Skip to main content

Advertisement

Log in

Surface modification of titanium dioxide

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Titanium dioxide (TiO2) is one of the most widely used metal dioxides for applications such as semiconductors, photocatalysts, pigments, pharmaceutical excipients, and antimicrobials. Applications of TiO2 are increasing over time, and new properties are being added as it becomes available in nanometric size. This review presents the challenges and the advances in the use of surface-modified TiO2 in various fields: as a photocatalyst and catalyst focusing on environmental remediation of wastewater, its role in solar cells, in biomedical and antimicrobial applications, its role in various composites, especially textile fibers, and finally as a polymer filler in multiple matrices. All the advances discussed here are primarily concerned with how titanium dioxide crystals can be surface modified at the new properties that can be achieved, considering the advantages and drawbacks of every modification discussed here.

Graphical abstract

Surface modification of TiO2 and its use as A) complexes for biomedical applications, B) photocatalyst, C) substrate in solar cells, and D) drug delivery systems

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Henderson MA (1996) Structural sensitivity in the dissociation of water on TiO2 single-crystal surfaces. Langmuir 12:5093–5098. https://doi.org/10.1021/la960360t

    Article  CAS  Google Scholar 

  2. Henderson MA (2002) The interaction of water with solid surfaces: fundamental aspects revisited. Surf Sci Rep 46:1–308. https://doi.org/10.1016/S0167-5729(01)00020-6

    Article  CAS  Google Scholar 

  3. Diebold U (2003) The surface science of titanium dioxide. Surf Sci Rep 48:53–229. https://doi.org/10.1016/S0167-5729(02)00100-0

    Article  CAS  Google Scholar 

  4. Ziental D, Czarczynska-goslinska B, Mlynarczyk DT et al (2020) Titanium dioxide nanoparticles: prospects and applications in medicine. Nanomaterials 10:387–418

    Article  CAS  Google Scholar 

  5. Warheit DB, Brown SC (2019) What is the impact of surface modifications and particle size on commercial titanium dioxide particle samples? A review of in vivo pulmonary and oral toxicity studies—Revised 11-6-2018. Toxicol Lett 302:42–59. https://doi.org/10.1016/j.toxlet.2018.11.008

    Article  CAS  Google Scholar 

  6. Al Jitan S, Palmisano G, Garlisi C (2020) Synthesis and surface modification of TiO2-based photocatalysts for the conversion of CO2. Catalysts 10:227. https://doi.org/10.3390/catal10020227

    Article  CAS  Google Scholar 

  7. Hu W, Yang S, Yang S (2020) Surface modification of TiO2 for Perovskite solar cells. Trends Chem 2:148–162. https://doi.org/10.1016/j.trechm.2019.11.002

    Article  CAS  Google Scholar 

  8. Veronovski N (2018) TiO2 applications as a function of controlled surface treatment. In: Dongfang Y (ed) Titanium dioxide—material for a sustainable environment. Intech Open, pp 421–443

  9. Solís-Gómez A, Neira-Velázquez MG, Morales J et al (2014) Improving stability of TiO2 particles in water by RF-plasma polymerization of poly(acrylic acid) on the particle surface. Colloids Surf A Physicochem Eng Asp 451:66–74. https://doi.org/10.1016/j.colsurfa.2014.03.021

    Article  CAS  Google Scholar 

  10. González-Rodríguez V, Lizeth Zapata-Tello D, Vallejo-Montesinos J et al (2018) Improving titanium dioxide dispersion in water through surface functionalization by a dicarboxylic acid. J Dispers Sci Technol 10:1039–1045

    Google Scholar 

  11. Bozzi A, Yuranova T, Guasaquillo I et al (2005) Self-cleaning of modified cotton textiles by TiO2 at low temperatures under daylight irradiation. J Photochem Photobiol A Chem 174:156–164. https://doi.org/10.1016/j.jphotochem.2005.03.019

    Article  CAS  Google Scholar 

  12. Gonzalez-Calderon JA, Vallejo-Montesinos J, Mata-Padilla JM et al (2015) Effective method for the synthesis of pimelic acid/TiO2 nanoparticles with a high capacity to nucleate β-crystals in isotactic polypropylene nanocomposites. J Mater Sci 50:7998–8006. https://doi.org/10.1007/s10853-015-9365-6

    Article  CAS  Google Scholar 

  13. Vallejo-Montesinos J, Muñoz UM, Gonzalez-Calderon JA (2016) Mechanical properties, crystallization and degradation of polypropylene due to nucleating agents, fillers and additives, 1st edn. Nova Science Publisher, New York

    Google Scholar 

  14. González A, Pérez E, Almendarez A et al (2016) Calcium pimelate supported on TiO2 nanoparticles as isotactic polypropylene prodegradant. Polym Bull 73:39–51. https://doi.org/10.1007/s00289-015-1469-2

    Article  CAS  Google Scholar 

  15. Liao C, Li Y, Tjong SC (2020) Visible-light active titanium dioxide nanomaterials with bactericidal properties. Nanomaterials. https://doi.org/10.3390/nano10010124

    Article  Google Scholar 

  16. Kiran ASK, Kumar TSS, Sanghavi R et al (2018) Antibacterial and bioactive surface modifications of titanium implants by PCL/TiO2 nanocomposite coatings. Nanomaterials. https://doi.org/10.3390/nano8100860

    Article  Google Scholar 

  17. Camarillo R, Tostón S, Martínez F et al (2018) Improving the photo-reduction of CO2 to fuels with catalysts synthesized under high pressure: Cu/TiO2. J Chem Technol Biotechnol 93:1237–1248. https://doi.org/10.1002/jctb.5477

    Article  CAS  Google Scholar 

  18. Cojocaru L, Uchida S, Sanehira Y et al (2015) Surface treatment of the compact TiO2 layer for efficient planar heterojunction perovskite solar cells. Chem Lett 44:674–676. https://doi.org/10.1246/cl.150068

    Article  CAS  Google Scholar 

  19. Ariyanti D, Mukhtar S, Ahmed N et al (2020) Surface modification of TiO2 for visible light photocatalysis: experimental and theoretical calculations of its electronic and optical properties. Int J Mod Phys B 34:1–8. https://doi.org/10.1142/S0217979220400676

    Article  CAS  Google Scholar 

  20. Cheng Y, Yang H, Yang Y, Huang J, Ke W, Chen Z, Wang X, Lin C, Lai Y (2018) Progress in TiO2 nanotube coatings for biomedical applications: a review. J Mater Chem B 6:1862–1886. https://doi.org/10.1039/x0xx00000x

    Article  CAS  Google Scholar 

  21. Wang Q, Huang JY, Li HQ, Zhao AZ, Wang Y, Zhang KQ, Sun HT, Lai YK (2016) Recent advances on smart TiO2 nanotube platforms for sustainable drug delivery applications. Int J Nanomed 2017:151–165

    Article  Google Scholar 

  22. Jafari S, Mahyad B, Hashemzadeh H et al (2020) Biomedical applications of TiO2 nanostructures: recent advances. Int J Nanomed 15:3447–3470

    Article  CAS  Google Scholar 

  23. Guo Q, Zhou C, Ma Z, Yang X (2019) Fundamentals of TiO2 photocatalysis: concepts, mechanisms, and challenges. Adv Mater 31:e1901997. https://doi.org/10.1002/adma.201901997

    Article  CAS  Google Scholar 

  24. Mironyuk IF, Soltys LM, Tatarchuk TR, Tsinurchyn VI (2020) Ways to improve the efficiency of TiO2-based photocatalysts (Review). Phys Chem Solid State 21:300–311. https://doi.org/10.15330/PCSS.21.2.300-311

    Article  CAS  Google Scholar 

  25. Wen J, Li X, Liu W et al (2015) Photocatalysis fundamentals and surface modification of TiO2 nanomaterials. Cuihua Xuebao/Chin J Catal 36:2049–2070

    Article  CAS  Google Scholar 

  26. Bumajdad A, Madkour M (2014) Understanding the superior photocatalytic activity of noble metals modified Titania under UV and visible light irradiation. Phys Chem Chem Phys 16:7146–7158

    Article  CAS  Google Scholar 

  27. Scarisoreanu M, Ilie AG, Goncearenco E et al (2020) Ag, Au and Pt decorated TiO2 biocompatible nanospheres for UV & Vis photocatalytic water treatment. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2019.145217

    Article  Google Scholar 

  28. Gołąbiewska A, Lisowski W, Jarek M et al (2017) The effect of metals content on the photocatalytic activity of TiO2 modified by Pt/Au bimetallic nanoparticles prepared by sol-gel method. Mol Catal 442:154–163. https://doi.org/10.1016/j.mcat.2017.09.004

    Article  CAS  Google Scholar 

  29. Nalbandian MJ, Greenstein KE, Shuai D et al (2015) Tailored synthesis of photoactive TiO2 nanofibers and Au/TiO2 nanofiber composites: structure and reactivity optimization for water treatment applications. Environ Sci Technol 49:1654–1663. https://doi.org/10.1021/es502963t

    Article  CAS  Google Scholar 

  30. Han R, Liu J, Chen N et al (2019) Synthesis of V-modified TiO2 nanorod-aggregates by a facile microwave-assisted hydrothermal process and photocatalytic degradation towards PCP-Na under solar light. RSC Adv 9:34862–34871. https://doi.org/10.1039/c9ra05480d

    Article  CAS  Google Scholar 

  31. Zafar Z, Ali I, Park S, Kim JO (2020) Effect of different iron precursors on the synthesis and photocatalytic activity of Fe–TiO2 nanotubes under visible light. Ceram Int 46:3353–3366. https://doi.org/10.1016/j.ceramint.2019.10.045

    Article  CAS  Google Scholar 

  32. Manojkumar P, Lokeshkumar E, Saikiran A et al (2020) Visible light photocatalytic activity of metal (Mo/V/W) doped porous TiO2 coating fabricated on Cp-Ti by plasma electrolytic oxidation. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2020.154092

    Article  Google Scholar 

  33. Binas V, Stefanopoulos V, Kiriakidis G, Papagiannakopoulos P (2019) Photocatalytic oxidation of gaseous benzene, toluene and xylene under UV and visible irradiation over Mn-doped TiO2 nanoparticles. J Materiomics 5:56–65. https://doi.org/10.1016/j.jmat.2018.12.003

    Article  Google Scholar 

  34. Han F, Kambala VSR, Dharmarajan R et al (2018) Photocatalytic degradation of azo dye acid orange 7 using different light sources over Fe3+-doped TiO2 nanocatalysts. Environ Technol Innov 12:27–42. https://doi.org/10.1016/j.eti.2018.07.004

    Article  Google Scholar 

  35. Safari M, Talebi R, Rostami MH, Dadvar M (2014) Synthesis of iron-doped TiO2 for degradation of reactive Orange16. J Environ Health Sci Eng 12:19–27

    Article  Google Scholar 

  36. Ismael M (2020) Enhanced photocatalytic hydrogen production and degradation of organic pollutants from Fe (III) doped TiO2 nanoparticles. J Environ Chem Eng 8:103676. https://doi.org/10.1016/j.jece.2020.103676

