-like receptor tolerance as a mechanism for neuroprotection. Transl Stroke Res. 2010;1:252–60.

    PubMed  CAS  Google Scholar 

  70. Konstantinov IE, Arab S, Kharbanda RK, Li J, Cheung MM, Cherepanov V, et al. The remote ischemic preconditioning stimulus modifies inflammatory gene expression in humans. Physiol Genomics. 2004;19:143–50.

    PubMed  CAS  Google Scholar 

  71. Salanga CL, O'Hayre M, Handel T. Modulation of chemokine receptor activity through dimerization and crosstalk. Cell Mol Life Sci. 2009;66:1370–86.

    PubMed  CAS  Google Scholar 

  72. Weber C. Far from the heart: Receptor cross-talk in remote conditioning. Nat Med. 2010;16:760–2.

    PubMed  CAS  Google Scholar 

  73. Hasko G, Pacher P, Deitch EA, Vizi ES. Shaping of monocyte and macrophage function by adenosine receptors. Pharmacol Ther. 2007;113:264–75.

    PubMed  CAS  Google Scholar 

  74. Yuan M, Kiertscher SM, Cheng Q, Zoumalan R, Tashkin DP, Roth MD. Delta 9-tetrahydrocannabinol regulates Th1/Th2 cytokine balance in activated human T cells. J Neuroimmunol. 2002;133:124–31.

    PubMed  CAS  Google Scholar 

  75. Klein TW, Cabral GA. Cannabinoid-induced immune suppression and modulation of antigen-presenting cells. J Neuroimmune Pharmacol. 2006;1:50–64.

    PubMed  Google Scholar 

  76. Nance DM, Sanders VM. Autonomic innervation and regulation of the immune system (1987–2007). Brain Behav Immun. 2007;21:736–45.

    PubMed  CAS  Google Scholar 

  77. Andersson U, Tracey KJ. Reflex principles of immunological homeostasis. Annu Rev Immunol. 2012;30:313–35.

    PubMed  CAS  Google Scholar 

  78. Ottani A, Giuliani D, Mioni C, Galantucci M, Minutoli L, Bitto A, et al. Vagus nerve mediates the protective effects of melanocortins against cerebral and systemic damage after ischemic stroke. J Cereb Blood Flow Metab. 2009;29:512–23.

    PubMed  CAS  Google Scholar 

  79. Ay I, Lu J, Ay H, Gregory Sorensen A. Vagus nerve stimulation reduces infarct size in rat focal cerebral ischemia. Neurosci Lett. 2009;459:147–51.

    PubMed  CAS  Google Scholar 

  80. Sun Z, Baker W, Hiraki T, Greenberg JH. The effect of right vagus nerve stimulation on focal cerebral ischemia: An experimental study in the rat. Brain Stim. 2012;5:1–10.

    CAS  Google Scholar 

  81. Hiraki T, Baker W, Greenberg JH. Effect of vagus nerve stimulation during transient focal cerebral ischemia on chronic outcome in rats. J Neurosci Res. 2012;90:887–94.

    PubMed  CAS  Google Scholar 

  82. Kuriyama N, Mizuno T, Niwa F, Watanabe Y, Nakagawa M. Autonomic nervous dysfunction during acute cerebral infarction. Neurol Res. 2010;32:821–7.

    PubMed  Google Scholar 

  83. Chen PL, Kuo TB, Yang CC. Parasympathetic activity correlates with early outcome in patients with large artery atherosclerotic stroke. J Neurol Sci. 2012;314:57–61.

    PubMed  Google Scholar 

  84. Swirski FK, Nahrendorf M, Etzrodt M, Wildgruber M, Cortez-Retamozo V, Panizzi P, et al. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science. 2009;325:612–6.

    PubMed  CAS  Google Scholar 

  85. Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature. 2000;405:458–62.

    PubMed  CAS  Google Scholar 

  86. Shi FD, Piao WH, Kuo YP, Campagnolo DI, Vollmer TL, Lukas RJ. Nicotinic attenuation of central nervous system inflammation and autoimmunity. J Immunol. 2009;182:1730–9.

    PubMed  CAS  Google Scholar 

  87. Na HS, Kim YI, Yoon YW, Han HC, Nahm SH, Hong SK. Ventricular premature beat-driven intermittent restoration of coronary blood flow reduces the incidence of reperfusion-induced ventricular fibrillation in a cat model of regional ischemia. Am Heart J. 1996;132:78–83.

