Skip to main content
Log in

Exercise Improves Cognitive Impairment and Dopamine Metabolism in MPTP-Treated Mice

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

The classical motor symptoms of Parkinson’s disease (PD) are preceded by non-motor symptoms in preclinical stages, including cognition impairment. The current drug treatment for PD is palliative and does not meet the clinical challenges of the disease, such as levodopa-induced dyskinesia, non-motor symptoms, and neuroprotection. We investigated the neuroprotective and disease-modifying potential of physical exercise in a preclinical animal model of PD. C57BL/6 mice (adult males) ran on a horizontal treadmill for 6 weeks (moderate intensity, 5 times/week) and were treated intranasally with 65 mg/kg of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Exercise did not protect against MPTP-induced nigrostriatal neurodegeneration or frontostriatal dopamine depletion but decreased striatal dopamine turnover. Exercise also attenuated procedural and working memory impairment and D2 receptor hypersensitivity in MPTP-treated mice. In summary, exercise improved dopaminergic neurotransmission and enhanced cognition in a preclinical animal model of PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aguiar AS Jr, Speck AE, Prediger RD, Kapczinski F, Pinho RA (2008) Downhill training upregulates mice hippocampal and striatal brain-derived neurotrophic factor levels. J Neural Transm 115(9):1251–1255. doi:10.1007/s00702-008-0071-2

    Article  PubMed  CAS  Google Scholar 

  • Aguiar AS Jr, Castro AA, Moreira EL, Glaser V, Santos AR, Tasca CI, Latini A, Prediger RD (2011) Short bouts of mild-intensity physical exercise improve spatial learning and memory in aging rats: involvement of hippocampal plasticity via AKT, CREB and BDNF signaling. Mech Ageing Dev 132(11–12):560–567. doi:10.1016/j.mad.2011.09.005

    Article  PubMed  CAS  Google Scholar 

  • Aguiar AS Jr, Moreira EL, Hoeller AA, Oliveira PA, Cordova FM, Glaser V, Walz R, Cunha RA, Leal RB, Latini A, Prediger RD (2013a) Exercise attenuates levodopa-induced dyskinesia in 6-hydroxydopamine-lesioned mice. Neuroscience 243:46–53. doi:10.1016/j.neuroscience.2013.03.039

    Article  PubMed  CAS  Google Scholar 

  • Aguiar AS Jr, Tristao FS, Amar M, Chevarin C, Lanfumey L, Mongeau R, Corti O, Prediger RD, Raisman-Vozari R (2013b) Parkin-knockout mice did not display increased vulnerability to intranasal administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Neurotox Res 24(2):280–287. doi:10.1007/s12640-013-9389-0

    Article  PubMed  CAS  Google Scholar 

  • Aguiar AS Jr, Tristao FS, Amar M, Chevarin C, Glaser V, de Paula Martins R, Moreira EL, Mongeau R, Lanfumey L, Raisman-Vozari R, Latini A, Prediger RD (2014) Six weeks of voluntary exercise don’t protect C57BL/6 mice against neurotoxicity of MPTP and MPP(+). Neurotox Res 25(2):147–152. doi:10.1007/s12640-013-9412-5

    Article  PubMed  CAS  Google Scholar 

  • Aguiar AS Jr, Duzzioni M, Remor AP, Tristao FS, Matheus FC, Raisman-Vozari R, Latini A, Prediger RD (2015) Moderate-intensity physical exercise protects against experimental 6-hydroxydopamine-induced hemiparkinsonism through Nrf2-antioxidant response element pathway. Neurochem Res. doi:10.1007/s11064-015-1709-8

    PubMed  Google Scholar 

  • Ahmad SO, Park JH, Stenho-Bittel L, Lau YS (2009) Effects of endurance exercise on ventral tegmental area neurons in the chronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and probenecid-treated mice. Neurosci Lett 450(2):102–105. doi:10.1016/j.neulet.2008.11.065

    Article  PubMed  CAS  Google Scholar 

  • Al-Jarrah M, Pothakos K, Novikova L, Smirnova IV, Kurz MJ, Stehno-Bittel L, Lau YS (2007) Endurance exercise promotes cardiorespiratory rehabilitation without neurorestoration in the chronic mouse model of parkinsonism with severe neurodegeneration. Neuroscience 149(1):28–37. doi:10.1016/j.neuroscience.2007.07.038