    Article  CAS  Google Scholar 

  37. Komaraiah D, Radha E, Sivakumar J et al (2019) Structural, optical properties and photocatalytic activity of Fe3+ doped TiO2 thin films deposited by sol-gel spin coating. Surf Interfaces 17:100368. https://doi.org/10.1016/j.surfin.2019.100368

    Article  CAS  Google Scholar 

  38. Valero-Romero MJ, Santaclara JG, Oar-Arteta L et al (2019) Photocatalytic properties of TiO2 and Fe-doped TiO2 prepared by metal organic framework-mediated synthesis. Chem Eng J 360:75–88. https://doi.org/10.1016/j.cej.2018.11.132

    Article  CAS  Google Scholar 

  39. Hinojosa-Reyes M, Camposeco-Solis R, Ruiz F et al (2019) Promotional effect of metal doping on nanostructured TiO2 during the photocatalytic degradation of 4-chlorophenol and naproxen sodium as pollutants. Mater Sci Semicond Process 100:130–139. https://doi.org/10.1016/j.mssp.2019.04.050

    Article  CAS  Google Scholar 

  40. Mohseni-Salehi MS, Taheri-Nassaj E, Hosseini-Zori M (2018) Effect of dopant (Co, Ni) concentration and hydroxyapatite compositing on photocatalytic activity of titania towards dye degradation. J Photochem Photobiol A Chem 356:57–70. https://doi.org/10.1016/j.jphotochem.2017.12.027

    Article  CAS  Google Scholar 

  41. Tang B, Chen H, Peng H et al (2018) Graphene modified TiO2 composite photocatalysts: mechanism, progress and perspective. Nanomaterials. https://doi.org/10.3390/nano8020105

    Article  Google Scholar 

  42. Camarillo R, Tostón S, Martínez F, Carlos Jiménez JR (2017) Preparation of TiO2-based catalysts with supercritical fluid technology: characterization and photocatalytic activity in CO2 reduction. J Chem Technol Biotechnol 92:1710–1720. https://doi.org/10.1002/jctb.5169

    Article  CAS  Google Scholar 

  43. Zhao J, Li Y, Zhu Y et al (2016) Enhanced CO2 photoreduction activity of black TiO2-coated Cu nanoparticles under visible light irradiation: role of metallic Cu. Appl Catal A Gen 510:34–41. https://doi.org/10.1016/j.apcata.2015.11.001

    Article  CAS  Google Scholar 

  44. Aykut Y, Saquing CD, Pourdeyhimi B et al (2012) Templating quantum dot to phase-transformed electrospun TiO2 nanofibers for enhanced photo-excited electron injection. ACS Appl Mater Interfaces 4:3837–3845. https://doi.org/10.1021/am300524a

    Article  CAS  Google Scholar 

  45. Shu Y, Ji J, Zhou M et al (2022) Selective photocatalytic oxidation of gaseous ammonia at ppb level over Pt and F modified TiO2. Appl Catal B. https://doi.org/10.1016/j.apcatb.2021.120688

    Article  Google Scholar 

  46. Zhang J, Wu W, Yan S et al (2015) Enhanced photocatalytic activity for the degradation of rhodamine B by TiO2 modified with Gd2O3 calcined at high temperature. Appl Surf Sci 344:249–256. https://doi.org/10.1016/j.apsusc.2015.03.078

    Article  CAS  Google Scholar 

  47. Smirniotis PG, Boningari T, Damma D, Inturi SNR (2018) Single-step rapid aerosol synthesis of N-doped TiO2 for enhanced visible light photocatalytic activity. Catal Commun 113:1–5. https://doi.org/10.1016/j.catcom.2018.04.019

    Article  CAS  Google Scholar 

  48. Marques J, Gomes TD, Forte MA et al (2019) A new route for the synthesis of highly-active N-doped TiO2 nanoparticles for visible light photocatalysis using urea as nitrogen precursor. Catal Today. https://doi.org/10.1016/j.cattod.2018.09.002

    Article  Google Scholar 

  49. Osin OA, Yu T, Cai X et al (2018) Photocatalytic degradation of 4-nitrophenol by C, N-TiO2: degradation efficiency vs. embryonic toxicity of the resulting compounds. Front Chem. https://doi.org/10.3389/fchem.2018.00192

    Article  Google Scholar 

  50. Reddy KR, Gomes VG, Hassan M (2014) Carbon functionalized TiO2 nanofibers for high efficiency photocatalysis. Mater Res Express. https://doi.org/10.1088/2053-1591/1/1/015012

    Article  Google Scholar 

  51. Zhang J, Xing Z, Cui J et al (2018) C, N co-doped porous TiO2 hollow sphere visible light photocatalysts for efficient removal of highly toxic phenolic pollutants. Dalton Trans 47:4877–4884. https://doi.org/10.1039/c8dt00262b

    Article  CAS  Google Scholar 

  52. Shindume LH, Zhao Z, Wang N et al (2018) Enhanced photocatalytic activity of B, N-codoped TiO2 by a new molten nitrate process. J Nanosci Nanotechnol 19:839–849. https://doi.org/10.1166/jnn.2019.15745

    Article  CAS  Google Scholar 

  53. Hoşgün HL, Aydın MTA (2019) Synthesis, characterization and photocatalytic activity of boron-doped titanium dioxide nanotubes. J Mol Struct 1180:676–682. https://doi.org/10.1016/j.molstruc.2018.12.056

    Article  CAS  Google Scholar 

  54. Lee JH, Youn JI, Kim YJ, et al (2015) Photocatalytic characteristics of boron and nitrogen doped titania film synthesized by micro-arc oxidation. Ceram Int 41:11899–11907. https://doi.org/10.1016/j.ceramint.2015.05.157

    Article  CAS  Google Scholar 

  55. Ratova M, Klaysri R, Praserthdam P, Kelly PJ (2018) Visible light active photocatalytic C-doped titanium dioxide films deposited via reactive pulsed DC magnetron co-sputtering: properties and photocatalytic activity. Vacuum 149:214–224. https://doi.org/10.1016/j.vacuum.2018.01.003

    Article  CAS  Google Scholar 

  56. Klaysri R, Ratova M, Praserthdam P, Kelly PJ (2017) Deposition of visible light-active C-doped titania films via magnetron sputtering using CO2 as a source of carbon. Nanomaterials. https://doi.org/10.3390/nano7050113

    Article  Google Scholar 

  57. Gomathi Devi L, Kavitha R (2014) Review on modified N-TiO2 for green energy applications under UV/visible light: selected results and reaction mechanisms. RSC Adv 4:28265–28299. https://doi.org/10.1039/C4RA03291H

    Article  CAS  Google Scholar 

  58. Devi LG, Kavitha R (2013) A review on non metal ion doped titania for the photocatalytic degradation of organic pollutants under UV/solar light: role of photogenerated charge carrier dynamics in enhancing the activity. Appl Catal B 140–141:559–587

    Article  Google Scholar 

  59. Ovodok E, Maltanava H, Poznyak S et al (2018) Sol–gel template synthesis of mesoporous carbon-doped TiO2 with photocatalytic activity under visible light. Mater Today: Proc 5:17422–17430

    CAS  Google Scholar 

  60. Modanlu S, Shafiekhani A (2019) Synthesis of pure and C/S/N co-doped titania on Al mesh and their photocatalytic usage in Benzene degradation. Sci Rep. https://doi.org/10.1038/s41598-019-53189-z

    Article  Google Scholar 

  61. Purbia R, Borah R, Paria S (2017) Carbon-doped mesoporous anatase TiO2 multi-tubes nanostructures for highly improved visible light photocatalytic activity. Inorg Chem 56:10107–10116. https://doi.org/10.1021/acs.inorgchem.7b01864

    Article  CAS  Google Scholar 

  62. Feng X, Wang P, Hou J et al (2018) Significantly enhanced visible light photocatalytic efficiency of phosphorus doped TiO2 with surface oxygen vacancies for ciprofloxacin degradation: synergistic effect and intermediates analysis. J Hazard Mater 351:196–205. https://doi.org/10.1016/j.jhazmat.2018.03.013

    Article  CAS  Google Scholar 

  63. Gul SR, Khan M, Wu B, Yi Z (2017) Combined experimental and theoretical study of visible light active P doped TiO2 photocatalyst. Mater Res Express. https://doi.org/10.1088/2053-1591/aa75e8

    Article  Google Scholar 

  64. Boningari T, Inturi SNR, Suidan M, Smirniotis PG (2018) Novel one-step synthesis of sulfur doped- TiO2 by flame spray pyrolysis for visible light photocatalytic degradation of acetaldehyde. Chem Eng J 339:249–258. https://doi.org/10.1016/j.cej.2018.01.063

    Article  CAS  Google Scholar 

  65. Gena GD, Freeda TH, Monikanda Prabu K (2018) Photocatalytic performance of fluorine-doped anatase titanium dioxide obtained through the sol–gel method. Int J Sci Res Res Pap Phys Appl Sci 6:1–4

    Google Scholar 

  66. Lee DH, Swain B, Shin D et al (2019) One-pot wet chemical synthesis of fluorine-containing TiO2 nanoparticles with enhanced photocatalytic activity. Mater Res Bull 109:227–232. https://doi.org/10.1016/j.materresbull.2018.09.027

    Article  CAS  Google Scholar 

  67. Liu D, Tian R, Wang J et al (2017) Photoelectrocatalytic degradation of methylene blue using F doped TiO2 photoelectrode under visible light irradiation. Chemosphere 185:574–581. https://doi.org/10.1016/j.chemosphere.2017.07.071

    Article  CAS  Google Scholar 

  68. Gao Q, Si F, Zhang S et al (2019) Hydrogenated F-doped TiO2 for photocatalytic hydrogen evolution and pollutant degradation. Int J Hydrog Energy 44:8011–8019. https://doi.org/10.1016/j.ijhydene.2019.01.233

    Article  CAS  Google Scholar 

  69. Li C, Sun Z, Ma R et al (2017) Fluorine doped anatase TiO2 with exposed reactive (001) facets supported on porous diatomite for enhanced visible-light photocatalytic activity. Microporous Mesoporous Mater 243:281–290. https://doi.org/10.1016/j.micromeso.2017.02.053

    Article  CAS  Google Scholar 

  70. Wang Q, Zhu S, Liang Y et al (2017) Synthesis of Br-doped TiO2 hollow spheres with enhanced photocatalytic activity. J Nanopart Res. https://doi.org/10.1007/s11051-017-3765-2

    Article  Google Scholar 

  71. Wang Q, Zhu S, Liang Y et al (2017) One-step synthesis of size-controlled Br-doped TiO2 nanoparticles with enhanced visible-light photocatalytic activity. Mater Res Bull 86:248–256. https://doi.org/10.1016/j.materresbull.2016.10.026

    Article  CAS  Google Scholar 

  72. Nguyen TP, Nguyen DLT, Nguyen VH et al (2020) Recent advances in TiO2-based photocatalysts for reduction of co2 to fuels. Nanomaterials 10:1–24. https://doi.org/10.3390/nano10020337

