Skip to main content

Advertisement

Log in

A Simple Method for the Electrodeposition of WO3 in TiO2 Nanotubes: Influence of the Amount of Tungsten on Photoelectrocatalytic Activity

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Although TiO2 is used in a wide range of photocatalytic applications, its activity can be improved considerably by coupling with a metal oxide, such as WO3, in a bicomponent systems. However, the amount of WO3 deposited onto TiO2 is of crucial importance because it may influence the optical and electrochemical properties and, consequently, the photocatalytic activity. In the present study, a series of modified electrodes were prepared by electrochemical deposition of different amounts of WO3 onto TiO2 nanotubes (TiO2-NTs). Energy dispersive X-ray analysis revealed that increasing amounts of W were deposited with increased deposition times between 5 and 60 min, and that electrodes EW5, EW10, EW15, EW30, EW45, and EW60 contained 0.74, 1.27, 1.60, 4.85, 10.10, and 13.30 at.% W, respectively. X-ray diffraction patterns confirmed the presence of the WO3 crystalline phase and the TiO2 anatase. Diffuse reflectance spectra of electrodes EW5, EW10, and EW15 exhibited the most intense absorbances, and their energy band-gap values were in the region of 2.90 eV, which is comparable with the value for TiO2-WO3 bicomponent. The photoactivities of electrodes EW5 and EW10 containing low amounts of W (~1 %) exhibited photocurrents that were, respectively, 13 and 25 % higher than that of the unmodified TiO2-NTs electrode. Electrodes containing larger amounts of W showed correspondingly reduced photocurrents. The application of electrodes E0 and EW10 on the photoelectrocatalytic oxidation of Bisphenol-A (BPA) revealed excellent removal rate which BPA was not detected after 30 min of reaction. The electrode EW10 achieved ~64 % of total organic carbon (TOC) in the end of degradation, more effective compared to the electrode E0 (58 %). These findings demonstrate that photoelectrocatalytic efficiency is strictly dependent on morphology and amount of WO3. Optimal deposition of WO3 favors the formation of WO3-TiO2 heterojunctions, thereby improving the performance of the semiconductor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C. Comninellis, A. Kapalka, S. Malato, S. A. Parsons, L. Poulios, D. Mantzavinos, Advanced oxidation processes for water treatment: advances and trends for R&D. J. Chem. Technol. Biotechnol. 83, 769 (2008)

    Article  CAS  Google Scholar 

  2. S. Malato, P. Fernández-Ibáñez, M. I. Maldonado, J. Blanco, W. Gernjak, Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catal. Today 147, 1 (2009)

    Article  CAS  Google Scholar 

  3. D. Mantzavinos, E. Psillakis, Enhancement of biodegradability of industrial wastewaters by chemical oxidation pre-treatment. J. Chem. Technol. Biotechnol. 79, 431 (2004)

    Article  CAS  Google Scholar 

  4. J. Georgieva, E. Valova, S. Armyanov, N. Philippidis, I. Poulios, S. Sotiropoulos, Bi-component semiconductor oxide photoanodes for the photoelectrocatalytic oxidation of organic solutes and vapours: a short review with emphasis to TiO2-WO3 photoanodes. J. Hazard. Mater. 211-212, 30 (2012)

    Article  CAS  Google Scholar 

  5. K. Rajeshwar, N. R. De Tacconi, C. R. Chenthamarakshan, Semiconductor-based composite materials: preparation, properties, and performance. Chem. Mater. 13, 2765 (2001)

    Article  CAS  Google Scholar 

  6. D. F. Ollis, E. Pelizzetti, N. Serpone, Photocatalyzed destruction of water contaminants. Environ. Sci. Technol. 25, 1522 (1991)

    Article  CAS  Google Scholar 

  7. X. Chen, S. S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891 (2007)

    Article  CAS  Google Scholar 

  8. A. Fujishima, X. Zhang, D. A. Tryk, TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 63, 515 (2008)

    Article  CAS  Google Scholar 

  9. G. K. Mor, O. K. Varghese, M. Paulose, K. Shankar, C. A. Grimes, A review on highly ordered, vertically oriented TiO2 nanotube arrays: fabrication, material properties, and solar energy applications. Sol. Energ. Mat. Sol. Cells 90, 2011 (2006)

    Article  CAS  Google Scholar 

  10. S. H. Kang, J.-Y. Kim, H. S. Kim, Y.-E. Sung, Formation and mechanistic study of self-ordered TiO2 nanotubes on Ti substrate. J. Ind. Eng. Chem. 14, 52 (2008)

    Article  CAS  Google Scholar 

  11. N. Serpone, Is the band gap of pristine TiO2 narrowed by anion- and cation-doping of titanium dioxide in second-generation photocatalysts? J. Phys. Chem. B 110, 24287 (2006)

    Article  CAS  Google Scholar 

  12. H. J. Zhang, G. H. Chen, D. W. Bahnemann, Photoelectrocatalytic materials for environmental applications. J. Mater. Chem. 19, 5089 (2009)