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Baptista PP, de Senna PN, Paim MF, Saur L, Blank M, do Nascimento P, Ilha J, Vianna MR, Mestriner RG, Achaval M, Xavier LL (2013) Physical exercise down-regulated locomotor side effects induced by haloperidol treatment in Wistar rats. Pharmacol Biochem Behav 104:113–118. doi:10.1016/j.pbb.2012.12.020

    Article  PubMed  CAS  Google Scholar 

  • Barbiero JK, Santiago R, Tonin FS, Boschen S, da Silva LM, Werner MFD, da Cunha C, Lima MMS, Vital MABF (2014) PPAR-alpha agonist fenofibrate protects against the damaging effects of MPTP in a rat model of Parkinson’s disease. Prog Neuropsychopharmacol Biol Psychiatry 53:35–44. doi:10.1016/j.pnpbp.2014.02.009

    Article  PubMed  CAS  Google Scholar 

  • Bissonnette S, Muratot S, Vernoux N, Bezeau F, Calon F, Hebert SS, Samadi P (2014) The effect of striatal pre-enkephalin overexpression in the basal ganglia of the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. Eur J Neurosci 40(2):2406–2416. doi:10.1111/ejn.12596

    Article  PubMed  Google Scholar 

  • Boileau I, Guttman M, Rusjan P, Adams JR, Houle S, Tong J, Hornykiewicz O, Furukawa Y, Wilson AA, Kapur S, Kish SJ (2009) Decreased binding of the D3 dopamine receptor-preferring ligand [11C]-(+)-PHNO in drug-naive Parkinson’s disease. Brain 132(Pt 5):1366–1375. doi:10.1093/brain/awn337

    Article  PubMed  Google Scholar 

  • Chefer SI, Kimes AS, Matochik JA, Horti AG, Kurian V, Shumway D, Domino EF, London ED, Mukhin AG (2008) Estimation of D2-like receptor occupancy by dopamine in the putamen of hemiparkinsonian Monkeys. Neuropsychopharmacology 33(2):270–278. doi:10.1038/sj.npp.1301404

    Article  PubMed  CAS  Google Scholar 

  • Colcombe S, Kramer AF (2003) Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychol Sci 14(2):125–130

    Article  PubMed  Google Scholar 

  • Cooper JR, Bloom FE, Roth RH (2003) Dopamine. In: Cooper JR, Bloom FE, Roth RH (eds) The biochemical basis of Neuropharmacology, 8th edn. Oxford University Press, New York, pp 225–270

    Google Scholar 

  • Elsinga PH, Hatano K, Ishiwata K (2006) PET tracers for imaging of the dopaminergic system. Curr Med Chem 13(18):2139–2153

    Article  PubMed  CAS  Google Scholar 

  • Fisher BE, Petzinger GM, Nixon K, Hogg E, Bremmer S, Meshul CK, Jakowec MW (2004) Exercise-induced behavioral recovery and neuroplasticity in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse basal ganglia. J Neurosci Res 77(3):378–390. doi:10.1002/jnr.20162

    Article  PubMed  CAS  Google Scholar 

  • Fisher BE, Li Q, Nacca A, Salem GJ, Song J, Yip J, Hui JS, Jakowec MW, Petzinger GM (2013) Treadmill exercise elevates striatal dopamine D2 receptor binding potential in patients with early Parkinson’s disease. NeuroReport 24(10):509–514. doi:10.1097/WNR.0b013e328361dc13

    Article  PubMed  CAS  Google Scholar 

  • Foley TE, Fleshner M (2008) Neuroplasticity of dopamine circuits after exercise: implications for central fatigue. Neuromolecular Med 10(2):67–80. doi:10.1007/s12017-008-8032-3

    Article  PubMed  CAS  Google Scholar 

  • Frazzitta G, Bertotti G, Morelli M, Riboldazzi G, Pelosin E, Balbi P, Boveri N, Comi C, Turla M, Leva S, Felicetti G, Maestri R (2012) Rehabilitation improves dyskinesias in Parkinsonian patients: a pilot study comparing two different rehabilitative treatments. NeuroRehabilitation 30(4):295–301. doi:10.3233/NRE-2012-0758