    Article  CAS  Google Scholar 

  73. Low J, Cheng B, Yu J (2017) Surface modification and enhanced photocatalytic CO 2 reduction performance of TiO2: a review. Appl Surf Sci 392:658–686. https://doi.org/10.1016/j.apsusc.2016.09.093

    Article  CAS  Google Scholar 

  74. Sarkar A, Gracia-Espino E, Wågberg T et al (2016) Photocatalytic reduction of CO2 with H2O over modified TiO2 nanofibers: Understanding the reduction pathway. Nano Res 9:1956–1968. https://doi.org/10.1007/s12274-016-1087-9

    Article  CAS  Google Scholar 

  75. Pham TD, Lee BK (2017) Novel capture and photocatalytic conversion of CO2 into solar fuels by metals co-doped TiO2 deposited on PU under visible light. Appl Catal A Gen 529:40–48. https://doi.org/10.1016/j.apcata.2016.10.019

    Article  CAS  Google Scholar 

  76. Pham TD, Lee BK (2017) Novel photocatalytic activity of Cu@V co-doped TiO2/PU for CO2 reduction with H2O vapor to produce solar fuels under visible light. J Catal 345:87–95. https://doi.org/10.1016/j.jcat.2016.10.030

    Article  CAS  Google Scholar 

  77. Parameswari A, Soujanya Y, Sastry GN (2019) Functionalized rutile TiO2 (110) as a sorbent to capture CO2 through noncovalent interactions: a computational investigation. J Phys Chem C 123:3491–3504. https://doi.org/10.1021/acs.jpcc.8b09311

    Article  CAS  Google Scholar 

  78. Fang W, Khrouz L, Zhou Y et al (2017) Reduced {001}- TiO2x photocatalysts: noble-metal-free CO2 photoreduction for selective CH4 evolution. Phys Chem Chem Phys 19:13875–13881. https://doi.org/10.1039/c7cp01212h

    Article  CAS  Google Scholar 

  79. Liao Y, Cao SW, Yuan Y et al (2014) Efficient CO2 capture and photoreduction by amine-functionalized TiO2. Chem Eur J 20:10220–10222. https://doi.org/10.1002/chem.201403321

    Article  CAS  Google Scholar 

  80. Feng X, Pan F, Zhao H et al (2018) Atomic layer deposition enabled MgO surface coating on porous TiO2 for improved CO2 photoreduction. Appl Catal B 238:274–283. https://doi.org/10.1016/j.apcatb.2018.07.027

    Article  CAS  Google Scholar 

  81. Zhang W, Xue J, Shen Q et al (2021) Black single-crystal TiO2 nanosheet array films with oxygen vacancy on 001 facets for boosting photocatalytic CO2 reduction. J Alloys Compd 870:54. https://doi.org/10.1016/j.jallcom.2021.159400

    Article  CAS  Google Scholar 

  82. Xie S, Wang Y, Zhang Q et al (2013) Photocatalytic reduction of CO2 with H2O: significant enhancement of the activity of Pt-TiO2 in CH4 formation by addition of MgO. Chem Commun 49:2451–2453. https://doi.org/10.1039/c3cc00107e

    Article  CAS  Google Scholar 

  83. Yu J, Ma T, Liu G, Cheng B (2011) Enhanced photocatalytic activity of bimodal mesoporous titania powders by C60 modification. Dalton Trans 40:6635–6644. https://doi.org/10.1039/c1dt10274e

    Article  CAS  Google Scholar 

  84. Wang F, Zhang K (2012) Physicochemical and photocatalytic activities of self-assembling TiO2 nanoparticles on nanocarbons surface. Curr Appl Phys 12:346–352. https://doi.org/10.1016/j.cap.2011.07.030

    Article  Google Scholar 

  85. Sampaio MJ, Silva CG, Marques RRN et al (2011) Carbon nanotube- TiO2 thin films for photocatalytic applications. Catal Today 161:91–96. https://doi.org/10.1016/j.cattod.2010.11.081

    Article  CAS  Google Scholar 

  86. Min S, Wang F, Lu G (2016) Graphene-induced spatial charge separation for selective water splitting over TiO2 photocatalyst. Catal Commun 80:28–32. https://doi.org/10.1016/j.catcom.2016.03.015

    Article  CAS  Google Scholar 

  87. Zhang W, Guo H, Sun H, Zeng RC (2016) Hydrothermal synthesis and photoelectrochemical performance enhancement of TiO2/graphene composite in photo-generated cathodic protection. Appl Surf Sci 382:128–134. https://doi.org/10.1016/j.apsusc.2016.04.124

    Article  CAS  Google Scholar 

  88. Lei J, Chen Y, Shen F et al (2015) Surface modification of TiO2 with g-C3N4 for enhanced UV and visible photocatalytic activity. J Alloys Compd 631:328–334. https://doi.org/10.1016/j.jallcom.2015.01.080

    Article  CAS  Google Scholar 

  89. Zhao D, Chen C, Wang Y et al (2008) Surface modification of TiO2 by phosphate: effect on photocatalytic activity and mechanism implication. J Phys Chem C 112:5993–6001. https://doi.org/10.1021/jp712049c

    Article  CAS  Google Scholar 

  90. Kim TK, Lee MN, Lee SH et al (2005) Development of surface coating technology of TiO2 powder and improvement of photocatalytic activity by surface modification. Thin Solid Films 475:171–177. https://doi.org/10.1016/j.tsf.2004.07.021

    Article  CAS  Google Scholar 

  91. Ishikawa Y, Matsumoto Y, Nishida Y et al (2003) Surface treatment of silicon carbide using TiO2 (IV) photocatalyst. J Am Chem Soc 125:6558–6562. https://doi.org/10.1021/ja020359i

    Article  CAS  Google Scholar 

  92. Jalili MM, Davoudi K, Zafarmand Sedigh E, Farrokhpay S (2016) Surface treatment of TiO2 nanoparticles to improve dispersion in non-polar solvents. Adv Powder Technol 27:2168–2174. https://doi.org/10.1016/j.apt.2016.07.030

    Article  CAS  Google Scholar 

  93. Ruzicka JY, Abu Bakar F, Hoeck C et al (2015) Toward control of gold cluster aggregation on TiO2 via surface treatments. J Phys Chem C 119:24465–24474. https://doi.org/10.1021/acs.jpcc.5b07732

    Article  CAS  Google Scholar 

  94. Méndez-Medrano MG, Kowalska E, Lehoux A et al (2016) Surface modification of TiO2 with Ag nanoparticles and CuO nanoclusters for application in photocatalysis. J Phys Chem C 120:5143–5154. https://doi.org/10.1021/acs.jpcc.5b10703

    Article  CAS  Google Scholar 

  95. Cha BJ, Woo TG, Han SW et al (2018) Surface modification of TiO2 for obtaining high resistance against poisoning during photocatalytic decomposition of toluene. Catalysts 8:54. https://doi.org/10.3390/catal8110500

    Article  CAS  Google Scholar 

  96. Ryu J, Choi W (2004) Effects of TiO2 surface modifications on photocatalytic oxidation of arsenite: she role of superoxides. Environ Sci Technol 38:2928–2933. https://doi.org/10.1021/es034725p

    Article  CAS  Google Scholar 

  97. Lee J, Choi W, Yoon J (2005) Photocatalytic degradation of N-nitrosodimethylamine: Mechanism, product distribution, and TiO2 surface modification. Environ Sci Technol 39:6800–6807. https://doi.org/10.1021/es0481777

    Article  CAS  Google Scholar 

  98. Wang X, Wang X, Zhao J et al (2017) Solar light-driven photocatalytic destruction of cyanobacteria by F-Ce-TiO2/expanded perlite floating composites. Chem Eng J 320:253–263. https://doi.org/10.1016/j.cej.2017.03.062

    Article  CAS  Google Scholar 

  99. Wang X, Wang X, Zhao J et al (2017) An alternative to in situ photocatalytic degradation of microcystin-LR by worm-like N, P co-doped TiO2/expanded graphite by carbon layer (NPT-EGC) floating composites. Appl Catal B 206:479–489. https://doi.org/10.1016/j.apcatb.2017.01.046

    Article  CAS  Google Scholar 

  100. Park H, Park Y, Kim W, Choi W (2013) Surface modification of TiO2 photocatalyst for environmental applications. J Photochem Photobiol, C 15:1–20. https://doi.org/10.1016/j.jphotochemrev.2012.10.001

    Article  CAS  Google Scholar 

  101. Freimann SA, Housecroft CE, Constable EC (2022) Attraction in action: reduction of water to dihydrogen using surface-functionalized TiO2 nanoparticles. Nanomaterials 12:789. https://doi.org/10.3390/nano12050789

    Article  CAS  Google Scholar 

  102. Zeng B, Wang S, Xiao Y et al (2022) Surface phosphate functionalization for boosting plasmon-induced water oxidation on Au/TiO2. J Phys Chem C 126:5167–5174. https://doi.org/10.1021/acs.jpcc.2c00206

    Article  CAS  Google Scholar 

  103. Xing Z, Zhang J, Cui J et al (2018) Recent advances in floating TiO2-based photocatalysts for environmental application. Elsevier, New York

    Book  Google Scholar 

  104. Xiong D, Chang H, Zhang Q et al (2015) Preparation and characterization of CuCrO2/TiO2 heterostructure photocatalyst with enhanced photocatalytic activity. Appl Surf Sci 347:747–754. https://doi.org/10.1016/j.apsusc.2015.04.188

    Article  CAS  Google Scholar 

  105. Janczarek M, Endo M, Zhang D et al (2018) Enhanced photocatalytic and antimicrobial performance of cuprous oxide/titania: the effect of titania matrix. Materials 11:54. https://doi.org/10.3390/ma11112069

    Article  CAS  Google Scholar 

  106. Burungale V, Seong C, Bae H et al (2022) Surface modification of p/n heterojunction based TiO2-Cu2O photoanode with a cobalt-phosphate (CoPi) co-catalyst for effective oxygen evolution reaction. Appl Surf Sci 573:54. https://doi.org/10.1016/j.apsusc.2021.151445

    Article  CAS  Google Scholar 

  107. Liu L, Yang W, Sun W et al (2015) Creation of Cu2O@ TiO2 composite photocatalysts with p-N heterojunctions formed on exposed Cu2O facets, their energy band alignment study, and their enhanced photocatalytic activity under illumination with visible light. ACS Appl Mater Interfaces 7:1465–1476. https://doi.org/10.1021/am505861c

    Article  CAS  Google Scholar 

  108. Li H, Yu H, Quan X et al (2015) Improved photocatalytic performance of heterojunction by controlling the contact facet: high electron transfer capacity between TiO2 and the 110 facet of BiVO4 caused by suitable energy band alignment. Adv Funct Mater 25:3074–3080. https://doi.org/10.1002/adfm.201500521

    Article  CAS  Google Scholar 

  109. Xie M, Fu X, Jing L et al (2014) Long-lived, visible-light-excited charge carriers of TiO2/BiVO4 nanocomposites and their unexpected photoactivity for water splitting. Adv Energy Mater 4:54. https://doi.org/10.1002/aenm.201300995