    PubMed  CAS  Google Scholar 

  88. Zhao Z-Q, Corvera JS, Halkos ME, Kerendi F, Wang N-P, Guyton RA, et al. Inhibition of myocardial injury by ischemic postconditioning during reperfusion: Comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol. 2003;285:H579–88.

    PubMed  CAS  Google Scholar 

  89. Jiang X, Shi E, Nakajima Y, Sato S. Postconditioning, a series of brief interruptions of early reperfusion, prevents neurologic injury after spinal cord ischemia. Ann Surg. 2006;244:148–53.

    PubMed  Google Scholar 

  90. Gao X, Ren C, Zhao H. Protective effects of ischemic postconditioning compared with gradual reperfusion or preconditioning. J Neurosci Res. 2008;86:2505–11.

    PubMed  CAS  Google Scholar 

  91. Pignataro G, Meller R, Inoue K, Ordonez AN, Ashley MD, Xiong Z, et al. In vivo and in vitro characterization of a novel neuroprotective strategy for stroke: Ischemic postconditioning. J Cereb Blood Flow Metab. 2008;28:232–41.

    PubMed  CAS  Google Scholar 

  92. Burda J, Danielisova V, Nemethova M, Gottlieb M, Matiasova M, Domorakova I, et al. Delayed postconditionig initiates additive mechanism necessary for survival of selectively vulnerable neurons after transient ischemia in rat brain. Cell Mol Neurobiol. 2006;26:1141–51.

    PubMed  Google Scholar 

  93. Domorakova I, Mechirova E, Dankova M, Danielisova V, Burda J. Effect of antioxidant treatment in global ischemia and ischemic postconditioning in the rat hippocampus. Cell Mol Neurobiol. 2009;29:837–44.

    PubMed  CAS  Google Scholar 

  94. Zhou C, Tu J, Zhang Q, Lu D, Zhu Y, Zhang W, et al. Delayed ischemic postconditioning protects hippocampal CA1 neurons by preserving mitochondrial integrity via Akt/GSK3β signaling. Neurochem Int. 2011;59:749–58.

    PubMed  CAS  Google Scholar 

  95. Sun J, Tong L, Luan Q, Deng J, Li Y, Li Z, et al. Protective effect of delayed remote limb ischemic postconditioning: role of mitochondrial K(ATP) channels in a rat model of focal cerebral ischemic reperfusion injury. J Cereb Blood Flow Metab. 2012;32:851–9.

    PubMed  CAS  Google Scholar 

  96. Zhao H, Sapolsky RM, Steinberg GK. Interrupting reperfusion as a stroke therapy: Ischemic postconditioning reduces infarct size after focal ischemia in rats. J Cereb Blood Flow Metab. 2006;26:1114–21.

    PubMed  CAS  Google Scholar 

  97. Yao Q-L, Zhang M-F, Wang C-H, Hu F, Lan A-P, Guo R-X, et al. Protective effects of early hypoxic post-conditioning in cultured cortical neurons. Brain Inj. 2011;25:604–13.

    PubMed  Google Scholar 

  98. Yang XM, Philipp S, Downey JM, Cohen MV. Postconditioning’s protection is not dependent on circulating blood factors or cells but involves adenosine receptors and requires PI3-kinase and guanylyl cyclase activation. Basic Res Cardiol. 2005;100:57–63.

    PubMed  CAS  Google Scholar 

  99. Pateliya BB, Singh N, Jaggi AS. Possible role of opioids and KATP channels in neuroprotective effect of postconditioning in mice. Biol Pharm Bull. 2008;31:1755–60.

    PubMed  CAS  Google Scholar 

  100. Yang XM, Proctor JB, Cui L, Krieg T, Downey JM, Cohen MV. Multiple, brief coronary occlusions during early reperfusion protect rabbit hearts by targeting cell signaling pathways. J Am Coll Cardiol. 2004;44:1103–10.

    PubMed  Google Scholar 

  101. Wang Q, Chen Q, Ding Q, Yang Q, Peng Y, Lu Y, et al. Sevoflurane postconditioning attenuates spinal cord reperfusion injury through free radicals-mediated up-regulation of antioxidant enzymes in rabbits. J Surg Res. 2011;169:292–300.