    PubMed  Google Scholar 

  • Gilliam PE, Spirduso WW, Martin TP, Walters TJ, Wilcox RE, Farrar RP (1984) The effects of exercise training on [3H]-spiperone binding in rat striatum. Pharmacol Biochem Behav 20(6):863–867

    Article  PubMed  CAS  Google Scholar 

  • Goldberg MS, Pisani A, Haburcak M, Vortherms TA, Kitada T, Costa C, Tong Y, Martella G, Tscherter A, Martins A, Bernardi G, Roth BL, Pothos EN, Calabresi P, Shen J (2005) Nigrostriatal dopaminergic deficits and hypokinesia caused by inactivation of the familial Parkinsonism-linked gene DJ-1. Neuron 45(4):489–496. doi:10.1016/j.neuron.2005.01.041

    Article  PubMed  CAS  Google Scholar 

  • Graham WC, Crossman AR, Woodruff GN (1990) Autoradiographic studies in animal models of hemi-parkinsonism reveal dopamine D2 but not D1 receptor supersensitivity. I. 6-OHDA lesions of ascending mesencephalic dopaminergic pathways in the rat. Brain Res 514(1):93–102

    Article  PubMed  CAS  Google Scholar 

  • Houchi H, Babovic D, Pierrefiche O, Ledent C, Daoust M, Naassila M (2005) CB1 receptor knockout mice display reduced ethanol-induced conditioned place preference and increased striatal dopamine D2 receptors. Neuropsychopharmacology 30(2):339–349. doi:10.1038/sj.npp.1300568

    Article  PubMed  CAS  Google Scholar 

  • Kim DS, Szczypka MS, Palmiter RD (2000) Dopamine-deficient mice are hypersensitive to dopamine receptor agonists. J Neurosci 20(12):4405–4413

    PubMed  CAS  Google Scholar 

  • Kim SE, Ko IG, Kim BK, Shin MS, Cho S, Kim CJ, Kim SH, Baek SS, Lee EK, Jee YS (2010) Treadmill exercise prevents aging-induced failure of memory through an increase in neurogenesis and suppression of apoptosis in rat hippocampus. Exp Gerontol 45(5):357–365. doi:10.1016/j.exger.2010.02.005

    Article  PubMed  Google Scholar 

  • Lee T, Seeman P, Rajput A, Farley IJ, Hornykiewicz O (1978) Receptor basis for dopaminergic supersensitivity in Parkinson’s disease. Nature 273(5657):59–61

    Article  PubMed  CAS  Google Scholar 

  • Lee CS, Sauer H, Bjorklund A (1996) Dopaminergic neuronal degeneration and motor impairments following axon terminal lesion by intrastriatal 6-hydroxydopamine in the rat. Neuroscience 72(3):641–653

    Article  PubMed  CAS  Google Scholar 

  • MacRae PG, Spirduso WW, Cartee GD, Farrar RP, Wilcox RE (1987a) Endurance training effects on striatal D2 dopamine receptor binding and striatal dopamine metabolite levels. Neurosci Lett 79(1–2):138–144

    Article  PubMed  CAS  Google Scholar 

  • MacRae PG, Spirduso WW, Walters TJ, Farrar RP, Wilcox RE (1987b) Endurance training effects on striatal D2 dopamine receptor binding and striatal dopamine metabolites in presenescent older rats. Psychopharmacology 92(2):236–240

    Article  PubMed  CAS  Google Scholar 

  • Meissner WG, Frasier M, Gasser T, Goetz CG, Lozano A, Piccini P, Obeso JA, Rascol O, Schapira A, Voon V, Weiner DM, Tison F, Bezard E (2011) Priorities in Parkinson’s disease research. Nat Rev Drug Discov 10(5):377–393. doi:10.1038/nrd3430

    Article  PubMed  CAS  Google Scholar 

  • Mihara T, Mihara K, Yarimizu J, Mitani Y, Matsuda R, Yamamoto H, Aoki S, Akahane A, Iwashita A, Matsuoka N (2007) Pharmacological characterization of a novel, potent adenosine A1 and A2A receptor dual antagonist, 5-[5-amino-3-(4-fluorophenyl)pyrazin-2-yl]-1-isopropylpyridine-2(1H)-one (ASP5854), in models of Parkinson’s disease and cognition. J Pharmacol Exp Ther 323(2):708–719. doi:10.1124/jpet.107.121962