    Article  CAS  Google Scholar 

  110. Moniz SJA, Shevlin SA, Martin DJ et al (2015) Visible-light driven heterojunction photocatalysts for water splitting-a critical review. Energy Environ Sci 8:731–759

    Article  CAS  Google Scholar 

  111. Bai S, Wang L, Chen X et al (2015) Chemically exfoliated metallic MoS2 nanosheets: a promising supporting co-catalyst for enhancing the photocatalytic performance of TiO2 nanocrystals. Nano Res 8:175–183. https://doi.org/10.1007/s12274-014-0606-9

    Article  CAS  Google Scholar 

  112. Zhou J, Zhang M, Zhu Y (2015) Photocatalytic enhancement of hybrid C3N4/TiO2 prepared via ball milling method. Phys Chem Chem Phys 17:3647–3652. https://doi.org/10.1039/c4cp05173d

    Article  CAS  Google Scholar 

  113. Ryu J, Kim S, Kim HI et al (2015) Self-assembled TiO2 agglomerates hybridized with reduced-graphene oxide: a high-performance hybrid photocatalyst for solar energy conversion. Chem Eng J 262:409–416. https://doi.org/10.1016/j.cej.2014.10.001

    Article  CAS  Google Scholar 

  114. Zhang DY, Ge CW, Wang JZ et al (2016) Single-layer graphene- TiO2 nanotubes array heterojunction for ultraviolet photodetector application. Appl Surf Sci 387:1162–1168. https://doi.org/10.1016/j.apsusc.2016.07.041

    Article  CAS  Google Scholar 

  115. Hoang Tran M, Bae JS, Hur J (2022) Self-powered, transparent, flexible, and solar-blind deep-UV detector based on surface-modified TiO2 nanoparticles. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2022.154528

    Article  Google Scholar 

  116. Mohammadizadeh MR, Bagheri M, Aghabagheri S, Abdi Y (2015) Photocatalytic activity of TiO2 thin films by hydrogen DC plasma. In: Applied surface science. Elsevier B.V., pp 43–49. https://doi.org/10.1016/j.apsusc.2015.03.196

  117. Tsujimoto K, Nguyen D-C, Ito S et al (2012) TiO2 surface treatment effects by Mg2+, Ba2+, and Al3+ on Sb2S3 extremely thin absorber solar cells. J Phys Chem C 116:13465−13471

  118. Neetu SS, Srivastava P, Bahadur L (2020) Hydrothermal synthesized Nd-doped TiO2 with anatase and brookite phases as highly improved photoanode for dye-sensitized solar cell. Sol Energy 208:173–181. https://doi.org/10.1016/j.solener.2020.07.085

    Article  CAS  Google Scholar 

  119. Jiang Q, Zhang X, You J (2018) SnO2: A Wonderful Electron Transport Layer for Perovskite Solar Cells. Small. https://doi.org/10.1002/smll.201801154

  120. Lee Y, Paek S, Cho KT et al (2017) Enhanced charge collection with passivation of the tin oxide layer in planar perovskite solar cells. J Mater Chem A Mater 5:12729–12734. https://doi.org/10.1039/c7ta04128d

    Article  CAS  Google Scholar 

  121. Wu C, Huang Z, He Y et al (2017) TiO2/SnOxCly double layer for highly efficient planar perovskite solar cells. Org Electron 50:485–490. https://doi.org/10.1016/j.orgel.2017.07.050

    Article  CAS  Google Scholar 

  122. Wu T, Zhen C, Wu J et al (2019) Chlorine capped SnO2 quantum-dots modified TiO2 electron selective layer to enhance the performance of planar perovskite solar cells. Sci Bull (Beijing) 64:547–552. https://doi.org/10.1016/j.scib.2019.04.009

    Article  CAS  Google Scholar 

  123. Tavakoli MM, Yadav P, Tavakoli R, Kong J (2018) Surface engineering of TiO2 ETL for highly efficient and hysteresis-less planar perovskite solar cell (21.4%) with enhanced open-circuit voltage and stability. Adv Energy Mater. https://doi.org/10.1002/aenm.201800794

    Article  Google Scholar 

  124. Nguyen VN, Nguyen MV, Nguyen THT et al (2020) Surface-modified titanium dioxide nanofibers with gold nanoparticles for enhanced photoelectrochemical water splitting. Catalysts. https://doi.org/10.3390/catal10020261

    Article  Google Scholar 

  125. Yang D, Yang R, Wang K et al (2018) High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2. Nat Commun. https://doi.org/10.1038/s41467-018-05760-x

    Article  Google Scholar 

  126. Kumari N, Gohel JV, Patel SR (2018) Optimization of TiO2/ZnO bilayer electron transport layer to enhance efficiency of perovskite solar cell. Mater Sci Semicond Process 75:149–156. https://doi.org/10.1016/j.mssp.2017.11.030

    Article  CAS  Google Scholar 

  127. Xu X, Zhang H, Shi J et al (2015) Highly efficient planar perovskite solar cells with a TiO2/ZnO electron transport bilayer. J Mater Chem A Mater 3:19288–19293. https://doi.org/10.1039/c5ta04239a

    Article  CAS  Google Scholar 

  128. Li X, Liu Y, Eze VO et al (2019) Amorphous nanoporous WOx modification for stability enhancement and hysteresis reduction in TiO2 -based perovskite solar cells. Sol Energy Mater Sol Cells 196:157–166. https://doi.org/10.1016/j.solmat.2019.03.040

    Article  CAS  Google Scholar 

  129. Zhang X, Zhang W, Wu T et al (2019) High efficiency and negligible hysteresis planar perovskite solar cells based on NiO nanocrystals modified TiO2 electron transport layers. Sol Energy 181:293–300. https://doi.org/10.1016/j.solener.2019.02.011

    Article  CAS  Google Scholar 

  130. Lee MM, Teuscher J, Miyasaka T et al (2012) Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338:643–647. https://doi.org/10.1126/science.1228604

    Article  CAS  Google Scholar 

  131. Du Y, Cai H, Xing Z et al (2017) Propelling efficiency and stability of planar perovskite solar cells via Al2O3 interface modification to compact TiO2 layer. Org Electron 51:249–256

    Article  CAS  Google Scholar 

  132. Liang X, Li W, Li J et al (2016) High quality perovskite thin films induced by crystal seeds with lead monoxide interfacial engineering. J Mater Chem A Mater 4:16913–16919. https://doi.org/10.1039/c6ta06735b

    Article  CAS  Google Scholar 

  133. Sriharan N, Senthil TS, Soundarrajan P, Kang M (2022) Surface modification of TiO2 nanorods with Mg doping for efficient photoelectrodes in dye sensitized solar cells. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2022.152719

    Article  Google Scholar 

  134. Li W, Li J, Niu G, Wang L (2016) Effect of cesium chloride modification on the film morphology and UV-induced stability of planar perovskite solar cells. J Mater Chem A Mater 4:11688–11695. https://doi.org/10.1039/c5ta09165a

    Article  CAS  Google Scholar 

  135. Li W, Zhang W, van Reenen S et al (2016) Enhanced UV-light stability of planar heterojunction perovskite solar cells with caesium bromide interface modification. Energy Environ Sci 9:490–498. https://doi.org/10.1039/c5ee03522h

    Article  CAS  Google Scholar 

  136. Byranvand MM, Kim T, Song S et al (2018) p-Type CuI islands on TiO2 electron transport layer for a highly efficient planar-perovskite solar cell with negligible hysteresis. Adv Energy Mater 8:54. https://doi.org/10.1002/aenm.201702235

    Article  CAS  Google Scholar 

  137. Ren Z, Wang N, Zhu M et al (2018) A NH4F interface passivation strategy to produce air-processed high-performance planar perovskite solar cells. Electrochim Acta 282:653–661. https://doi.org/10.1016/j.electacta.2018.06.112

    Article  CAS  Google Scholar 

  138. Jiang J, Jia X, Wang S et al (2018) High-performance flexible perovskite solar cells with effective interfacial optimization processed at low temperatures. Chemsuschem 11:4131–4138. https://doi.org/10.1002/cssc.201801978

    Article  CAS  Google Scholar 

  139. Vineeth VN, Unni GE, Srikrishnarka P, et al (2019) Surface modification of electrospun nanofibers of TiO2 in TiCl4 treatment for cactus-like TiO2 nanostructures. In: Materials today: proceedings. Elsevier Ltd, pp 1351–1355. https://doi.org/10.1016/j.matpr.2020.04.237

  140. He X, Wu J, Tu Y et al (2017) Reducing hysteresis and enhancing performance of perovskite solar cells using acetylacetonate modified TiO2 nanoparticles as electron transport layers. J Power Sources 365:83–91. https://doi.org/10.1016/j.jpowsour.2017.08.063

    Article  CAS  Google Scholar 

  141. Zhang Y, Liu X, Li P et al (2019) Dopamine-crosslinked TiO2/perovskite layer for efficient and photostable perovskite solar cells under full spectral continuous illumination. Nano Energy 56:733–740. https://doi.org/10.1016/j.nanoen.2018.11.068

    Article  CAS  Google Scholar 

  142. Hu W, Zhou W, Lei X et al (2019) Low-Temperature in situ amino functionalization of TiO2 nanoparticles sharpens electron management achieving over 21% efficient planar perovskite solar cells. Adv Mater 31:54. https://doi.org/10.1002/adma.201806095

    Article  CAS  Google Scholar 

  143. Adachi Y, Tanaka D, Ooyama Y, Ohshita J (2018) Modification of TiO2 surface by disilanylene polymers and application to dye-sensitized solar cells. Inorganics 6:3. https://doi.org/10.3390/inorganics6010003

    Article  CAS  Google Scholar 

  144. Said AA, Xie J, Zhang Q (2019) Recent progress in organic electron transport materials in inverted perovskite solar cells. Small 15:1900854. https://doi.org/10.1002/smll.201900854

    Article  CAS  Google Scholar 

  145. Deng LL, Xie SY, Gao F (2018) Fullerene-based materials for photovoltaic applications: toward efficient, hysteresis-free, and stable perovskite solar cells. Adv Electron Mater. https://doi.org/10.1002/aelm.201700435

  146. Zhou YQ, Wu BS, Lin GH et al (2018) Interfacing pristine C60 onto TiO2 for viable flexibility in perovskite solar cells by a low-temperature all-solution process. Adv Energy Mater 8:54. https://doi.org/10.1002/aenm.201800399

    Article  CAS  Google Scholar 

  147. Yoon H, Kang SM, Lee JK, Choi M (2016) Hysteresis-free low-temperature-processed planar perovskite solar cells with 19.1% efficiency. Energy Environ Sci 9:2262–2266. https://doi.org/10.1039/c6ee01037g

    Article  CAS  Google Scholar 

  148. Li H, Xue Y, Zheng B et al (2017) Interface modification with PCBM intermediate layers for planar formamidinium perovskite solar cells. RSC Adv 7:30422–30427. https://doi.org/10.1039/c7ra04311b

