Skip to main content

Exercise and Nutritional Benefits in PD: Rodent Models and Clinical Settings

  • Chapter
  • First Online:
Neurotoxin Modeling of Brain Disorders—Life-long Outcomes in Behavioral Teratology

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 29))

Abstract

Physical exercise offers a highly effective health-endowering activity as has been evidence using rodent models of Parkinson’s disease (PD). It is a particularly useful intervention in individuals employed in sedentary occupations or afflicted by a neurodegenerative disorder, such as PD. The several links between exercise and quality-of-life, disorder progression and staging, risk factors and symptoms-biomarkers in PD all endower a promise for improved prognosis. Nutrition provides a strong determinant for disorder vulnerability and prognosis with fish oils and vegetables with a mediterranean diet offering both protection and resistance. Three factors determining the effects of exercise on disorder severity of patients may be presented: (i) Exercise effects upon motor impairment, gait, posture and balance, (ii) Exercise reduction of oxidative stress, stimulation of mitochondrial biogenesis and up-regulation of autophagy, and (iii) Exercise stimulation of dopamine (DA) neurochemistry and trophic factors. Running-wheel performance, as measured by distance run by individual mice from different treatment groups, was related to DA-integrity, indexed by striatal DA levels. Finally, both nutrition and exercise may facilitate positive epigenetic outcomes, such as lowering the dosage of l-Dopa required for a therapeutic effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alcalay RN, Gu Y, Mejia-Santana H, Cote L, Marder KS, Scarmeas N (2012) The association between diet adherence and Parkinson’s disease. Mov Disord 27:771–774. doi:10.1002/mds.24918

    Article  PubMed  PubMed Central  Google Scholar 

  • Antonini A, Schwarz J, Oertel WH, Beer HF, Madeja UD, Leenders KL (1994) [11C]raclopride and positron emission tomography in previously untreated patients with Parkinson’s disease: Influence of L-dopa and lisuride therapy on striatal dopamine D2-receptors. Neurology 44(7):1325–1329

    Article  CAS  Google Scholar 

  • Amano S, Nocera JR, Vallabhajosula S, Juncos JL, Gregor RJ, Waddell DE, Wolf SL, Hass CJ (2013) The effect of Tai Chi exercise on gait initiation and gait performance in persons with Parkinson’s disease. Parkinsonism Relat Disord 19(11):955–960. doi:10.1016/j.parkreldis.2013.06.007

    Article  PubMed  Google Scholar 

  • Ammal Kaidey N, Tarannum S, Thomas B (2013) Epigenetic landscape of Parkinson’s disease: emerging role in disease mechanisms and therapeutic modalities. Neurotherapeutics 10:698–708. doi:10.1007/s13311-013-0211-8

    Article  CAS  Google Scholar 

  • Anderson C, Checkoway H, Franklin GM, Beresford S, Smith-Weller T, Swanson PD (1999) Dietary factors in Parkinson’s disease: the role of food groups and specific foods. Mov Disord 14(1):21–27

    Article  CAS  Google Scholar 

  • Andreadou E, Nikolaou C, Gournaras F, Rentzos M, Boufidou F, Tsoutsou A et al (2009) Serum uric acid in patients with Parkinson’s disease: their relationship to treatment and disease duration. Clin Neurol Neurosurg 111:724–728. doi:10.1016/j.clineuro.2009.06.012

    Article  PubMed  Google Scholar 

  • Archer T (2012) Influence of physical exercise on traumatic brain injury deficits: scaffolding effect. Neurotox Res 21(4):418–434. doi:10.1007/s12640-011-9297-0

    Article  PubMed  Google Scholar 

  • Archer T (2014) Health benefits of physical exercise for children and adolescents. J Novel Physiother 4:203. doi:10.4172/2165-7025.1000203

    Article  Google Scholar 

  • Archer T, Fredriksson A (2010) Physical exercise attenuates MPTP-induced deficits in mice. Neurotox Res 18:313–327. doi:10.1007/s12640-010-9168-0

    Article  PubMed  Google Scholar 

  • Archer T, Fredriksson A (2012) Delayed exercise-induced functional and neurochemical partial restoration following MPTP. Neurotox Res 21:210–221. doi:10.1007/s12640-011-9261-z

    Article  PubMed  Google Scholar 

  • Archer T, Fredriksson A (2013a) The yeast product Milmed enhances the effect of physical exercise on motor performance and dopamine neurochemistry recovery in MPTP-lesioned mice. Neurotox Res 24, 393–406. doi:10.1007/s12640-013-9405-4

    Article  CAS  Google Scholar 

  • Archer T, Fredriksson A (2013b) Pharmacogenomics and personalized medicine in Parkinsonism. In: Barh D et al. (eds) Omics for personalized medicine, pp. 265–287, Springer India. doi:10.1007/978-81-322-1184-6_14

    Chapter  Google Scholar 

  • Archer T, Fredriksson A (2013c) Physical exercise as intervention in Parkinsonism. In: Kostezewa RM (ed) Handbook of neurotoxicity, pp. 2255–2280. Springer + Business media, New York. doi:10.1007/978-1-4614-5836-4

  • Archer T, Garcia D (2014) Physical exercise influences academic performance and well-being in children and adolescents. Int J School Cogn Psychol 1:e102

    Google Scholar 

  • Archer T, Garcia D (2015) Exercise and dietary restriction for promotion of neurohealth benefits. Health 7:136–152. doi:10.4236/health.2015.71016

    Article  CAS  Google Scholar 

  • Archer T, Kostrzewa RM (2015) Physical exercise alleviates health defects, symptoms, and biomarkers in schizophrenia spectrum disorder. Neurotox Res. PMID: 26174041. doi:10.1007/s12640-015-9543-y

    Article  CAS  Google Scholar 

  • Archer T, Svensson K, Alricsson M (2012) Physical exercise ameliorates deficits induced by traumatic brain injury. Acta Neurol Scand 125:293–302. doi:10.1111/j.1600-0404.2011.01638.x