    Article  PubMed  CAS  Google Scholar 

  • Morishima M, Harada N, Hara S, Sano A, Seno H, Takahashi A, Morita Y, Nakaya Y (2006) Monoamine oxidase A activity and norepinephrine level in hippocampus determine hyperwheel running in SPORTS rats. Neuropsychopharmacology 31(12):2627–2638. doi:10.1038/sj.npp.1301028

    Article  PubMed  CAS  Google Scholar 

  • Obeso JA, Rodriguez-Oroz MC, Goetz CG, Marin C, Kordower JH, Rodriguez M, Hirsch EC, Farrer M, Schapira AH, Halliday G (2009) Missing pieces in the Parkinson’s disease puzzle. Nat Med 16(6):653–661. doi:10.1038/nm.2165

    Article  Google Scholar 

  • Petzinger GM, Walsh JP, Akopian G, Hogg E, Abernathy A, Arevalo P, Turnquist P, Vuckovic M, Fisher BE, Togasaki DM, Jakowec MW (2007) Effects of treadmill exercise on dopaminergic transmission in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse model of basal ganglia injury. J Neurosci 27(20):5291–5300. doi:10.1523/JNEUROSCI.1069-07.2007

    Article  PubMed  CAS  Google Scholar 

  • Picconi B, Centonze D, Rossi S, Bernardi G, Calabresi P (2004) Therapeutic doses of L-dopa reverse hypersensitivity of corticostriatal D2-dopamine receptors and glutamatergic overactivity in experimental parkinsonism. Brain 127(Pt 7):1661–1669. doi:10.1093/brain/awh190

    Article  PubMed  Google Scholar 

  • Pothakos K, Kurz MJ, Lau YS (2009) Restorative effect of endurance exercise on behavioral deficits in the chronic mouse model of Parkinson’s disease with severe neurodegeneration. BMC Neurosci 10:6. doi:10.1186/1471-2202-10-6

    Article  PubMed  PubMed Central  Google Scholar 

  • Prediger RD, Batista LC, Medeiros R, Pandolfo P, Florio JC, Takahashi RN (2006) The risk is in the air: intranasal administration of MPTP to rats reproducing clinical features of Parkinson’s disease. Exp Neurol 202(2):391–403. doi:10.1016/j.expneurol.2006.07.001

    Article  PubMed  CAS  Google Scholar 

  • Prediger RD, Aguiar AS Jr, Rojas-Mayorquin AE, Figueiredo CP, Matheus FC, Ginestet L, Chevarin C, Bel ED, Mongeau R, Hamon M, Lanfumey L, Raisman-Vozari R (2010) Single intranasal administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in C57BL/6 mice models early preclinical phase of Parkinson’s disease. Neurotox Res 17(2):114–129. doi:10.1007/s12640-009-9087-0

    Article  PubMed  CAS  Google Scholar 

  • Prediger RD, Aguiar AS Jr, Moreira EL, Matheus FC, Castro AA, Walz R, De Bem AF, Latini A, Tasca CI, Farina M, Raisman-Vozari R (2011) The intranasal administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): a new rodent model to test palliative and neuroprotective agents for Parkinson’s disease. Curr Pharm Des 17(5):489–507

    Article  PubMed  CAS  Google Scholar 

  • Rinne JO, Laihinen A, Nagren K, Bergman J, Solin O, Haaparanta M, Ruotsalainen U, Rinne UK (1990) PET demonstrates different behaviour of striatal dopamine D-1 and D-2 receptors in early Parkinson’s disease. J Neurosci Res 27(4):494–499. doi:10.1002/jnr.490270409

    Article  PubMed  CAS  Google Scholar 

  • Rinne JO, Laihinen A, Lonnberg P, Marjamaki P, Rinne UK (1991) A post-mortem study on striatal dopamine receptors in Parkinson’s disease. Brain Res 556(1):117–122

    Article  PubMed  CAS  Google Scholar 

  • Shiozaki S, Ichikawa S, Nakamura J, Kitamura S, Yamada K, Kuwana Y (1999) Actions of adenosine A2A receptor antagonist KW-6002 on drug-induced catalepsy and hypokinesia caused by reserpine or MPTP. Psychopharmacology 147(1):90–95