    PubMed  CAS  Google Scholar 

  102. Rehni AK, Singh TG. Involvement of CCR-2 chemokine receptor activation in ischemic preconditioning and postconditioning of brain in mice. Cytokine. 2012;60:83–9.

    PubMed  CAS  Google Scholar 

  103. Huang H, Zhang L, Wang Y, Yao J, Weng H, Wu H, et al. Effect of ischemic post-conditioning on spinal cord ischemic-reperfusion injury in rabbits. Can J Anaesth. 2007;54:42–8.

    PubMed  Google Scholar 

  104. Jiang X, Ai C, Shi E, Nakajima Y, Ma H. Neuroprotection against spinal cord ischemia-reperfusion injury induced by different ischemic postconditioning methods: Roles of phosphatidylinositol 3-kinase-Akt and extracellular signal-regulated kinase. Anesthesiology. 2009;111:1197–205.

    PubMed  Google Scholar 

  105. Jiang X, Shi E, Li L, Nakajima Y, Sato S. Co-application of ischemic preconditioning and postconditioning provides additive neuroprotection against spinal cord ischemia in rabbits. Life Sci. 2008;82:608–14.

    PubMed  CAS  Google Scholar 

  106. Jones NM, Bergeron M. Hypoxia-induced ischemic tolerance in neonatal rat brain involves enhanced ERK1/2 signaling. J Neurochem. 2004;89:157–67.

    PubMed  CAS  Google Scholar 

  107. Kumral A, Tuzun F, Ozbal S, Ugur Ergur B, Yilmaz O, Duman N, et al. Lipopolysaccharide-preconditioning protects against endotoxin-induced white matter injury in the neonatal rat brain. Brain Res. 2012;1489:81–9.

    PubMed  CAS  Google Scholar 

  108. Dewar D, Yam P, McCulloch J. Drug development for stroke: Importance of protecting cerebral white matter. Eur J Pharmacol. 1999;375:41–50.

    PubMed  CAS  Google Scholar 

  109. Mergenthaler P, Dirnagl U, Meisel A. Pathophysiology of stroke: Lessons from animal models. Metab Brain Dis. 2004;19:151–67.

    PubMed  CAS  Google Scholar 

  110. Dirnagl U, Iadecola C, Moskowitz MA. Pathobiology of ischaemic stroke: An integrated view. Trends Neurosci. 1999;22:391–7.

    PubMed  CAS  Google Scholar 

  111. Ginsberg MD. Neuroprotection for ischemic stroke: Past, present and future. Neuropharmacology. 2008;55:363–89.

    PubMed  CAS  Google Scholar 

  112. O'Collins VE, Macleod MR, Donnan GA, Horky LL, van der Worp BH, Howells DW. 1,026 experimental treatments in acute stroke. Ann Neurol. 2006;59:467–77.

    PubMed  Google Scholar 

  113. Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, De Simone G, et al. Executive summary: heart disease and stroke statistics—2010 update: a report from the American Heart Association. Circulation. 2010;121:948–54.

    PubMed  Google Scholar 

  114. Auriel E, Bornstein NM. Neuroprotection in acute ischemic stroke—current status. J Cell Mol Med. 2010;14:2200–2.

    PubMed  CAS  Google Scholar 

  115. Donnan GA. The 2007 Feinberg lecture: A new road map for neuroprotection. Stroke. 2008;39:242.

    PubMed  Google Scholar 

  116. Feuerstein GZ, Chavez J. Translational medicine for stroke drug discovery: The pharmaceutical industry perspective. Stroke. 2009;40:S121–5.

    PubMed  CAS  Google Scholar 

  117. Fisher M, Feuerstein G, Howells DW, Hurn PD, Kent TA, Savitz SI, et al. Update of the stroke therapy academic industry roundtable preclinical recommendations. Stroke. 2009;40:2244–50.

    PubMed  Google Scholar 

  118. Hallenbeck JM, Frerichs KU. Stroke therapy. It may be time for an integrated approach. Arch Neurol. 1993;50:768–70.

    PubMed  CAS  Google Scholar 

  119. Hallenbeck J, Frerichs KU. Secondary ischemic neuronal damage may involve multiple factors acting as an Aagregate of minor causes. In: Robertson JT, Nowak Jr TS, editors. Frontiers in cerebrovascular disease: Mechanisms, diagnosis, and treatment. Armonk, NY: Futura Publishing Company, Inc.; 1998. p. 95–101.