    Article  CAS  PubMed  Google Scholar 

  • Archer T, Kostrzewa RM, Beninger RJ, Palomo T (2011) Staging neurodegenerative disorders: structural, regional, biomarker, and functional progressions. Neurotox Res. 19(2):211–234. doi:10.1007/s12640-010-9190-2

    Article  Google Scholar 

  • Archer T, Josefsson T, Lindwall M (2014) Effects of physical exercise on depressive symptoms and biomarkers in depression. CNS Neurol Disord Drug Targ. 13(10):1640–1653

    Article  Google Scholar 

  • Asikainen S, Rudgalvyte M, Heikkinen L, Louhiranta K, Lakso M, Wong G, Nass R (2010) Global microRNA expression profiling of Caenorhabditis elegans Parkinson’s disease models. J Mol Neurosci 41(1):210–218. doi:10.1007/s12031-009-9325-1

    Article  CAS  PubMed  Google Scholar 

  • Babenko O, Kovalchuk I, Metz GA (2012) Epigenetic programming of neurodegenerative diseases by an adverse environment. Brain Res 1444:96–111. doi:10.1016/j.brainres.2012.01.038

    Article  CAS  PubMed  Google Scholar 

  • Barichella M, Cereda E, Pezzoli G (2009) Major nutritional issues in the management of Parkinson’s disease. Mov Disord 24:1881–1892. doi:10.1002/mds.22705

    Article  PubMed  Google Scholar 

  • Bega D, Gonzalez-Lapati P, Zadikoff C, Simuni T (2014) A review of the clinical evidence for complimentary and alternative therapies in Parkinson’s disease. Curr Treat Options Neurol 16:314. doi:10.1007/s11940-014-0314-5

    Article  PubMed  Google Scholar 

  • Bello O, Sanchez JA, Lopez-Alonso V, Márquez G, Morenilla L, Castro X, Giraldez M, Santos-García D, Fernandez-del-Olmo M (2014) The effects of treadmill or overground walking training program on gait in Parkinson’s disease. Gait Posture 38(4):590–595. doi:10.1016/j.gaitpost.2013.02.005

    Article  Google Scholar 

  • Berse T, Rolfes K, Barenberg J, Dutke S, Kuhlenbäumer G, Völker K, Winter B, Wittig M, Knecht S (2015) Acute physical exercise improves shifting in adolescents at school: evidence for a dopaminergic contribution. Front Behav Neurosci 9:196. doi:10.3389/fnbeh.2015.00196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bousquet M, Saint-Pierre M, Julien C, Salem N Jr, Cicchetti F, Calon F (2008) Beneficial effects of dietary omega-3 polyunsaturated fatty acid on toxin-induced neuronal degeneration in an animal model of Parkinson’s disease. FASEB J. 22(4):1213–1225

    Article  CAS  Google Scholar 

  • Bousquet M, Gibrat C, Saint-Pierre M, Julien C, Calon F, Cicchetti F (2009) Modulation of brain-derived neurotrophic factor as a potential neuroprotective mechanism of action of omega-3 fatty acids in a parkinsonian animal model. Prog Neuropsychopharmacol Biol Psychiatry 33(8):1401–1408. doi:10.1016/j.pnpbp.2009.07.018

    Article  CAS  PubMed  Google Scholar 

  • Bousquet M, Calon F, Cicchetti F (2011a) Impact of ω-3 fatty acids in Parkinson’s disease. Ageing Res Rev 10(4):453–463. doi:10.1016/j.arr.2011.03.001

    Article  CAS  PubMed  Google Scholar 

  • Bousquet M, Gue K, Emond V, Julien P, Kang JX, Cicchetti F, Calon F (2011b) Transgenic conversion of omega-6 into omega-3 fatty acids in a mouse model of Parkinson’s disease. J Lipid Res 52(2):263–271. doi:10.1194/jlr.M011692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braak H, Sastre M, Del Tredici K (2007) Development of alpha-synuclein immunoreactive astrocytes in the forebrain parallels stages of intraneuronal pathology in sporadic Parkinson’s disease. Acta Neuropathol 114(3):231–241

    Article  CAS  Google Scholar 

  • Braidy N, Subash S, Essa MM, Vaishav R, Al-Adawi S, Al-Asmi A, Al-Senawi H, Alobaidy AAR, Lakhtakia R, Guillemin GJ (2013) Neuroprotective effects of a variety of pomegranate juice extracts (PJE) against MPTP-induced cytotoxicity and oxidative stress in human primary neurons. Ocid Med Cell Longev. doi:10.1155/2014/576363

    Article  Google Scholar 

  • Brouwer M, Koeman T, van den Brandt PA, Kromhout H, Schouten LJ, Peters S, Huss A, Vermeulen R (2015) Occupational exposures and Parkinson’s disease mortality in a prospective Dutch cohort. Occup Environ Med 72(6):448–455. doi:10.1136/oemed-2014-102209

    Article  PubMed  Google Scholar 

  • Canning CG, Paul SS, Nieuwboer A (2014) Prevention of falls in Parkinson’s disease: a review of fall risk factors and the role of physical interventions. Neurodegener Dis Manag 4(3):203–21. doi:10.2217/nmt.14.22

    Article  PubMed  Google Scholar 

  • Canning CG, Sherrington C, Lord SR, Close JC, Heritier S, Heller GZ, Howard K, Allen NE, Latt MD, Murray SM, O’Rourke SD, Paul SS, Song J, Fung VS (2015) Exercise for falls prevention in Parkinson disease: a randomized controlled trial. Neurology 84(3):304–12. doi:10.1212/WNL.0000000000001155