    Article  CAS  Google Scholar 

  149. Lu G, He F, Pang S et al (2017) A PCBM-modified TiO2 blocking layer towards efficient perovskite solar cells. Int J Photoenergy. https://doi.org/10.1155/2017/2562968

    Article  Google Scholar 

  150. Kim BJ, Kim M, cheol, Lee DG, et al (2018) Interface design of hybrid electron extraction layer for relieving hysteresis and retarding charge recombination in perovskite solar cells. Adv Mater Interfaces. https://doi.org/10.1002/admi.201800993

    Article  Google Scholar 

  151. Wang H, Cai F, Zhang M et al (2018) Halogen-substituted fullerene derivatives for interface engineering of perovskite solar cells. J Mater Chem A Mater 6:21368–21378. https://doi.org/10.1039/C8TA07904H

    Article  CAS  Google Scholar 

  152. Zhou W, Zhen J, Liu Q et al (2017) Successive surface engineering of TiO2 compact layers: Via dual modification of fullerene derivatives affording hysteresis-suppressed high-performance perovskite solar cells. J Mater Chem A Mater 5:1724–1733. https://doi.org/10.1039/c6ta07876a

    Article  CAS  Google Scholar 

  153. Ryu J, Lee JW, Yu H et al (2017) Size effects of a graphene quantum dot modified-blocking TiO2 layer for efficient planar perovskite solar cells. J Mater Chem A Mater 5:16834–16842. https://doi.org/10.1039/c7ta02242e

    Article  CAS  Google Scholar 

  154. Kırbıyık Ç, Kara K, Kara DA et al (2017) Enhancing the c-TiO2 based perovskite solar cell performance via modification by a serial of boronic acid derivative self-assembled monolayers. Appl Surf Sci 423:521–527. https://doi.org/10.1016/j.apsusc.2017.06.189

    Article  CAS  Google Scholar 

  155. Sun Y, Fang X, Ma Z et al (2017) Enhanced UV-light stability of organometal halide perovskite solar cells with interface modification and a UV absorption layer. J Mater Chem C Mater 5:8682–8687. https://doi.org/10.1039/c7tc02603j

    Article  CAS  Google Scholar 

  156. Yu JC, Kim DB, Baek G et al (2015) High-performance planar perovskite optoelectronic devices: a morphological and interfacial control by polar solvent treatment. Adv Mater 27:3492–3500. https://doi.org/10.1002/adma.201500465

    Article  CAS  Google Scholar 

  157. Xue B, Bi S, You S et al (2019) Retardation of trap-assisted recombination in lead halide perovskite solar cells by a dimethylbiguanide anchor layer. Chem Eur J 25:1076–1082. https://doi.org/10.1002/chem.201804799

    Article  CAS  Google Scholar 

  158. Jiang J, Jin Z, Lei J et al (2017) ITIC surface modification to achieve synergistic electron transport layer enhancement for planar-type perovskite solar cells with efficiency exceeding 20%. J Mater Chem A Mater 5:9514–9522. https://doi.org/10.1039/c7ta01636k

    Article  CAS  Google Scholar 

  159. Yang L, Wu M, Cai F et al (2018) Restrained light-soaking and reduced hysteresis in perovskite solar cells employing a helical perylene diimide interfacial layer. J Mater Chem A Mater 6:10379–10387. https://doi.org/10.1039/c8ta02584c

    Article  CAS  Google Scholar 

  160. You S, Wang H, Bi S et al (2018) A biopolymer heparin sodium interlayer anchoring TiO2 and MAPbI3 enhances trap passivation and device stability in perovskite solar cells. Adv Mater. https://doi.org/10.1002/adma.201706924

    Article  Google Scholar 

  161. Zheng X, Yu W, Priya S (2018) Interfacial charge-transfer engineering by ionic liquid for high performance planar CH3NH3PbBr3 solar cells. J Energy Chem 27:748–752. https://doi.org/10.1016/j.jechem.2017.09.016

    Article  Google Scholar 

  162. Chen X, Zhang Z, Fang J et al (2022) TiO2 nanoparticles via simple surface modification as cathode interlayer for efficient organic solar cells. Org Electron. https://doi.org/10.1016/j.orgel.2021.106422

    Article  Google Scholar 

  163. Mahadik SA, Yadav HM, Mahadik SS (2022) Surface properties of chlorophyll-a sensitized TiO2 nanorods for dye-sensitized solar cells applications. Colloids Interface Sci Commun. https://doi.org/10.1016/j.colcom.2021.100558

    Article  Google Scholar 

  164. Bae JH, Do SB, Cho SH et al (2022) TiO2 treatment using ultrasonication for bubble cavitation generation and efficiency assessment of a dye-sensitized solar cell. Ultrason Sonochem. https://doi.org/10.1016/j.ultsonch.2022.105933

    Article  Google Scholar 

  165. Naimeh NSJ, Iranid R (2015) Visible-switchable bR/TiO2 nanostructured photoanodes for bioinspired solar energy conversion. RSC Adv 5:18642–18646. https://doi.org/10.1039/b000000x

    Article  Google Scholar 

  166. Molaeirad A, Janfaza S, Karimi-Fard A, Mahyad B (2015) Photocurrent generation by adsorption of two main pigments of Halobacterium salinarum on TiO2 nanostructured electrode. Biotechnol Appl Biochem 62:121–125. https://doi.org/10.1002/bab.1244

    Article  CAS  Google Scholar 

  167. Quiñones-jurado ZV, Waldo-mendoza MÁ, Aguilera-bandin HM et al (2014) Silver nanoparticles supported on TiO2 and their antibacterial properties: effect of surface confinement and nonexistence of plasmon resonance. Mater Sci Appl 5:895–903

    Google Scholar 

  168. Xiao G, Zhang X, Zhang W et al (2015) Visible-light-mediated synergistic photocatalytic antimicrobial effects and mechanism of Ag-nanoparticles@chitosan-TiO2 organic–inorganic composites for water disinfection. Appl Catal B 170–171:255–262. https://doi.org/10.1016/j.apcatb.2015.01.042

    Article  CAS  Google Scholar 

  169. Sharma R, Jafari SM, Sharma S (2020) Antimicrobial bio-nanocomposites and their potential applications in food packaging. Food Control 112:107086. https://doi.org/10.1016/j.foodcont.2020.107086

    Article  CAS  Google Scholar 

  170. Gonzalez-Calderon JA, Vallejo-Montesinos J, Martínez-Martínez HN et al (2019) Effect of chemical modification of titanium dioxide particles via silanization under properties of chitosan/potato-starch films. Rev Mexicana Ingeniera Quimica 18:54. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2019v18n3/GonzalezC

    Article  Google Scholar 

  171. Vallejo-Montesinos J, Gámez-Cordero J, Zarraga R et al (2019) Influence of the surface modification of titanium dioxide nanoparticles TiO2 under efficiency of silver nanodots deposition and its effect under the properties of starch–chitosan (SC) films. Polym Bull 77:107–133. https://doi.org/10.1007/s00289-019-02740-z

    Article  CAS  Google Scholar 

  172. Wang G, Weng D, Chen C et al (2020) Influence of TiO2 nanostructure size and surface modification on surface wettability and bacterial adhesion. Colloids Interface Sci Commun 34:100220. https://doi.org/10.1016/j.colcom.2019.100220

    Article  CAS  Google Scholar 

  173. Hang R, Gao A, Huang X et al (2014) Antibacterial activity and cytocompatibility of Cu-Ti-O nanotubes. J Biomed Mater Res A 102:1850–1858. https://doi.org/10.1002/jbm.a.34847

    Article  CAS  Google Scholar 

  174. Gao A, Hang R, Huang X et al (2014) The effects of titania nanotubes with embedded silver oxide nanoparticles on bacteria and osteoblasts. Biomaterials 35:4223–4235. https://doi.org/10.1016/j.biomaterials.2014.01.058

    Article  CAS  Google Scholar 

  175. Mondal K, Ali MA, Agrawal VV et al (2014) Highly sensitive biofunctionalized mesoporous electrospun TiO2 nanofiber based interface for biosensing. ACS Appl Mater Interfaces 6:2516–2527. https://doi.org/10.1021/am404931f

    Article  CAS  Google Scholar 

  176. Wang T, Jiang H, Wan L et al (2014) Potential application of functional porous TiO2 nanoparticles in light-controlled drug release and targeted drug delivery. Acta Biomater 13:354–363. https://doi.org/10.1016/j.actbio.2014.11.010

    Article  CAS  Google Scholar 

  177. Aw MS, Gulati K, Losic D (2011) Controlling drug release from titania nanotube arrays using polymer nanocarriers and biopolymer coating. https://doi.org/10.4236/jbnb.2011.225058

  178. Aw MS, Addai-mensah J, Losic D (2012) A multi-drug delivery system with sequential release using titania nanotube arrays w. ChemComm 48:3348–3350. https://doi.org/10.1039/c2cc17690d

    Article  CAS  Google Scholar 

  179. Cai BK, Jiang F, Luo Z, Chen X (2010) Temperature-responsive controlled drug delivery system based on titanium nanotubes **. 565–570. https://doi.org/10.1002/adem.201080015

  180. Hamlekhan A, Sinha-ray S, Takoudis C et al (2015) Fabrication of drug eluting implants: study of drug release mechanism from titanium dioxide nanotubes. https://doi.org/10.1088/0022-3727/48/27/275401

  181. Bayram C, Erdal E, Karahalilo Z, Baki E (2014) Titania nanotubes with adjustable dimensions for drug reservoir sites and enhanced cell adhesion. 35:100–105. https://doi.org/10.1016/j.msec.2013.10.033

  182. Aw MS, Addai-mensah J, Losic D (2012) Polymer micelles for delayed release of therapeutics from drug-releasing surfaces with nanotubular structures a. Macromol Biosci. https://doi.org/10.1002/mabi.201200012

    Article  Google Scholar 

  183. Simovic S, Losic D, Vasilev K (2010) Controlled drug release from porous materials by plasma polymer deposition. Chem Commun 46:1317–1319. https://doi.org/10.1039/b919840g

    Article  CAS  Google Scholar 

  184. Ji MK, Oh G, Kim JW et al (2017) Effects on antibacterial activity and osteoblast viability of non-thermal atmospheric pressure plasma and heat treatments of TiO2 nanotubes. J Nanosci Nanotechnol 17:2312–2315. https://doi.org/10.1166/jnn.2017.13328

    Article  CAS  Google Scholar 

  185. Gulati K, Atkins GJ, Findlay DM, Losic D (2013) Nano-engineered titanium for enhanced bone therapy. Biosens Nanomed VI 8812:88120C. https://doi.org/10.1117/12.2027151

    Article  CAS  Google Scholar 

  186. Gulati K, Ramakrishnan S, Aw MS et al (2012) Biocompatible polymer coating of titania nanotube arrays for improved drug elution and osteoblast adhesion. Acta Biomater 8:449–456. https://doi.org/10.1016/j.actbio.2011.09.004