    Google Scholar 

  120. Albers GW, Goldstein LB, Hess DC, Wechsler LR, Furie KL, Gorelick PB, et al. Stroke Treatment Academic Industry Roundtable (STAIR) recommendations for maximizing the use of intravenous thrombolytics and expanding treatment options with intra-arterial and neuroprotective therapies. Stroke. 2011;42:2645–50.

    PubMed  Google Scholar 

  121. Iadecola C, Anrather J. Stroke research at a crossroad: Asking the brain for directions. Nat Neurosci. 2011;14:1363–8.

    PubMed  CAS  Google Scholar 

  122. Dhodda VK, Sailor KA, Bowen KK, Vemuganti R. Putative endogenous mediators of preconditioning-induced ischemic tolerance in rat brain identified by genomic and proteomic analysis. J Neurochem. 2004;89:73–89.

    PubMed  CAS  Google Scholar 

  123. Lu A, Tang Y, Ran R, Clark JF, Aronow BJ, Sharp FR. Genomics of the periinfarction cortex after focal cerebral ischemia. J Cereb Blood Flow Metab. 2003;23:786–810.

    PubMed  CAS  Google Scholar 

  124. Stapels M, Piper C, Yang T, Li M, Stowell C, Xiong ZG, et al. Polycomb group proteins as epigenetic mediators of neuroprotection in ischemic tolerance. Sci Signal. 2010;3:ra15.

    Google Scholar 

  125. Stenzel-Poore MP, Stevens SL, King JS, Simon RP. Preconditioning reprograms the response to ischemic injury and primes the emergence of unique endogenous neuroprotective phenotypes: A speculative synthesis. Stroke. 2007;38:680–5.

    PubMed  Google Scholar 

  126. Tissue plasminogen activator for acute ischemic stroke. The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. N Engl J Med. 1995;333:1581–7.

    Google Scholar 

  127. Garcia-Dorado D, Barba I, Inserte J. Twenty-five years of preconditioning: Are we ready for ischaemia? From coronary occlusion to systems biology and back. Cardiovasc Res. 2011;91:378–81.

    PubMed  CAS  Google Scholar 

  128. Hoda MN, Siddiqui S, Herberg S, Periyasamy-Thandavan S, Bhatia K, Hafez SS, et al. Remote ischemic perconditioning is effective alone and in combination with intravenous tissue-type plasminogen activator in murine model of embolic stroke. Stroke. 2012;43:2794–9.

    PubMed  CAS  Google Scholar 

  129. Przytycka TM, Kim YA. Network integration meets network dynamics. BMC Biol. 2010;8:48.

    PubMed  Google Scholar 

  130. Tropak MB, Shi H, Li J, Dai X, Redington AN, Askalan R. Potent neuroprotection induced by remote preconditioning in a rat model of neonatal cerebral hypoxic–ischemic injury. J Thorac Cardiovasc Surg. 2011;142:233–5.

    PubMed  Google Scholar 

  131. Dave KR, Saul I, Prado R, Busto R, Perez-Pinzon MA. Remote organ ischemic preconditioning protect brain from ischemic damage following asphyxial cardiac arrest. Neurosci Lett. 2006;404:170–5.

    PubMed  CAS  Google Scholar 

  132. Zhao H-G, Li W-B, Li Q-J, Chen X-L, Liu H-Q, Feng R-F, et al. Limb ischemic preconditioning attenuates apoptosis of pyramidal neurons in the CA1 hippocampus induced by cerebral ischemia–reperfusion in rats. Sheng Li xue Bao [Acta Physiologica Sinica]. 2004;56:407–12.

    Google Scholar 

  133. Jin RL, Li WB, Li QJ, Zhang M, Xian XH, Sun XC, et al. The role of extracellular signal-regulated kinases in the neuroprotection of limb ischemic preconditioning. Neurosci Res. 2006;55:65–73.

    PubMed  CAS  Google Scholar 

  134. Saxena P, Bala A, Campbell K, Meloni B. d'Udekem Y, Konstantinov IE. Does remote ischemic preconditioning prevent delayed hippocampal neuronal death following transient global cerebral ischemia in rats? Perfusion. 2009;24:207–11.