    Article  PubMed  PubMed Central  Google Scholar 

  • Cansev M, Ulus IH, Wang L, Maher TJ, Wurtman RJ (2008) Restorative effects of uridine plus docosahexaenoic acid in a rat model of Parkinson’s disease. Neurosci Res 62:206–209. doi:10.1016/j.neures.2008.07.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Zhang SM, Hernan MA, Willett WC, Ascherio A (2002) Diet and Parkinson’s disease: a potential role of dairy products in men. Ann Neurol 52:793–801. doi:10.1002/ana.10381

    Article  PubMed  Google Scholar 

  • Cersosimo MG, Benarroch EE (2012a) Pathological correlates of gastrointestinal dysfunction in Parkinson’s disease. Neurobiol Dis 46(3):559–564. doi:10.1016/j.nbd.2011.10.014

    Article  Google Scholar 

  • Cersosimo MG, Benarroch EE (2012b) Autonomic involvement in Parkinson's disease: pathology, pathophysiology, clinical features and possible peripheral biomarkers. J Neurol Sci 313(1–2):57–63. doi:10.1016/j.jns.2011.09.030

    Article  CAS  Google Scholar 

  • Cho HS, Baek DJ, Baek SS (2014) Effect of exercise on hyperactivity, impulsivity and dopamine D2 receptor expression in the substantia nigra and striatum of spontaneous hypertensiverats. J Exerc Nutrition Biochem 18(4):379–84. doi:10.5717/jenb.2014.18.4.379

    Article  Google Scholar 

  • Chen H, Zhang SM, Hernan MA, Willett WC, Ascherio A (2003) Dietary intakes of fat and risk of Parkinson’s disease. Am J Epidemiol 157:1007–1014. doi:10.1093/aje/kwg073

    Article  PubMed  Google Scholar 

  • Chen H, Zhang SM, Schwarrzschild MA, Hernan MA, Logroscino G, Willett WC et al (2004) Folate intake and risk of Parkinson’s disease. Am J Epidemiol 160:368–375. doi:10.1093/aje/kwh213

    Article  PubMed  Google Scholar 

  • Chen H, O’Reilly E, McCullough ML, Rodriguez C, Schwarzschild MA, Calle EE, Thun MJ, Ascherio A (2007) Consumption of dairy products and risk of Parkinson’s disease. Am J Epidemiol 165:998–1006. doi:10.1093/ajefkwk089

    Article  PubMed  PubMed Central  Google Scholar 

  • Choi HK (2005) Dietary risk factors for rheumatic diseases. Curr Opin Rheumatol 17:141–146

    Article  CAS  Google Scholar 

  • Coimbra CG, Junqueira VB (2003) High doses of riboflavin and the elimination of dietary red meat promote the recovery of some motor functions in Parkinson’s disease patients. Braz J Med Biol Res 36:1409–1417. doi:10.1590/S0100-879X2003001000019

    Article  CAS  PubMed  Google Scholar 

  • Conradsson D, Löfgren N, Ståhle A, Franzén E (2014) Is highly challenging and progressive balance training feasible in older adults with Parkinson’s disease. Arch Phys Med Rehab 95:1000–1003

    Article  Google Scholar 

  • Corcos DM, Robichaud JA, David FJ et al (2013) A two-year randomized controlled trial of progressive resistance exercise for Parkinson’s disease. Mov Disord 28:1230–1240

    Article  Google Scholar 

  • Corrigan FM, Murray L, Wyatt CL, Shore RF (1998) Diorthosubstituted polychlorinated biphenyls in caudate nucleus in Parkinson’s disease. Exp Neurol 150:339–342. doi:10.1006/exnr.1998.6776

    Article  CAS  PubMed  Google Scholar 

  • Crews C, Hough P, Godward J, Brereton P, Lees M, Guiet S, Winkelmann W (2005) Study of the main constituents of some authentic walnut oils. J Agric Food Chem 53:4853–4860

    Article  CAS  Google Scholar 

  • Cruickshank TM, Reyes AR, Ziman MR (2015) A systematic review and meta-analysis of strength training in individuals with multiple sclerosis or Parkinson disease. Medicine (Baltimore) 94(4):e411. doi:10.1097/MD.0000000000000411

    Article  Google Scholar 

  • Cugusi L, Solla P, Zedda F, Loi M, Serpe R, Cannas A, Marrosu F, Mercuro G (2014) Effects of an adapted physical activity program on motor and non-motor functions and quality of life in patients with Parkinson’s disease. NeuroRehabilitation 35(4):789–94. doi:10.3233/NRE-141162

    Article  PubMed  Google Scholar 

  • Davis JW, Grandinetti A, Waslien CI, Ross GW, White LR, Morens DM (1996) Observations on serum uric acid levels and the risk of idiopathic Parkinson’s disease. Am J Epidemiol 144(5):480–4

    Article  CAS  Google Scholar 

  • De Lau LM, Koudstaal PJ, Hofman A et al (2005) Serum uric acid levels and the risk of Parkinson’s disease. Ann Neurol 58:797–800

    Article  Google Scholar 

  • Denny Joseph KM, Muralidhara M (2012) Fish oil prophylaxis attenuates rotenone-induced oxidative impairments and mitochondrial dysfunctions in rat brain. Food Chem Toxicol 50(5):1529–37. doi:10.1016/j.fct.2012.01.020

    Article  CAS  PubMed  Google Scholar 

  • Denny Joseph KM, Muralidhara M (2013) Enhanced neuroprotective effect of fish oil in combination with quercetin against 3-nitropropionic acid induced oxidative stress in rat brain. Prog Neuropsychopharmacol Biol Psychiatry 40:83–92. doi:10.1016/j.pnpbp.2012.08.018

    Article  CAS  PubMed  Google Scholar 

  • Denny Joseph KM, Muralidhara M (2015) Combined oral supplementation of fish oil and quercetin enhances neuroprotection in a chronic rotenone rat model: relevance to Parkinson’s disease. Neurochem Res 40(5):894–905. doi:10.1007/s11064-015-1542-0