    Article  PubMed  CAS  Google Scholar 

  • Sung YH, Kim SC, Hong HP, Park CY, Shin MS, Kim CJ, Seo JH, Kim DY, Kim DJ, Cho HJ (2012) Treadmill exercise ameliorates dopaminergic neuronal loss through suppressing microglial activation in Parkinson’s disease mice. Life Sci 91(25–26):1309–1316. doi:10.1016/j.lfs.2012.10.003

    Article  PubMed  CAS  Google Scholar 

  • Tajiri N, Yasuhara T, Shingo T, Kondo A, Yuan W, Kadota T, Wang F, Baba T, Tayra JT, Morimoto T, Jing M, Kikuchi Y, Kuramoto S, Agari T, Miyoshi Y, Fujino H, Obata F, Takeda I, Furuta T, Date I (2010) Exercise exerts neuroprotective effects on Parkinson’s disease model of rats. Brain Res 1310:200–207. doi:10.1016/j.brainres.2009.10.075

    Article  PubMed  CAS  Google Scholar 

  • Tillerson JL, Caudle WM, Reveron ME, Miller GW (2003) Exercise induces behavioral recovery and attenuates neurochemical deficits in rodent models of Parkinson’s disease. Neuroscience 119(3):899–911

    Article  PubMed  CAS  Google Scholar 

  • Toy WA, Petzinger GM, Leyshon BJ, Akopian GK, Walsh JP, Hoffman MV, Vuckovic MG, Jakowec MW (2014) Treadmill exercise reverses dendritic spine loss in direct and indirect striatal medium spiny neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson’s disease. Neurobiol Dis 63:201–209. doi:10.1016/j.nbd.2013.11.017

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Vuckovic MG, Li Q, Fisher B, Nacca A, Leahy RM, Walsh JP, Mukherjee J, Williams C, Jakowec MW, Petzinger GM (2010) Exercise elevates dopamine D2 receptor in a mouse model of Parkinson’s disease: in vivo imaging with [(1)(8)F]fallypride. Mov Disord 25(16):2777–2784. doi:10.1002/mds.23407

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors are appreciative for the financial support and grants provided by the Brazilian agencies Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), CAPES-COFECUB (France/Brazil; 681/2010), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Fundação de Apoio à Pesquisa Científica e Tecnológica do Estado de Santa Catarina (FAPESC). The funders had no role in study design, data collection and analysis, the decision to publish, or preparation of the manuscript. The authors have no financial or personal conflicts of interest related to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aderbal S. Aguiar Jr..

Electronic supplementary material

Below is the link to the electronic supplementary material.

12640_2015_9566_MOESM1_ESM.tif

Fig. S1–Degradation of DA in the prefrontal cortex and striatum of mice, as indicated by the DOPAC/DA ratio. MPTP increased striatal DA metabolism. Exercise decreased DA metabolism in the striatum and prefrontal cortex. Values are mean ± standard error. * P < 0.05 vs. sal. # P < 0.05 vs. sed. Abbreviations: DA, dopamine; DOPAC, 3,4-dihydroxyphenylacetic acid; exe, exercise; MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; sed, sedentary; sal, saline (TIFF 483 kb)

12640_2015_9566_MOESM2_ESM.tif

Fig. S2–Maximum catalepsy severity after administering mice a high dose of haloperidol (1.0 mg/kg). Abbreviations: exe, exercise; MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; sed, sedentary; sal, saline (TIFF 292 kb)

12640_2015_9566_MOESM3_ESM.docx

Table S1–* P < 0.05 vs. respective saline control. Abbreviations: exe, exercise; DHPG, dihydroxyphenylglycol; DOPAC, 3,4-dihydroxyphenylacetic acid; HVA, homovanillic acid; MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; PFC, prefrontal cortex; 5-HIAA, 5-hydroxyindoleacetic acid; sed, sedentary; sal, saline (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aguiar, A.S., Lopes, S.C., Tristão, F.S.M. et al. Exercise Improves Cognitive Impairment and Dopamine Metabolism in MPTP-Treated Mice. Neurotox Res 29, 118–125 (2016). https://doi.org/10.1007/s12640-015-9566-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-015-9566-4

Keywords

Navigation