    PubMed  Google Scholar 

  135. Ren C, Gao X, Steinberg GK, Zhao H. Limb remote-preconditioning protects against focal ischemia in rats and contradicts the dogma of therapeutic time windows for preconditioning. Neuroscience. 2008;151:1099–103.

    PubMed  CAS  Google Scholar 

  136. Rehni AK, Shri R, Singh M. Remote ischaemic preconditioning and prevention of cerebral injury. Indian J Exp Biol. 2007;45:247–52.

    PubMed  CAS  Google Scholar 

  137. Jensen HA, Loukogeorgakis S, Yannopoulos F, Rimpilainen E, Petzold A, Tuominen H, et al. Remote ischemic preconditioning protects the brain against injury after hypothermic circulatory arrest. Circulation. 2011;123:714–21.

    PubMed  CAS  Google Scholar 

  138. Yannopoulos FS, Makela T, Niemela E, Tuominen H, Lepola P, Alestalo K, et al. Improved cerebral recovery from hypothermic circulatory arrest after remote ischemic preconditioning. Ann Thorac Surg. 2010;90:182–8.

    PubMed  Google Scholar 

  139. Gurcun U, Discigil B, Boga M, Ozkisacik E, Badak MI, Yenisey C, et al. Is remote preconditioning as effective as direct ischemic preconditioning in preventing spinal cord ischemic injury? J Surg Res. 2006;135:385–93.

    PubMed  Google Scholar 

  140. Geng X, Ren C, Wang T, Fu P, Luo Y, Liu X, et al. Effect of remote ischemic postconditioning on an intracerebral hemorrhage stroke model in rats. Neurol Res. 2012;34:143–8.

    PubMed  CAS  Google Scholar 

  141. Ren C, Gao M, Dornbos D, Ding Y, Zeng X, Luo Y, et al. Remote ischemic post-conditioning reduced brain damage in experimental ischemia/reperfusion injury. Neurol Res. 2011;33:514–9.

    PubMed  Google Scholar 

  142. Peng B, Guo Q-L, He Z-J, Ye Z, Yuan Y-J, Wang N, et al. Remote ischemic postconditioning protects the brain from global cerebral ischemia/reperfusion injury by up-regulating endothelial nitric oxide synthase through the PI3K/Akt pathway. Brain Res. 2012;1445:92–102.

    PubMed  CAS  Google Scholar 

  143. Wang Q, Zhang X, Ding Q, Hu B, Xie Y, Li X, et al. Limb remote postconditioning alleviates cerebral reperfusion injury through reactive oxygen species-mediated inhibition of delta protein kinase C in rats. Anesth Analg. 2011;113:1180–7.

    PubMed  CAS  Google Scholar 

  144. Ye Z, Guo Q, Xia P, Wang N, Wang E, Yuan Y. Sevoflurane postconditioning involves an up-regulation of HIF-1α and HO-1 expression via PI3K/Akt pathway in a rat model of focal cerebral ischemia. Brain Res. 2012;1463:63–74.

    PubMed  CAS  Google Scholar 

  145. Adamczyk S, Robin E, Simerabet M, Kipnis E, Tavernier B, Vallet B, et al. Sevoflurane pre- and post-conditioning protect the brain via the mitochondrial K ATP channel. Br J Anaesth. 2010;104:191–200.

    PubMed  CAS  Google Scholar 

  146. Fang Li Q, Xu H, Sun Y, Hu R, Jiang H. Induction of inducible nitric oxide synthase by isoflurane post-conditioning via hypoxia inducible factor-1α during tolerance against ischemic neuronal injury. Brain Res. 2012;1451:1–9.

    PubMed  Google Scholar 

  147. Wang JK, Yu LN, Zhang FJ, Yang MJ, Yu J, Yan M, et al. Postconditioning with sevoflurane protects against focal cerebral ischemia and reperfusion injury via PI3K/Akt pathway. Brain Res. 2010;1357:142–51.

    PubMed  CAS  Google Scholar 

  148. Zhang Y, Zhang F-G, Meng C, Tian S-Y, Wang Y-X, Zhao W, et al. Inhibition of sevoflurane postconditioning against cerebral ischemia reperfusion-induced oxidative injury in rats. Molecules. 2012;17:341–54.