    Article  CAS  PubMed  Google Scholar 

  • Deslandes A, Moraes H, Ferreira C, Veiga H, Silveira H, Mouta R, Pompeu FA, Coutinho ES, Laks J (2009) Exercise and mental health: many reasons to move. Neuropsychobiology 59(4):191–8. doi:10.1159/000223730

    Article  PubMed  Google Scholar 

  • Desplats PA (2015) Perinatal programming of neurodevelopment: epigenetic mechanisms and the prenatal shaping of the brain. Adv Neurobiol 10:335–61. doi:10.1007/978-1-4939-1372-5_16

    Article  PubMed  Google Scholar 

  • Desplats P, Spencer B, Coffee E, Patel P, Michael S, Patrick C, Adame A, Rockenstein E, Masliah E (2011) Alpha-synuclein sequesters Dnmt1 from the nucleus: a novel mechanism for epigenetic alterations in Lewy body diseases. J Biol Chem 286(11):9031–7. doi:10.1074/jbc.C110.212589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desplats P, Patel P, Kosberg K, Mante M, Patrick C, Rockenstein E, Fujita M, Hashimoto M, Masliah E (2012a) Combined exposure to Maneb and Paraquat alters transcriptional regulation of neurogenesis-related genes in mice models of Parkinson’s disease. Mol Neurodegener 7:49. doi:10.1186/1750-1326-7-49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desplats P, Spencer B, Crews L, Pathel P, Morvinski-Friedmann D, Kosberg K, Roberts S, Patrick C, Winner B, Winkler J, Masliah E (2012b) α-Synuclein induces alterations in adult neurogenesis in Parkinson disease models via p53-mediated repression of Notch1. J Biol Chem 287(38):31691–702. doi:10.1074/jbc.M112.354522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dibble LE, Hale TF, Marcus RL, Gerber JP, Lastayo PC (2009) High intensity eccentric resistance training decreases bradykinesia and improves quality of life in persons with Parkinson’s disease: a preliminary study. Parkinsonism Rel Disorder 15:752–757

    Article  Google Scholar 

  • Ebersbach G (2015) Exercise matters in patients with PD—another piece of evidence. Nat. Rev. Neurol. 11:9–10. doi:10.1038/nrneurol.2014.231

    Article  Google Scholar 

  • Ellwanger JH, Molz P, Dallemole DR, Pereira dos Santos A, Müller TE, Cappelletti L, Gonçalves da Silva M, Franke SI, Prá D, Pêgas Henriques JA (2015) Selenium reduces bradykinesia and DNA damage in a rat model of Parkinson’s disease. Nutrition 31(2):359–65. doi:10.1016/j.nut.2014.07.004

    Article  CAS  PubMed  Google Scholar 

  • Felicio AC, Shih MC, Godeiro-Junior C, Andrade LA, Bressan RA, Ferraz HB (2009) Molecular imaging studies in Parkinson disease: reducing diagnostic uncertainty. Neurologist 15(1):6–16. doi:10.1097/NRL.0b013e318183fdd8

    Article  Google Scholar 

  • Essa MM, Subash S, Dhanalakshmi C, Manivasagam T, Al-Adawi S, Guillemin GJ, Thenmozhi AJ (2015) Dietary supplementation of walnut partially reverses 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine induced neurodegeneration in a mouse model of Parkinson’s disease. Neurochem Res 40:1283–1293. doi:10.1007/s11064-015-1593-2

    Article  CAS  PubMed  Google Scholar 

  • Fleming L, Mann JB, Bean J, Briggle T, Sanchez-Ramos JR (1994) Parkinson’s disease and brain levels of organochlorine pesticides. Ann Neurol 36:100–103

    Article  CAS  Google Scholar 

  • Flores-Mancilla LE, Hernandez-Gonzalez M, Guevara MA, Benavides-Haro DE, Martinez-Arteaga P (2014) Long-term fish oil supplementation attenuates seizure activity in the amygdala induced by 3-mercaptoproprionic acid in adult male rats. Epilepsy Behav 33:126134. doi:10.1016/j.yebeh.2014.02.023

    Article  Google Scholar 

  • Foley T, Fleshner M (2008) Neuroplasticity of dopamine circuits after exercise: implications for centrak fatigue. Neuronol Med 10:67–80

    Article  CAS  Google Scholar 

  • Fredriksson A, Stigsdotter IM, Hurtig A, Ewalds-Kvist B, Archer T (2011) Running wheel activity restores MPTP-induced functional deficits. J Neural Tranms 118:407–420. doi:10.1007/s00702-010-0474-8:

    Article  CAS  Google Scholar 

  • Ganesan M, Sathyaprabha TN, Gupta A, Pal PK (2014) Effect of partial weight-supported treadmill gait training on balance in patients with Parkinson’s disease. PM & R 6:22–33

    Article  Google Scholar 

  • Gaggelli E, Kozlowski H, Valensin D, Valensin G (2006) Copper homeostasis and neurodegenerative disorders (Alzheimer’s, prion, and Parkinson’s diseases and amyotrophic lateral sclerosis)

    Google Scholar 

  • Gao Q, Leung A, Yang Y et al (2014) Effect of Tai Chi on balance and fall prevention in Parkinson’s disease: a randomized controlled trial. Clin Rehabil 28:748–753

    Article  Google Scholar 

  • Garcia D, Archer T (2014) Positive affect and age as predictors of exercise compliance. PeerJ 2:e694. doi:10.7717/peerj.694

    Article  PubMed  PubMed Central  Google Scholar 

  • Garcia D, Jimmefors A, Mousavi F, Adrianson L, Rosenberg P, Archer T (2015) Self-regulatory mode (locomotion and assessment), well-being (subjective and psychological), and exercise behavior (frequency and intensity) in relation to high school pupils’ academic achievement. PeerJ 3:e847. doi:10.7717/peerj.847