    Article  CAS  Google Scholar 

  187. Lai M, Jin Z, Su Z (2017) Surface modification of TiO2 nanotubes with osteogenic growth peptide to enhance osteoblast differentiation. Mater Sci Eng, C 73:490–497. https://doi.org/10.1016/j.msec.2016.12.083

    Article  CAS  Google Scholar 

  188. Wang R, Shi M, Xu F et al (2020) Graphdiyne-modified TiO2 nanofibers with osteoinductive and enhanced photocatalytic antibacterial activities to prevent implant infection. Nat Commun. https://doi.org/10.1038/s41467-020-18267-1

    Article  Google Scholar 

  189. Nešić M, Žakula J, Korićanac L, Stepić M, Radoičić M, Popović I, Šaponjić Z, Petković M (2017) Light controlled metallo-drug delivery system based on the TiO2-nanoparticles and Ru complex. J Photochem Photobiol A Chem 1:55–66. https://doi.org/10.1016/j.jphotochem.2017.06.045

    Article  CAS  Google Scholar 

  190. Liu E, Zhou Y, Liu Z et al (2015) Cisplatin loaded hyaluronic acid modified TiO2 nanoparticles for neoadjuvant chemotherapy of ovarian cancer. J Nanomater 2015:1–8. https://doi.org/10.1155/2015/390358

    Article  Google Scholar 

  191. Liu H, Sun N, Ding P et al (2020) Fabrication of aptamer modified TiO2 nanofibers for specific capture of circulating tumor cells. Colloids Surf B Biointerfaces. https://doi.org/10.1016/j.colsurfb.2020.110985

    Article  Google Scholar 

  192. Kim S, Im S, Park EY et al (2020) Drug-loaded titanium dioxide nanoparticle coated with tumor targeting polymer as a sonodynamic chemotherapeutic agent for anti-cancer therapy. Nanomedicine 24:102110. https://doi.org/10.1016/j.nano.2019.102110

    Article  CAS  Google Scholar 

  193. Kaviyarasu K, Geetha N, Kanimozhi K et al (2017) In vitro cytotoxicity effect and antibacterial performance of human lung epithelial cells A549 activity of Zinc oxide doped TiO2 nanocrystals: Investigation of bio-medical application by chemical method. Mater Sci Eng, C 74:325–333. https://doi.org/10.1016/j.msec.2016.12.024

    Article  CAS  Google Scholar 

  194. Hou X, Mao D, Ma H et al (2015) Antibacterial ability of Ag- TiO2 nanotubes prepared by ion implantation and anodic oxidation. Mater Lett 161:309–312. https://doi.org/10.1016/j.matlet.2015.08.125

    Article  CAS  Google Scholar 

  195. Lan M, Liu C, Huang H, Lee S (2013) Both Enhanced Biocompatibility and Antibacterial Activity in Ag-Decorated TiO2 Nanotubes. 8:4–11. https://doi.org/10.1371/journal.pone.0075364

  196. Endo M, Wei Z, Wang K, et al (2018) Noble metal-modified titania with visible-light activity for the decomposition of microorganisms. https://doi.org/10.3762/bjnano.9.77

  197. Pagnout C, Jomini S, Dadhwal M et al (2012) Role of electrostatic interactions in the toxicity of titanium dioxide nanoparticles toward Escherichia coli. Colloids Surf B Biointerfaces 92:315–321. https://doi.org/10.1016/j.colsurfb.2011.12.012

    Article  CAS  Google Scholar 

  198. ur Rehman K, Zaman U, Tahir K et al (2022) A Coronopus didymus based eco-benign synthesis of Titanium dioxide nanoparticles (TiO2 NPs) with enhanced photocatalytic and biomedical applications. Inorg Chem Commun. https://doi.org/10.1016/j.inoche.2021.109179

    Article  Google Scholar 

  199. Balan R, Gayathri V (2022) In-vitro and antibacterial activities of novel POT/ TiO2/PCL composites for tissue engineering and biomedical applications. Polym Bull 79:4269–4286. https://doi.org/10.1007/s00289-021-03707-9

    Article  CAS  Google Scholar 

  200. Rahnamaee SY, Ahmadi Seyedkhani S, Eslami Saed A et al (2022) Bioinspired TiO2/chitosan/HA coatings on Ti surfaces: biomedical improvement by intermediate hierarchical films. Biomed Mater (Bristol). https://doi.org/10.1088/1748-605X/ac61fc

    Article  Google Scholar 

  201. Mohamed MS, Torabi A, Paulose M et al (2017) Anodically grown titania nanotube induced cytotoxicity has genotoxic origins. Nature Publishing Group, pp 1–11. https://doi.org/10.1038/srep41844

  202. Regmi C, Joshi B, Ray SK, Gyawali G (2018) Understanding mechanism of photocatalytic microbial decontamination of environmental wastewater. Front Chem 6:1–6. https://doi.org/10.3389/fchem.2018.00033

    Article  CAS  Google Scholar 

  203. Yadav HM, Otari SV, Koli VB et al (2014) Chemistry Preparation and characterization of copper-doped anatase TiO2 nanoparticles with visible light photocatalytic antibacterial activity. J Photochem Photobiol A Chem 280:32–38. https://doi.org/10.1016/j.jphotochem.2014.02.006

    Article  CAS  Google Scholar 

  204. Xu W, Qi M, Li X et al (2019) TiO2 nanotubes modified with Au nanoparticles for visible-light enhanced antibacterial and anti-inflammatory capabilities. J Electroanal Chem 842:66–73. https://doi.org/10.1016/j.jelechem.2019.04.062

    Article  CAS  Google Scholar 

  205. Kochkodan V, Tsarenko S, Potapchenko N et al (2008) Adhesion of microorganisms to polymer membranes: a photobactericidal effect of surface treatment with TiO2. Desalination 220:380–385. https://doi.org/10.1016/j.desal.2007.01.042

    Article  CAS  Google Scholar 

  206. Bhardwaj G, Webster TJ (2017) Reduced bacterial growth and increased osteoblast proliferation on titanium with a nanophase TiO2 surface treatment. Int J Nanomedicine 12:363–369. https://doi.org/10.2147/IJN.S116105

    Article  CAS  Google Scholar 

  207. Vishnu J, Manivasagam VK, Gopal V et al (2019) Hydrothermal treatment of etched titanium: a potential surface nano-modification technique for enhanced biocompatibility. Nanomedicine 20:102016. https://doi.org/10.1016/j.nano.2019.102016

    Article  CAS  Google Scholar 

  208. Kiwi J, Rtimi S, Sanjines R, Pulgarin C (2014) TiO2 and TiO2-doped films able to kill bacteria by contact: new evidence for the dynamics of bacterial inactivation in the dark and under light irradiation. Int J Photoenergy 2014:1–17

    Article  Google Scholar 

  209. López de Dicastillo C, Patiño C, Galotto MJ et al (2018) Novel antimicrobial titanium dioxide nanotubes obtained through a combination of atomic layer deposition and electrospinning technologies. Nanomaterials. https://doi.org/10.3390/nano8020128

    Article  Google Scholar 

  210. Huang Y, Mei L, Chen X, Wang Q (2018) Recent developments in food packaging based on nanomaterials. Nanomaterials 8:830. https://doi.org/10.3390/nano8100830

    Article  CAS  Google Scholar 

  211. Goncalves G, Marques PAAP, Pinto RJB et al (2009) Surface modification of cellulosic fibres for multi-purpose TiO2 based nanocomposites. Compos Sci Technol 69:1051–1056. https://doi.org/10.1016/j.compscitech.2009.01.020

    Article  CAS  Google Scholar 

  212. Roilo D, Maestri CA, Scarpa M et al (2018) Gas barrier and optical properties of cellulose nanofiber coatings with dispersed TiO2 nanoparticles. Surf Coat Technol 343:131–137. https://doi.org/10.1016/j.surfcoat.2017.10.015

    Article  CAS  Google Scholar 

  213. Eskitoros Toğay ŞM, Tokgoz U (2021) Surface modified titanium dioxide/poly(lactic acid) nanocomposite films for tissue engineering. SDÜ Tıp Fakültesi Dergisi. https://doi.org/10.17343/sdutfd.1016353

  214. Oleyaei SA, Zahedi Y, Ghanbarzadeh B, Moayedi AA (2016) Modification of physicochemical and thermal properties of starch films by incorporation of TiO2 nanoparticles. Int J Biol Macromol 89:256–264. https://doi.org/10.1016/j.ijbiomac.2016.04.078

    Article  CAS  Google Scholar 

  215. Goudarzi V, Shahabi-Ghahfarrokhi I, Babaei-Ghazvini A (2017) Preparation of ecofriendly UV-protective food packaging material by starch/TiO2 bio-nanocomposite: characterization. Int J Biol Macromol 95:306–313. https://doi.org/10.1016/j.ijbiomac.2016.11.065

    Article  CAS  Google Scholar 

  216. Salarbashi D, Tafaghodi M, Bazzaz BSF (2018) Soluble soybean polysaccharide/ TiO2 bionanocomposite film for food application. Carbohydr Polym 186:384–393. https://doi.org/10.1016/j.carbpol.2017.12.081

    Article  CAS  Google Scholar 

  217. Li H, Yang J, Li P et al (2017) A facile method for preparation superhydrophobic paper with enhanced physical strength and moisture-proofing property. Carbohydr Polym 160:9–17. https://doi.org/10.1016/j.carbpol.2016.12.018

    Article  CAS  Google Scholar 

  218. Abdel Rehim MH, El-Samahy MA, Badawy AA, Mohram ME (2016) Photocatalytic activity and antimicrobial properties of paper sheets modified with TiO2/Sodium alginate nanocomposites. Carbohydr Polym 148:194–199. https://doi.org/10.1016/j.carbpol.2016.04.061

    Article  CAS  Google Scholar 

  219. Yuan B, Jiang B, Li H et al (2022) Interactions between TiO2 nanoparticles and plant proteins: role of hydrogen bonding. Food Hydrocoll 124:54. https://doi.org/10.1016/j.foodhyd.2021.107302

    Article  CAS  Google Scholar 

  220. Nešić A, Gordić M, Davidović S et al (2018) Pectin-based nanocomposite aerogels for potential insulated food packaging application. Carbohydr Polym 195:128–135. https://doi.org/10.1016/j.carbpol.2018.04.076

    Article  CAS  Google Scholar 

  221. Affrossman S, McKee A, Pethrick RA (2015) Effect of surface treatments of titanium dioxide pigments on the cure of polyester/triglycidyl isocyanurate powder coatings. J Coat Technol Res 12:1053–1064. https://doi.org/10.1007/s11998-015-9697-9

    Article  CAS  Google Scholar 

  222. Baig U, Uddin MK, Sajid M (2020) Surface modification of TiO2 nanoparticles using conducting polymer coating: spectroscopic, structural, morphological characterization and interaction with dye molecules. Mater Today Commun 25:101534. https://doi.org/10.1016/j.mtcomm.2020.101534