    Article  CAS  Google Scholar 

  13. J. Georgieva, TiO2/WO3 photoanodes with enhanced photocatalytic activity for air treatment in a polymer electrolyte cell. J. Solid State Electrochem. 16, 1111 (2012)

    Article  CAS  Google Scholar 

  14. E. L. Yang, J. J. Shi, H. C. Liang, W. K. Cheuk, Coaxial WO3/TiO2 nanotubes/nanorods with high visible light activity for the photodegradation of 2,3-dichlorophenol. Chem. Eng. J. 174, 539 (2011)

    Article  CAS  Google Scholar 

  15. N. A. Ramos-Delgado, M. A. Gracia-Pinilla, L. Maya-Treviño, L. Hinojosa-Reyes, J. L. Guzman-Mar, A. Hernández-Ramírez, Solar photocatalytic activity of TiO2 modified with WO3 on the degradation of an organophosphorus pesticide. J. Hazard. Mater. 263, 36 (2013)

    Article  CAS  Google Scholar 

  16. C. Santato, M. Odziemkowski, M. Ulmann, J. Augustynski, Crystallographically oriented mesoporous WO3 films: synthesis, characterization, and applications. J. Am. Chem. Soc. 123, 10639 (2001)

    Article  CAS  Google Scholar 

  17. K. K. Akurati, A. Vital, J. P. Dellemann, K. Michalow, T. Graule, D. Fetti, A. Baiker, Flame-made WO3/TiO2 nanoparticles: relation between surface acidity, structure and photocatalytic activity. Appl. Catal. B. 79, 53 (2008)

    Article  CAS  Google Scholar 

  18. Y. Xin, M. Gao, Y. Wang, D. Ma, Photoelectrocatalytic degradation of 4-nonylphenol in water with WO3/TiO2 nanotube array photoelectrodes. Chem. Eng. J. 242, 162 (2014)

    Article  CAS  Google Scholar 

  19. S. A. Singh, G. Madras, Photocatalytic degradation with combustion synthesized WO3 and WO3-TiO2 mixed oxides under UV and visible light. Sep. Purif. Technol. 105, 79 (2013)

    Article  CAS  Google Scholar 

  20. A. Ghicov, B. Schmidt, J. Kunze, P. Schmuki, Photoresponse in the visible range from Cr doped TiO2 nanotubes. Chem. Phys. Lett. 433, 323 (2007)

    Article  CAS  Google Scholar 

  21. N. R. De Tacconi, C. R. Chenthamarakshan, K. Rajeshwar, T. Pauporte, D. Lincot, Pulsed electrodeposition of WO3-TiO2 composite films. Electrochem. Commun. 5, 220 (2003)

    Article  CAS  Google Scholar 

  22. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269 (2001)

    Article  CAS  Google Scholar 

  23. S. Perathoner, R. Passalacqua, G. Centi, D. S. Su, G. Weinberg, Photoactive titania nanostructured thin films: synthesis and characteristics of ordered helical nanocoil array. Catal. Today 122, 3 (2007)

    Article  CAS  Google Scholar 

  24. J. Tauc, R. Grigorov, A. Vancu, Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi 15, 627 (1966)

    Article  CAS  Google Scholar 

  25. A. A. Christy, O. M. Kvalheim, R. A. Velapoldi, Quantitative analysis in diffuse-reflectance spectrometry—a modified Kubelka-Munk equation. Vib. Spectrosc. 9, 19 (1995)

    Article  CAS  Google Scholar 

  26. R. López, R. Gómez, Band-gap energy estimation from diffuse reflectance measurements on sol-gel and commercial TiO2: a comparative study. J. Sol-Gel Sci. Technol. 61, 1 (2012)

    Article  Google Scholar 

  27. J. Georgieva, S. Armyanov, E. Valova, I. Poulios, S. Sotiropoulos, Enhanced photocatalytic activity of electrosynthesised tungsten trioxide -titanium dioxide bi-layer coatings under ultraviolet and visible light illumination. Electrochem. Commun. 9, 365 (2007)

    Article  CAS  Google Scholar 

  28. K. I. Liu, Y. C. Hsueh, C. Y. Su, T. P. Perng, Photoelectrochemical application of mesoporous TiO2/WO3 nanohoneycomb prepared by sol-gel method. Int. J. Hydrogen Energ. 38, 7750 (2013)

    Article  CAS  Google Scholar 

  29. H. Sun, B. Dong, G. Su, R. Gao, W. Liu, L. Song, L. Cao, Modification of TiO2 nanotubes by WO3 species for improving their photocatalytic activity. Appl. Surf. Sci. 343, 181 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP; grant no. 2013/08543-3 and 2015/08815-9) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alysson Stefan Martins or Marcos Roberto de Vasconcelos Lanza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martins, A.S., Cordeiro-Junior, P.J.M., Nuñez, L. et al. A Simple Method for the Electrodeposition of WO3 in TiO2 Nanotubes: Influence of the Amount of Tungsten on Photoelectrocatalytic Activity. Electrocatalysis 8, 115–121 (2017). https://doi.org/10.1007/s12678-016-0335-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-016-0335-9

Keywords

Navigation