    Article  PubMed  PubMed Central  Google Scholar 

  • Geroin C, Smania N, Schena F, Dimitrova E, Verzini E, Bombieri F, Nardello F, Tinazzi M, Gandolfi M (2015) Does the Pisa syndrome affect postural control, balance, and gait in patients with Parkinson’s disease? An observational cross-sectional study. Parkinsonism Relat Disord 21(7):736–41. doi:10.1016/j.parkreldis.2015.04.020

    Article  PubMed  Google Scholar 

  • Gobbi LTB, Oliveira-Ferreira MDT, Caetano MJD et al (2009) Exercise programs improve mobility and balance in people with Parkinson’s disease. Parkinsonism Rel Disorder 15, Suppl. 3, S49–S52

    Article  Google Scholar 

  • Gosslau A, En Jao DL, Huang MT, Ho CT, Evans D, Rawson NE et al (2011) Effects of the black tea polyphenol theaflavin-2 on apoptotic and inflammatory pathways in vitro and in vivo. Mol Nutr Food Res 55:198–208. doi:10.1002/mnfr.201000165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hattori S, Li Q, Matsui N, Nishino H (1993) Treadmill running combined with microdialysis can evaluate motor deficit and improvement following dopaminergic grafts in 6-OHDA lesioned rats. Restor Neurol Neurosci 6(1):65–72. doi:10.3233/RNN-1993-6107

    Article  CAS  PubMed  Google Scholar 

  • Hattori S, Naoi M, Nishino H (1994) Striatal dopamine turnover during treadmill running in the rat: relation to the speed of running. Brain Res Bull 35(1):41–9

    Article  CAS  Google Scholar 

  • Hawkes CH, Del Tredici K, Braak H (2007) Parkinson’s disease: a dual-hit hypothesis. Neuropathol Appl Neurobiol 33(6):599–614

    Article  CAS  Google Scholar 

  • Hellenbrand W, Seidler A, Boeing H, Robra BP, Vieregge P, Nischan P et al (1996) Diet and Parkinson’s disease. I: a possible role for the past intake of specific foods and food groups. Results from a self-administered food-frequency questionnaire in a case-control study. Neurology 47:636–643. doi:10.1212/WNL.47.3636

    Article  CAS  PubMed  Google Scholar 

  • Hoang T, Choi DK, Nagai M, Wu DC, Nagata T, Prou D, Wilson GL, Vila M, Jackson-Lewis V, Dawson VL, Dawson TM, Chesselet MF, Przedborski S (2009) Neuronal NOS and cyclooxygenase-2 contribute to DNA damage in a mouse model of Parkinson disease. Free Radic Biol Med 47(7):1049–56. doi:10.1016/j.freeradbiomed.2009.07.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • International Parkinson’s Disease Genomics Consortium (IPDGC); Wellcome Trust Case Control Consortium 2 (WTCCC2) (2011) A two-stage meta-analysis identifies several new loci for Parkinson’s disease. PLoS Genet 7e:1002142. doi:10.1371/journal.pgen.1002142

  • Iwamoto M, Sato M, Kono M, Hirooka Y, Saka K, Takeshita A, Imaizumi K (2000) Walnuts lower serum cholesterol in Japanese men and women. J Nutr 130:171–176

    Article  CAS  Google Scholar 

  • James EL, Parkinson EK (2015) Serum metabolomics in animal models and human disease. Curr Opin Clin Nutr Metab Care PMID 26147529

    Google Scholar 

  • Jankovic J (2008) Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry 79(4):368–376. doi:10.1136/jnnp.2007.131045

    Article  CAS  Google Scholar 

  • Jiang R, Manson JE, Stamfer MJ, Liu S, Willett WC, Hu FB (2002) Nut and pea nut butter consumption and risk of type 2 diabetes in women. JAMA 288:2554–2560

    Article  Google Scholar 

  • Kara B, Genc A, Colakoglu BD, Cakmur R (2012) The effect of supervised exercise on static and dynamic balance in Parkinson’s disease patients. NeuroRehabilitation 30:351–357

    PubMed  Google Scholar 

  • Kaur H, Chauhan S, Sandhir R (2011) Protective effect of lycopene on oxidative stress and cognitive decline in rotenone induced model of Parkinson’s disease. Neurochem Res 36:1435–1443. doi:10.1007/s11064-011-0469-3

    Article  CAS  PubMed  Google Scholar 

  • Kim HD, Jae HD, Jeong JH (2014) Tai Chi exercise can improve the obstacle negotiating ability of people with Parkinson’s disease: a preliminary study. J Phys Ther 26:1025–1030

    Article  Google Scholar 

  • Kyrozis A, Ghika A, Stathopoulos P, Vassilopoulos D, Trichopoulos D, Trichopoulou A (2013) Dietary and lifestyle variables in relation to incidence of Parkinson’s disease in Greece. Eur J Epidemiol 28:67–77. doi:10.1007/s10654-012-9760-0

    Article  PubMed  Google Scholar 

  • Lamotte G, Rafferty MR, Prodoehl J, Kohrt WM, Comella CL, Simuni T, Corcos DM (2015) Effects of endurance exercise training on the motor and non-motor features of Parkinson’s disease: a review. J Parkinsons Dis 5(1):21–41. doi:10.3233/JPD-140425

    Article  PubMed  Google Scholar 

  • Landgrave-Gomez J, Mercado-Gomez O, Guevara-Guzman R (2015) Epigenetic mechanisms in neurological and neurodegenerative diseases. Front Cell Neurosci. doi:10.3389/fncel.2015.00058

    Article  PubMed  PubMed Central  Google Scholar 

  • Lees AJ, Hardy J, Revesz T (2009) Parkinson’s disease. Lancet 373(9680):2055–66. doi:10.1016/S0140-6736(09)60492-X