    Article  CAS  Google Scholar 

  223. Luo W, Hu X, Sun Y, Huang Y (2012) Surface modification of electrospun TiO2 nanofibers via layer-by-layer self-assembly for high-performance lithium-ion batteries. J Mater Chem 22:4910–4915. https://doi.org/10.1039/c2jm15197a

    Article  CAS  Google Scholar 

  224. Fehse M, Cavaliere S, Lippens PE et al (2013) Nb-doped TiO2 nanofibers for lithium ion batteries. J Phys Chem C 117:13827–13835. https://doi.org/10.1021/jp402498p

    Article  CAS  Google Scholar 

  225. Zhang H, Qing S, Gui Q et al (2022) Effects of surface modification and surfactants on stability and thermophysical properties of TiO2/water nanofluids. J Mol Liq. https://doi.org/10.1016/j.molliq.2021.118098

    Article  Google Scholar 

  226. Zhang H, Qing S, Xu J et al (2022) Stability and thermal conductivity of TiO2/water nanofluids: A comparison of the effects of surfactants and surface modification. Colloids Surf A Physicochem Eng Asp 641:54. https://doi.org/10.1016/j.colsurfa.2022.128492

    Article  CAS  Google Scholar 

  227. Kumar S, Singh R, Singh M et al (2022) Multi material 3D printing of PLA-PA6/TiO2 polymeric matrix: flexural, wear and morphological properties. J Thermoplast Compos Mater 35:2105–2124. https://doi.org/10.1177/0892705720953193

    Article  CAS  Google Scholar 

  228. Zaer-Miri S, Khosravi H (2022) Assessment of the wear behavior and interlaminar shear properties of modified nano-TiO2/jute fiber/epoxy multiscale composites. J Ind Text 51:1084–1099. https://doi.org/10.1177/1528083719893718

    Article  CAS  Google Scholar 

  229. Natrayan L, Kumar PVA, Baskara Sethupathy S et al (2022) Effect of Nano TiO2 filler addition on mechanical properties of bamboo/polyester hybrid composites and parameters optimized using grey Taguchi method. Adsorpt Sci Technol. https://doi.org/10.1155/2022/6768900

    Article  Google Scholar 

  230. Xu J, Liu Z, Wang J et al (2022) Preparation of core-shell C@ TiO2 composite microspheres with wrinkled morphology and its microwave absorption. J Colloid Interface Sci 607:1036–1049. https://doi.org/10.1016/j.jcis.2021.09.038

    Article  CAS  Google Scholar 

  231. Rashid MM, Simončič B, Tomšič B (2021) Recent advances in TiO2-functionalized textile surfaces. Surfaces Interfaces 22:100890. https://doi.org/10.1016/j.surfin.2020.100890

    Article  CAS  Google Scholar 

  232. Xu Y, Wen W, Wu J (2017) Titania nanowires functionalized polyester fabrics with enhanced photocatalytic and antibacterial performances. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2017.09.044

    Article  Google Scholar 

  233. Kale RD, Potdar T, Prerana Kane RS (2018) Nanocomposite polyester fabric based on graphene/titanium dioxide for conducting and UV protection functionality. Graphene Technol 3:35–46. https://doi.org/10.1007/s41127-018-0021-1

    Article  Google Scholar 

  234. Khan MZ, Baheti V, Militky J et al (2019) Self-cleaning properties of polyester fabrics coated particles and trimethoxy(octadecyl)silane. J Ind Text 50:1–23. https://doi.org/10.1177/1528083719836938

    Article  CAS  Google Scholar 

  235. Katiyar P, Mishra S, Srivastava A, Prasad NE (2020) Flame-retardant polyester fabric possessing dual contradictory characteristics of superhydrophobicity and self cleaning ability. https://doi.org/10.1166/jnn.2020.17166

  236. Min KS, Manivannan R, Son Y (2019) Porphyrin dye/TiO2 imbedded PET to improve visible-light photocatalytic activity and organosilicon attachment to enrich hydrophobicity to attain an efficient self-cleaning material. Dyes Pigm 162:8–17. https://doi.org/10.1016/j.dyepig.2018.10.014

    Article  CAS  Google Scholar 

  237. Yang H, Wang Y, Liu K, et al (2018) Facile fabrication of ultraviolet-protective silk fabrics via atomic layer deposition of TiO2 with subsequent polyvinylsilsesquioxane modification. Textile Res J. https://doi.org/10.1177/0040517518813626

  238. Chen F, Yang H, Li K, et al (2017) Exceptional wearability of hybrid silk fabric with controllable ultraviolet-protection properties. https://doi.org/10.1177/0040517517729390

  239. Yu J, Pang Z, Zheng C et al (2019) Applied surface science cotton fabric fi nished by PANI/TiO2 with multifunctions of conductivity, anti-ultraviolet and photocatalysis activity. Appl Surf Sci 470:84–90. https://doi.org/10.1016/j.apsusc.2018.11.112

    Article  CAS  Google Scholar 

  240. Cheng D, He M, Cai G et al (2018) Durable UV-protective cotton fabric by deposition of multilayer TiO2 nanoparticles films on the surface. J Coat Technol Res. https://doi.org/10.1007/s11998-017-0021-8

    Article  Google Scholar 

  241. Rella R, Rizzo A, Licciulli A et al (2002) Tests in controlled atmosphere on new optical gas sensing layers based on TiO2/metal-phthalocyanines hybrid system. Mater Sci Eng C 22:439–443. https://doi.org/10.1016/S0928-4931(02)00193-5

    Article  Google Scholar 

  242. Blasco-Tamarit E, Solsona B, Sánchez-Tovar R et al (2021) Influence of annealing atmosphere on photoelectrochemical response of TiO2 nanotubes anodized under controlled hydrodynamic conditions. J Electroanal Chem 897:115579. https://doi.org/10.1016/j.jelechem.2021.115579

    Article  CAS  Google Scholar 

  243. Maneerat C, Hayata Y (2008) Gas-phase photocatalytic oxidation of ethylene with TiO2-coated packaging film for horticultural products. Trans ASABE 51:163–168. https://doi.org/10.13031/2013.24200

    Article  CAS  Google Scholar 

  244. Curcio MS, Canela MC, Waldman WR (2018) Selective surface modification of TiO2-coated polypropylene by photodegradation. Eur Polym J 101:177–182. https://doi.org/10.1016/j.eurpolymj.2018.01.036

    Article  CAS  Google Scholar 

  245. Moustafa H, Karmalawi AM, Youssef AM (2021) Development of dapsone-capped TiO2 hybrid nanocomposites and their effects on the UV radiation, mechanical, thermal properties and antibacterial activity of PVA bionanocomposites. Environ Nanotechnol Monit Manag 16:100482. https://doi.org/10.1016/j.enmm.2021.100482

    Article  CAS  Google Scholar 

  246. Tekin D, Birhan D, Kiziltas H (2020) Thermal, photocatalytic, and antibacterial properties of calcinated nano-TiO2/polymer composites. Mater Chem Phys 251:123067. https://doi.org/10.1016/j.matchemphys.2020.123067

    Article  CAS  Google Scholar 

  247. Esthappan SK, Kuttappan SK, Joseph R (2012) Effect of titanium dioxide on the thermal ageing of polypropylene. Polym Degrad Stab 97:615–620. https://doi.org/10.1016/j.polymdegradstab.2012.01.006

    Article  CAS  Google Scholar 

  248. González-Calderón JA, Peña-Juárez MG, Zarraga R, Contreras-López D, Vallejo-Montesinos J (2021) The role of alkoxysilanes functional groups for surface modification of TiO2 nanoparticles on non-isothermal crystallization of isotactic polypropylene composites. Rev Mex Ing Quim 20:435–452

    Article  Google Scholar 

  249. Chi Q, Wang X, Zhao W et al (2018) Effect of TiO2 size factor on the electrical properties of polyethylene matrix dielectrics. Results Phys 11:52–57. https://doi.org/10.1016/j.rinp.2018.08.024

    Article  Google Scholar 

  250. Sanchez-Caballero S, Selles MA, Peydro MA, Cherukuri HP (2021) Development of a constitutive model for the compaction of recovered polyethylene terephthalate packages. Waste Manag 133:89–98. https://doi.org/10.1016/j.wasman.2021.07.028

    Article  CAS  Google Scholar 

  251. Nakata K, Fujishima A (2012) TiO2 photocatalysis: design and applications. J Photochem Photobiol C 13:169–189. https://doi.org/10.1016/j.jphotochemrev.2012.06.001

    Article  CAS  Google Scholar 

  252. Guillén-Mallette J, González-Chi PI, Cruz-Estrada RH et al (2020) Recycling printed polypropylene labels and polyolefins caps as chemical foaming agent to produce foam products. J Cell Plast 57:733–756. https://doi.org/10.1177/0021955X20959302

    Article  Google Scholar 

  253. Tu-morn M, Pairoh N, Sutapun W, Trongsatitkul T (2019) Effects of titanium dioxide nanoparticle on enhancing degradation of polylactic acid/low density polyethylene blend films. Mater Today Proc 17:2048–2061. https://doi.org/10.1016/j.matpr.2019.06.253

    Article  CAS  Google Scholar 

  254. Singh R, Singh M, Kumari N et al (2021) A comprehensive review of polymeric wastewater purification membranes. J Comp Sci. https://doi.org/10.3390/jcs5060162

    Article  Google Scholar 

  255. Kimbi Yaah VB, Ojala S, Khallok H et al (2021) Hybrid carbon materials: Synthesis, characterization, and application in the removal of pharmaceuticals from water. J Water Process Eng 43:102279. https://doi.org/10.1016/j.jwpe.2021.102279

    Article  Google Scholar 

  256. Fangueiro R, Pereira CG, de Araújo M (2008) 18 - Applications of polyesters and polyamides in civil engineering. In: Deopura BL, Alagirusamy R, Joshi M, Gupta B (eds) Polyesters and polyamides. Woodhead Publishing, pp 542–592

  257. Canevarolo SV (2020) 9—Polymer mechanical behavior. In: Canevarolo SV (ed) Polymer Science. Hanser, pp 237–279

  258. Wen J, Wilkes GL (1996) Organic/inorganic hybrid network materials by the sol−gel approach. Chem Mater 8:1667–1681. https://doi.org/10.1021/cm9601143

    Article  CAS  Google Scholar 

  259. Kim S, Ji S, Kim KH et al (2021) Revisiting surface chemistry in TiO2: A critical role of ionic passivation for pH-independent and anti-corrosive photoelectrochemical water oxidation. Chem Eng J 407:126929. https://doi.org/10.1016/j.cej.2020.126929

    Article  CAS  Google Scholar 

  260. Rodríguez Ripoll M, Trausmuth A, Badisch E (2019) Interaction between iron oxides and iron carbonates during running-in of C-steel tubings in CO2 corrosive environment. Wear 426–427:1446–1456. https://doi.org/10.1016/j.wear.2018.12.031

    Article  CAS  Google Scholar 

  261. Rangel-Mendez JR, Matos J, Cházaro-Ruiz LF et al (2018) Microwave-assisted synthesis of C-doped TiO2 and ZnO hybrid nanostructured materials as quantum-dots sensitized solar cells. Appl Surf Sci 434:744–755. https://doi.org/10.1016/j.apsusc.2017.10.236