    CAS  Google Scholar 

  149. Lee HM, Lee DH, Choi JH, Lee SR, Kim YW, Jee DL, et al. Sevoflurane-induced post-conditioning has no beneficial effects on neuroprotection after incomplete cerebral ischemia in rats. Acta Anaesthesiol Scand. 2010;54:328–36.

    PubMed  Google Scholar 

  150. Danielisova V, Gottlieb M, Nemethova M, Kravcukova P, Domorakova I, Mechirova E, et al. Bradykinin postconditioning protects pyramidal CA1 neurons against delayed neuronal death in rat hippocampus. Cell Mol Neurobiol. 2009;29:871–8.

    PubMed  CAS  Google Scholar 

  151. Danielisova V, Gottlieb M, Nemethova M, Burda J. Effects of bradykinin postconditioning on endogenous antioxidant enzyme activity after transient forebrain ischemia in rat. Neurochem Res. 2008;33:1057–64.

    PubMed  CAS  Google Scholar 

  152. Nagy D, Kocsis K, Fuzik J, Marosi M, Kis Z, Teichberg VI, et al. Kainate postconditioning restores LTP in ischemic hippocampal CA1: Onset-dependent second pathophysiological stress. Neuropharmacology. 2011;61:1026–32.

    PubMed  CAS  Google Scholar 

  153. Yang YW, Lu JK, Qing EM, Dong XH, Wang CB, Zhang J, et al. Post-conditioning by xenon reduces ischaemia–reperfusion injury of the spinal cord in rats. Acta Anaesthesiol Scand. 2012;56:1325–31.

    PubMed  CAS  Google Scholar 

  154. Leconte C, Tixier E, Freret T, Toutain J, Saulnier R, Boulouard M, et al. Delayed hypoxic postconditioning protects against cerebral ischemia in the mouse. Stroke. 2009;40:3349–55.

    PubMed  Google Scholar 

  155. Zhan L, Li D, Liang D, Wu B, Zhu P, Wang Y, et al. Activation of Akt/FoxO and inactivation of MEK/ERK pathways contribute to induction of neuroprotection against transient global cerebral ischemia by delayed hypoxic postconditioning in adult rats. Neuropharmacology. 2012;63:873–82.

    PubMed  CAS  Google Scholar 

  156. Rybnikova E, Vorobyev M, Pivina S, Samoilov M. Postconditioning by mild hypoxic exposures reduces rat brain injury caused by severe hypoxia. Neurosci Lett. 2012;513:100–5.

    PubMed  CAS  Google Scholar 

  157. Davis AEM, Campbell SJ, Wilainam P, Anthony DC. Post-conditioning with lipopolysaccharide reduces the inflammatory infiltrate to the injured brain and spinal cord: A potential neuroprotective treatment. Eur J Neurosci. 2005;22:2441–50.

    PubMed  Google Scholar 

  158. Kaur H, Jaggi AS, Singh N. Modulation of neuroprotective effect of ischemic post-conditioning by dichlorobenzamil a Na(+)/Ca(2+) exchanger inhibitor in mice. Biol Pharm Bull. 2010;33:585–91.

    PubMed  CAS  Google Scholar 

  159. Rehni AK, Bhateja P, Singh N. Diethyl dithiocarbamic acid, a possible nuclear factor kappa B inhibitor, attenuates ischemic postconditioning-induced attenuation of cerebral ischemia–reperfusion injury in mice. Can J Physiol Pharmacol. 2009;87:63–8.

    PubMed  CAS  Google Scholar 

  160. Rehni AK, Singh N. Role of phosphoinositide 3-kinase in ischemic postconditioning-induced attenuation of cerebral ischemia-evoked behavioral deficits in mice. Pharmacol Rep. 2007;59:192–8.

    PubMed  CAS  Google Scholar 

  161. Ding Z-M, Wu B, Zhang W-Q, Lu X-J, Lin Y-C, Geng Y-J, et al. Neuroprotective effects of ischemic preconditioning and postconditioning on global brain ischemia in rats through the same effect on inhibition of apoptosis. Int J Mol Sci. 2012;13:6089–101.