    Article  CAS  Google Scholar 

  • Liddle J, Eagles R (2014) Moderate evidence exists for occupational therapy-related interventions for people with Parkinson’s disease in physical activity training, environmental cues and individualised programmes promoting personal control and quality of life. Aust Occup Ther J 61(4):287–8. doi:10.1111/1440-1630.12153

    Article  PubMed  Google Scholar 

  • Low DA, Vichayanrat E, Iodice V, Mathias CJ (2014) Exercise hemodynamics in Parkinson’s disease and autonomic dysfunction. Parkinsonism Relat Disord. 20(5):549–53. doi:10.1016/j.parkreldis.2014.02.006

    Article  PubMed  Google Scholar 

  • Luchtman DW, Meng Q, Song C (2012) Ethyl-eicosapentaenoate (E-EPA) attenuates motor impairments and inflammation in the MPTP-probenecid mouse model of Parkinson’s disease. Behav Brain Res 226(2):386–96. doi:10.1016/j.bbr.2011.09.033

    Article  CAS  PubMed  Google Scholar 

  • Maraldi M, Vanzour D, Angeloni C (2014) Dietary polyphenols and their effects on cell biochemistry and pathophysiology. Oxid Med Cell Longev 2014:576363. doi:10.1155/2014/576363

    Article  PubMed  PubMed Central  Google Scholar 

  • Mattson MP (2014) Interventions that improve body and brain bioenergetics for Parkinson’s disease risk reduction and therapy. J Parkinsons Dis 4(1):1–13. doi:10.3233/JPD-130335

    Article  CAS  PubMed  Google Scholar 

  • Monteiro-Junior RS, Cevada T, Oliveira BRR, Lattari E, Portugal EMM, Carvalho A, Deslandes AC (2015) We need to move bra: Neurobiological hypotheses of physical exercise as a treatment for Parkinson’s disease. Med Hypotheses. doi:10.1016/j.mehy.2015.07.011

    Article  PubMed  Google Scholar 

  • Moradi S, Nima AA, Rapp Ricciardi M, Archer T, Garcia D (2014) Exercise, character strengths, well-being, and learning climate in the prediction of performance over a 6-month period at a call center. Front Psychol 5:497. doi:10.3389/fpsyg.2014.00497

    Article  PubMed  PubMed Central  Google Scholar 

  • Morelli M, Carta AR, Kachroo A, Schwarzschild MA (2010) Pathophysiological roles for purines: adenosine, caffeine and urate. Prog Brain Res 183:183–208. doi:10.1016/S0079-6123(10)83010-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris M, Schoo A (2004) Optimizing exercise and physical activity in older adults. Butterworth Heinemann, Edinburgh

    Google Scholar 

  • Morroni F, Tarrozi A, Sita G, Bolondi C, Zolezzi Moraga JM, Cantelli-Forti G et al (2013) Neuroprotective effect of sulforaphane in 6-hydroxydopamine-lesioned mouse model of Parkinson’s disease. Neurotoxicology 36:63–71. doi:10.1016/j.neuro.2013.03.004

    Article  CAS  PubMed  Google Scholar 

  • Muthaiyah B, Essa MM, Chauhan C, Chauhan V (2011) Protective effects of walnut extract against amyloid beta peptide-induced cell death and oxidative stress in PC12 cells. Neurochem Res 36:2096–2103

    Article  CAS  Google Scholar 

  • Muthaiyah B, Essa MM, Lee M, Chauhan V, Kaur K, Chauhan A (2014) Dietary supplementation of walnut improves memory deficits and learning skills in mouse model of Alzheimer’s disease. J Alzheimer’s Disease 42:1397–1405. doi:10.3233/JAD-140675

    Article  CAS  Google Scholar 

  • Nalls MA, Bras J, Hernandez DG, Keller MF, Majounie E, Renton AE, Saad M, Jansen I, Guerreiro R, Lubbe S, Plagnol V, Gibbs JR, Schulte C, Pankratz N, Sutherland M, Bertram L, Lill CM, DeStefano AL, Faroud T, Eriksson N, Tung JY, Edsall C, Nichols N, Brooks J, Arepalli S, Pliner H, Letson C, Heutink P, Martinez M, Gasser T, Traynor BJ, Wood N, Hardy J, Singleton AB; International Parkinson’s Disease Genomics Consortium (IPDGC); Parkinson’s Disease meta-analysis consortium. (2015) NeuroX, a fast and efficient genotyping platform for investigation of neurodegenerative diseases. Neurobiol Aging 36(3):1605.e7-12. doi: 10.1016/j.neurobiolaging.2014.07.028

    Article  Google Scholar 

  • Nalls MA, Keller MF, Hernandez DG, Chen L, Stone DJ, Singleton AB; Parkinson’s Progression Marker Initiative (PPMI) investigators. (2015) Baseline genetic associations in the Parkinson’s Progression Markers Initiative (PPMI). Mov Disord doi:10.1002/mds.26374

    Article  Google Scholar 

  • Nicolucci A, Balducci S, Cardelli P, Cavallo S, Fallucca S, Bazuro A, Simonelli P, Iacobini C, Zanuso S, Pugliese G; Italian Diabetes Exercise Study Investigators (2012) Relationship of exercise volume to improvements of quality of life with supervised exercise training in patients with type 2 diabetes in a randomised controlled trial: the Italian Diabetes and Exercise Study (IDES). Diabetologia 55(3):579–88. doi:10.1007/s00125-011-2425-9

    Article  CAS  Google Scholar 

  • Nielsen SB, Macchi F, Raccosta S, Langkilde AE, Giehm L, Kyrsting A, Svane AS, Manno M, Christiansen G, Nielsen NC, Oddershede L, Vestergaard B, Otzen DE (2013) Wildtype and A30P mutant alpha-synuclein form different fibril structures. PLoS One 8(7):e67713. doi:10.1371/journal.pone.0067713