    Article  CAS  Google Scholar 

  262. Muller J, Prelot B, Zajac J, Monge S (2019) Synthesis and study of sorption properties of polyvinyl alcohol (PVA)-based hybrid materials. React Funct Polym 144:104364. https://doi.org/10.1016/j.reactfunctpolym.2019.104364

    Article  CAS  Google Scholar 

  263. Liu Y-C, Huang J-M, Tsai C-E et al (2004) Effect of TiO2 nanoparticles on the electropolymerization of polypyrrole. Chem Phys Lett 387:155–159. https://doi.org/10.1016/j.cplett.2004.02.014

    Article  CAS  Google Scholar 

  264. Husain J, Reddy N, Anjum R et al (2021) Synthesis and characterization of polypyrrole/titanium dioxide nanocomposites thin films. Mater Today Proc 46:246–248. https://doi.org/10.1016/j.matpr.2020.07.630

    Article  CAS  Google Scholar 

  265. Bharathesh BM, Aaditya VB, Prabhu AD et al (2018) Chemically synthesized polypyrrole/titanium dioxide-MWCNT (PTM) nano composites for experimental studies of D.C. conductivity and thermo electric power. Mater Today Proc 5:20882–20889. https://doi.org/10.1016/j.matpr.2018.06.475

    Article  CAS  Google Scholar 

  266. Baviskar V, Salunkhe D, Tarkas H et al (2020) Sensitization of TiO2 by chemically deposited Cu2S for solar cell: Effect of deposition time on photoelectrochemical performance. Optik (Stuttg) 207:163890. https://doi.org/10.1016/j.ijleo.2019.163890

    Article  CAS  Google Scholar 

  267. Singh SV, Sharma A, Biring S, Pal BN (2020) Solution processed Cu2S/TiO2 heterojunction for visible-near infrared photodetector. Thin Solid Films 710:138275. https://doi.org/10.1016/j.tsf.2020.138275

    Article  CAS  Google Scholar 

  268. Rivera E, Belletête M, Xia Zhu X et al (2002) Novel polyacetylenes containing pendant 1-pyrenyl groups: synthesis, characterization, and thermal and optical properties. Polymer (Guildf) 43:5059–5068. https://doi.org/10.1016/S0032-3861(02)00352-X

    Article  CAS  Google Scholar 

  269. Krawczyk S, Nawrocka A, Zdyb A (2018) Charge-transfer excited state in pyrene-1-carboxylic acids adsorbed on titanium dioxide nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 198:19–26. https://doi.org/10.1016/j.saa.2018.02.061

    Article  CAS  Google Scholar 

  270. Ni Z-D, Song Y-T, Chen H-Q, Lin L-Y (2016) UV Light-assisted electropolymerization of pyrrole on TiO2 for supercapacitors: investigating the role of TiO2. Electrochim Acta 190:313–321. https://doi.org/10.1016/j.electacta.2015.12.217

    Article  CAS  Google Scholar 

  271. Hu M, Zhao B, Ao X et al (2018) Field investigation of a hybrid photovoltaic-photothermic-radiative cooling system. Appl Energy 231:288–300. https://doi.org/10.1016/j.apenergy.2018.09.137

    Article  Google Scholar 

  272. Khan MI, Suleman A, Hasan MS et al (2021) Effect of Ce doping on the structural, optical, and photovoltaic properties of TiO2 based dye-sensitized solar cells. Mater Chem Phys 274:125177. https://doi.org/10.1016/j.matchemphys.2021.125177

    Article  CAS  Google Scholar 

  273. Tractz GT, Masetto Antunes SR, Rodrigues Maia GA et al (2021) Nb-TiO2/P3HT hybrid solar cell: oxide production and photovoltaic electrochemical characterization. Opt Mater (Amst) 121:111513. https://doi.org/10.1016/j.optmat.2021.111513

    Article  CAS  Google Scholar 

  274. Hočevar M, Bogati S, Georg A, Opara Krašovec U (2017) A photoactive layer in photochromic glazing. Sol Energy Mater Sol Cells 171:85–90. https://doi.org/10.1016/j.solmat.2017.06.043

    Article  CAS  Google Scholar 

  275. Lin C-L, Chen C-Y, Yu H-F, Ho K-C (2019) Comparisons of the electrochromic properties of poly(hydroxymethyl 3,4-ethylenedioxythiophene) and poly(3,4-ethylenedioxythiophene) thin films and the photoelectrochromic devices using these thin films. Solar Energy Mater Solar Cells 202:110132. https://doi.org/10.1016/j.solmat.2019.110132

    Article  CAS  Google Scholar 

  276. Sarwar S, Park S, Dao TT et al (2020) Scalable photoelectrochromic glass of high performance powered by ligand attached TiO2 photoactive layer. Solar Energy Mater Solar Cells 210:110498. https://doi.org/10.1016/j.solmat.2020.110498

    Article  CAS  Google Scholar 

  277. Ali F, Waseem M, Khurshid R, Afzal A (2020) TiO2 reinforced high-performance epoxy-co-polyamide composite coatings. Prog Org Coat 146:105726. https://doi.org/10.1016/j.porgcoat.2020.105726

    Article  CAS  Google Scholar 

  278. Raghuwanshi VS, Garusinghe UM, Batchelor W, Garnier G (2020) Polyamide-amine-epichlorohydrin (PAE) induced TiO2 nanoparticles assembly in cellulose network. J Colloid Interface Sci 575:317–325. https://doi.org/10.1016/j.jcis.2020.04.121

    Article  CAS  Google Scholar 

  279. Hamzah MH, Eavani S, Rafiee E (2020) CoAl2O4/TiO2 nano composite as an anti-corrosion pigment. Mater Chem Phys 242:122495. https://doi.org/10.1016/j.matchemphys.2019.122495

    Article  CAS  Google Scholar 

  280. Subramaniam S, Bolt JD (2005) Pigment particles coated with polysaccharides and having improved properties. Patent AU2006284882B2, E.I.DuPont De Nemours and Company, United States, 29 August 2005

  281. Schumacher K, Gray A, Meyer J et al (2004) Surface-modified silicon dioxide-titanium dioxide mixed oxides. Patent AU 2005247017 B2, Degussa AG, Germany, 23 December 2004

  282. Riedemann H, Hasenzahl S, Meyer J, Gray A (2004) Surface-modified, structurally modified titanium dioxides. Patent AU 2005246991 B2, Degussa AG, Germany, 23 December 2004

  283. Textor M, Elbert DL, Finken S et al (2004) Polyionic coatings in analytic and sensor devices. Patent CA2371011C, Eidgenoessische Technische Hochschule Zurich ETHZ Universitaet Zuerich, Swtizerland, 28 April 2004

  284. Ebbrecht T, Schubert F, Naumann M, Knott W, Lehmann K et al (2009) Process for modifying surfaces using curable hydroxyl-containing silyl polyethers. Patent CA2688022C, Evonik Operations GmbH, Germany, 24 December 2009

  285. Xie Y, Chatterjee D, Coker CE, Fang CY (2010) A proppant having a glass-ceramic material. Patent CA2785366C, Halliburton Energy Services Inc, United States, 13 December 2010

  286. Ronne N, Hormann M, Tecklenburg J et al (2013) Método para producir una dispersión de nanocompuestos que comprenden partículas de compuestos de nanopartículas inorgánicas y polímeros orgánicos. Patent ES 2 768 232, AKZO Nobel Coatings International B.V. (20.0%) Velperweg 76 6824 BM Arnhem, NL; BYK-CHEMIE GMBH (20.0%); Energenics Europe Limited (20.0%); UNIVERSIDAD DEL PAÍS VASCO (20.0%) y YKI, Ytkemiska Institutet ab (20.0%), Spain, 15 May 2013

  287. Lagarón Cabello JM, Núñez E, Busolo Pons M, Sánchez-García MD (2013) Materiales nanocompuestos basados en óxidos de metales conpropiedades multifuncionales. Patent ES 2 395 507, Nanobiomatters Research & Development, S.L. Spain, 12 December 2013

  288. Huang F, Wang Z, Yang C (2014) Material de electrodo de supercondensador a base de óxido de titanio y procedimiento de fabricación del mismo. Patent E 2 703 224, Shanghai Institute of Ceramics, Chinese Academy of Sciences, China, 29 September 2014

  289. Akarsu M, Arpac E, Schmidt H (2008) Substrates comprising a photocatalytic TiO2, layer. Patent US 7.449,245 B2, Leibniz-Institut Fuer Neue Materialien Gemeinnuetzige GmbH, Germany, 11 November 2008

  290. Ajiri T (2020) Organically modified fine particles. Patent 2020/0010686 A1, Super Nano Design Co., Ltd., Japan, 9 January 2020

  291. Seebauer EG (2014) Defect engineering in metal oxides va surfaces. Patent Patent No. US 8,871,670 B2, University of Illinois, 28 October 2014

  292. Jing N, Yu Z, Chen X-h et al (2015) Hydrophilic coatings, articles, coating compositions and methods. Patent US 9,034,489 B2, 3M Innovative Properties Company, United States, 19 May 2015

  293. Jin S, Smith G, Choi C (2015) Inorganically surface-modified polymers and methods for making and using them. Patent US 9,005,648 B2, University of California, United States, 14 April 2015

  294. Biris AS (2013) Enhanced bone cells growth and proliferation on TiO2 nanotubular substrates treated by radio-frequency plasma discharge. Patent US 8,518,420 B2, Board of Trustees of the Universtiy of Arkansas, United States, 27 August 2013

  295. Messersmith PB (2019) Phenolic coatings and methods of making and using same. Patent US 1,017,911, Northwestern University, United States, 15 January 2019

Download references

Acknowledgements

The authors would like to thank Consejo de Ciencia y Tecnología (CONACyT) for the facilities derived from the project CF-2019-265239.

Author information

Authors and Affiliations

Authors

Contributions

TJP: Professor Pawar elaborated some of the images, and performed the elaboration of the Sect. 2 and 4. DCL: Professor Contreras was in charge of Sect. 6 and aided in Sect. 5. JLOR: Professor Olivares elaborated the Sect. 2 and aided in Sect. 5. JVM: Professor Vallejo elaborated Sect. 3, some of the images, Sect. 1, Sect. 5 and Sect. 4. Also, aided the other professor in their respecting sections.

Corresponding authors

Correspondence to David Contreras López or Javier Vallejo Montesinos.

Ethics declarations

Conflict of interest

The authors don´t have any conflicts of interest or competing interests that bias and affect the publication of this manuscript.

Data availability

Not applicable.

Code availability

Not applicable.

Ethical approval

During the elaboration of this manuscript any kind of experiment that involved human tissues was not made.

Additional information

Handling Editor: Christopher Blanford.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pawar, T.J., Contreras López, D., Olivares Romero, J.L. et al. Surface modification of titanium dioxide. J Mater Sci 58, 6887–6930 (2023). https://doi.org/10.1007/s10853-023-08439-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08439-x

Navigation