    PubMed  CAS  Google Scholar 

  162. Wang JY, Shen J, Gao Q, Ye ZG, Yang SY, Liang HW, et al. Ischemic postconditioning protects against global cerebral ischemia/reperfusion-induced injury in rats. Stroke. 2008;39:983–90.

    PubMed  Google Scholar 

  163. Zhang W, Wang B, Zhou S, Qiu Y. The effect of ischemic post-conditioning on hippocampal cell apoptosis following global brain ischemia in rats. J Clin Neurosci. 2012;19:570–3.

    PubMed  Google Scholar 

  164. Zhang W, Miao Y, Zhou S, Wang B, Luo Q, Qiu Y. Involvement of glutamate transporter-1 in neuroprotection against global brain ischemia–reperfusion injury induced by postconditioning in rats. Int J Mol Sci. 2010;11:4407–16.

    PubMed  CAS  Google Scholar 

  165. Ren C, Gao X, Niu G, Yan Z, Chen X, Zhao H. Delayed postconditioning protects against focal ischemic brain injury in rats. PLoS One. 2008;3:e3851.

    PubMed  Google Scholar 

  166. Yuan Y, Guo Q, Ye Z, Pingping X, Wang N, Song Z. Ischemic postconditioning protects brain from ischemia/reperfusion injury by attenuating endoplasmic reticulum stress-induced apoptosis through PI3K-Akt pathway. Brain Res. 2011;1367:85–93.

    PubMed  CAS  Google Scholar 

  167. Abas F, Alkan T, Goren B, Taskapilioglu O, Sarandol E, Tolunay S. Neuroprotective effects of postconditioning on lipid peroxidation and apoptosis after focal cerebral ischemia/reperfusion injury in rats. Turk Neurosurg. 2010;20:1–8.

    PubMed  Google Scholar 

  168. Kim YK, Leem JG, Shin JW, Joung KW. Ischemic postconditioning may not influence early brain injury induced by focal cerebral ischemia/reperfusion in rats. Korean J Anesthesiol. 2010;58:176–83.

    PubMed  Google Scholar 

  169. Pignataro G, Esposito E, Cuomo O, Sirabella R, Boscia F, Guida N, et al. The NCX3 isoform of the Na+/Ca2+ exchanger contributes to neuroprotection elicited by ischemic postconditioning. J Cereb Blood Flow Metab. 2011;31:362–70.

    PubMed  CAS  Google Scholar 

  170. Robin E, Simerabet M, Hassoun SM, Adamczyk S, Tavernier B, Vallet B, et al. Postconditioning in focal cerebral ischemia: Role of the mitochondrial ATP-dependent potassium channel. Brain Res. 2011;1375:137–46.

    PubMed  CAS  Google Scholar 

  171. Sun J, Luan Q, Dong H, Song W, Xie K, Hou L, et al. Inhibition of mitochondrial permeability transition pore opening contributes to the neuroprotective effects of ischemic postconditioning in rats. Brain Res. 2012;1436:101–10.

    PubMed  CAS  Google Scholar 

  172. Taskapilioglu MO, Alkan T, Goren B, Tureyen K, Sahin S, Taskapilioglu O, et al. Neuronal protective effects of focal ischemic pre- and/or postconditioning on the model of transient focal cerebral ischemia in rats. J Clin Neurosci. 2009;16:693–7.

    PubMed  Google Scholar 

  173. Xing B, Chen H, Zhang M, Zhao D, Jiang R, Liu X, et al. Ischemic postconditioning inhibits apoptosis after focal cerebral ischemia/reperfusion injury in the rat. Stroke. 2008;39:2362–9.

    PubMed  CAS  Google Scholar 

  174. Xing B, Chen H, Zhang M, Zhao D, Jiang R, Liu X, et al. Ischemic post-conditioning protects brain and reduces inflammation in a rat model of focal cerebral ischemia/reperfusion. J Neurochem. 2008;105:1737–45.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grant NS081179 (to JA) and by the Intramural Research Program of the NIH, NINDS (JH).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Josef Anrather or John M. Hallenbeck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anrather, J., Hallenbeck, J.M. Biological Networks in Ischemic Tolerance — Rethinking the Approach to Clinical Conditioning. Transl. Stroke Res. 4, 114–129 (2013). https://doi.org/10.1007/s12975-012-0244-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-012-0244-z

Keywords

Navigation