    Article  CAS  Google Scholar 

  • Nocera J, Horvat M, Ray CT (2009) Effects of home-based exercise on postural control and sensory organization in individuals with Parkinson’s disease. Parkinsonism Rel Disorder 15:742–745

    Article  Google Scholar 

  • O’Dell SJ, Gross NB, Fricks AN, Casiano BD, Nguyen TB, Marshall JF (2007) Running wheel exercise enhances recovery from nigrostriatal dopamine injury without inducing neuroprotection. Neuroscience 144(3):1141–51

    Article  Google Scholar 

  • O’Dell SJ, Galvez BA, Ball AJ, Marshall JF (2012) Running wheel exercise ameliorates methamphetamine-induced damage to dopamine and serotonin terminals. Synapse 66(1):71–80. doi:10.1002/syn.20989

    Article  CAS  PubMed  Google Scholar 

  • Oguh O, Eisenstein A, Kwasny M, Simuni T (2014) Back to the basics: regular exercise matters in Parkinson’s disease: results from the National Parkinson Foundation registry study. Parkinsonism Relat Disord 20:1221–1225

    Article  CAS  Google Scholar 

  • Ozsoy O, Seval-Celik Y, Hacioglu G, Yargicoglu P, Demir R, Agar A, Aslan M (2011) The influence and the mechanism of docosahexaenoic acid on a mouse model of Parkinson’s disease. Neurochem Int 59(5):664–70. doi:10.1016/j.neuint.2011.06.012

    Article  CAS  PubMed  Google Scholar 

  • Paker N, Bugdayci D, Goksenoglu G, Sen A, Kesiktas N (2012) Effect of robotic treadmill training on functional mobility, walking capacity, motor symptoms and quality of life in ambulatory patients with Parkinson’s disease: a preliminary prospective longitudinal study. NeuroRehabilitation 33:323–328

    Google Scholar 

  • Palliard T, Rolland Y, de Souto Barreto P (2015) Protective effects of physical exercise in Alzheimer’s and Parkinson’s disease: a narrative review. JClin Neurol 11:212–219. doi:10.3988/jcn.2015.11.3.212

    Article  Google Scholar 

  • Park LK, Ross GW, Petrovitch H, White LR, Masaki KH, Nelson JS et al (2005a) Consumption of milk and calcium in midlife and the future risk of Parkinson disease. Neurology 64:1047–1051. doi:10.1212/01.WLN0000154532.98495.BF

    Article  CAS  PubMed  Google Scholar 

  • Park M, Ross GW, Petrovitch H, White LR, Masaki KH, Nelson JS, Tanner CM, Curb JD, Blanchette PL, Abbott RD (2005b) Consumption of milk and calcium in midlife and the future risk of Parkinson disease. Neurology 64(6):1047–51

    Article  CAS  Google Scholar 

  • Park LK, Friso S, Choi SW (2012) Nutritional influences on epigenetics and age-related disease. Proc Nutr Soc 71:75–83. doi:10.1017/S0029665111003302

    Article  CAS  PubMed  Google Scholar 

  • Picelli A, Melotti C, Origano F, Waldner A, Fiaschi A, Santilli V, Smania N (2012a) Robot-assisted gait training in patients with Parkinson disease: a randomized controlled trial. Neurorehabil Neural Repair 26(4):353–361. doi:10.1177/1545968311424417

    Article  PubMed  Google Scholar 

  • Picelli A, Melotti C, Origano F, Waldner A, Gimigliano R, Smania N (2012b) Does robotic gait training improve balance in Parkinson’s disease? A randomized controlled trial. Parkinsonism Relat Disord 18(8):990–993. doi:10.1016/j.parkreldis.2012.05.010

    Article  PubMed  Google Scholar 

  • Picelli A, Tamburin S, Passuello M, Waldner A, Smania N (2014) Robot-assisted arm training in patients with Parkinson’s disease: a pilot study. J Neuroeng Rehabil 11:28. doi:10.1186/1743-0003-11-28

    Article  PubMed  PubMed Central  Google Scholar 

  • Pickrell AM, Pinto M, Hida A, Moraes CT (2011) Striatal dysfunctions associated with DNA damage in dopaminergic neurons in a mouse model of Parkinson’s disease. J Neurosci 31:17640–17658

    Google Scholar 

  • Priyadarshi A, Khuder SA, Schaub EA, Shrivastava S (2000) A meta-analysis of Parkinson’s disease and exposure to pesticides. Neurotoxicology 21(4):435–440

    CAS  PubMed  Google Scholar 

  • Qian Y, Guan T, Tang X, Huang L, Huang M, Li Y, Sun H (2011) Maslinic acid, a natural triterpenoid compound from Olea europaea, protects cortical neurons against oxygen-glucose deprivation-induced injury. Eur J Pharmacol 670(1):148–153. doi:10.1016/j.ejphar.2011.07.037

    Article  CAS  PubMed  Google Scholar 

  • Qian Y, Guan T, Huang M, Cao L, Li Y, Cheng H, Jin H, Yu D (2012) Neuroprotection by the soy isoflavone, genistein, via inhibition of mitochondria-dependent apoptosis pathways and reactive oxygen induced-NF-κB activation in a cerebral ischemia mouse model. Neurochem Int 60(8):759–67. doi:10.1016/j.neuint.2012.03.011

    Article  CAS  PubMed  Google Scholar 

  • Qureshi IA, Mehler MF (2012) Emerging roles of non-coding RNAs in brain evolution, development, plasticity and disease. Nat Rev Neurosci 13(8):528–541. doi:10.1038/nrn3234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qureshi IA, Mehler MF (2013a) Epigenetic mechanisms governing the process of neurodegeneration. Mol Aspects Med 34(4):875–882. doi:10.1016/j.mam.2012.06.011

    Article  CAS  PubMed  Google Scholar 

  • Qureshi IA, Mehler MF (2013b) Understanding neurological disease mechanisms in the era of epigenetics. JAMA Neurol 70(6):703–710. doi:10.1001/jamaneurol.2013.1443

    Article  PubMed  PubMed Central  Google Scholar 

  • Qureshi IA, Mehler MF (2014) Epigenetic mechanisms underlying the pathogenesis of neurogenetic diseases. Neurotherapeutics 11(4):708–720. doi:10.1007/s13311-014-0302-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qureshi IA, Mehler MF (2015) Epigenetics and therapeutic targets mediating neuroprotection. Brain Res. pii: S0006-8993(15)00577-6. doi:10.1016/j.brainres.2015.07.034

    Article  CAS  Google Scholar 

  • Rasia RM, Bertoncini CW, Marsh D, Hoyer W, Cherny D, Zweckstetter M, Griesinger C, Jovin TM, Fernández CO (2005) Structural characterization of copper(II) binding to alpha-synuclein: Insights into the bioinorganic chemistry of Parkinson’s disease. Proc Natl Acad Sci USA 102(12):4294–4299

    Article  CAS  Google Scholar 

  • Ros E, Nnez I, Perez-Heras A, Merce S, Gilabert R, Casals E, Deulofeu R (2004) Walnut diet improves endothelial functions in hypercholesterolemic subject. Circulation 109:1609–1614

    Article  CAS  Google Scholar 

  • Scalzo P, Kümmer A, Cardoso F, Teixeira AL (2010) Serum levels of interleukin-6 are elevated in patients with Parkinson’s disease and correlate with physical performance. Neurosci Lett 468(1):56–58. doi:10.1016/j.neulet.2009.10.062

    Article  CAS  PubMed  Google Scholar 

  • Schlesinger I, Schlesinger N (2008) Uric acid in Parkinson’s disease. Mov Disord 23:1653–1657. doi:10.1002/mds.22139

    Article  PubMed  Google Scholar 

  • Sconce MD, Churchill MJ, Greene RE, Meshul CK (2015) Intervention with exercise restores motor deficits but not nigrostriatal loss in a progressive MPTP mouse model of Parkinson’s disease. Neuroscience 299:156–174. doi:10.1016/j.neuroscience.2015.04.069

    Article  CAS  PubMed  Google Scholar 

  • Seidl SE, Santiago JA, Bilyk H, Potashkin JA (2014) The emerging role of nutrition in Parkinson’s disease. Front Aging Neurosci. doi:10.3389/fnagi.2014.00036

    Article  PubMed  PubMed Central  Google Scholar 

  • Shaltiel-Karyo R, Frenkel-Pinter M, Rockenstein E, Patrick C, Levy-Sakin M, Schiller A (2013) A blood-brain barrier (BBB) disrupter is also a potent alpha-synuclein (alpha-syn) aggregation inhibitor: a novel dual mechanism of mannitol for treatment of Parkinson disease (PD). J Biol Chem 288:17579–17588. doi:10.1074/jbc.M112.434787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen C, Guo Y, Lin C, Ding M (2013) Serum urate and the risk of Parkinson’s disease: results from a meta-analysis. Can J Neurol Sci 40:73–79

    Article  Google Scholar 

  • Shumway-Cook A, Matsuda PN, Taylor C (2015) Investigating the validity of the environmental framework underlying the original and modified Dynamic Gait Index. Phys Ther 95(6):864–870. doi:10.2522/ptj.20140047

    Article  PubMed  Google Scholar 

  • Sonsalla PK, Wong LY, Harris SL, Richardson JR, Khobahy I, Li W, Gadad BS, German DC (2012) Delayed caffeine treatment prevents nigral dopamine neuron loss in a progressive rat model of Parkinson’s disease. Exp Neurol 234(2):482–487. doi:10.1016/j.expneurol.2012.01.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sonsalla PK, Coleman C, Wong LY, Harris SL, Richardson JR, Gadad BS, Li W, German DC (2013) The angiotensin converting enzyme inhibitor captopril protects nigrostriatal dopamine neurons in animal models of parkinsonism. Exp Neurol 250:376–383. doi:10.1016/j.expneurol.2013.10.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spaccarotella KJ, Kris-Etherton PM, Stone WL, Bagshaw DM, Fishell VK, West SG, Lawrence FR, Hartman TJ (2008) The effect of walnut intake on factors related to prostate and vascular health in older men. Nutr J 7:13. doi:10.1186/1475-2891-7-13

    Article  PubMed  PubMed Central  Google Scholar 

  • Sumec R, Filip P, Sheardova K, Bares M (2015) Psychological benefits of nonpharmacological methods aimed for improving balance in Parkinson’s disease: a systematic review. Behav Neurol. doi:10.1155/2015/620674

    Article  PubMed  PubMed Central  Google Scholar 

  • Sutoo DE, Akiyama K (2003) Regulation of brain function by exercise. Neurbiol Dis 13:1–14

    Article  CAS  Google Scholar 

  • Tamilselvam K, Braidy N, Manivasagam T, Essa MM, Prasad NR, Karthikeyan S, Thenmozhi AJ, Selvaraju S, Guillemin GJ (2013) Neuroprotective effects of hesperidin, a plant flavanone, on rotenone-induced oxidative stress and apoptosis in a cellular model for Parkinson’s disease. Oxid Med Cell Longev 2013:102741. doi:10.1155/2013/102741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teixeira-Machado L, Araújo FM, Cunha FA, Menezes M, Menezes T, Melo DeSantana J (2015) Feldenkrais method-based exercise improves quality of life in individuals with Parkinson’s disease: a controlled, randomized clinical trial. Altern Ther Health Med 21(1):8–14

    PubMed  Google Scholar 

  • Tian Y, Zhang Y, Zhang R, Qiao S, Fan J (2015) Resolvin D2 recovers neural injury by suppressing inflammatory mediators expression in lipopolysaccharide-induced Parkinson’s disease rat model. Biochem Biophys Res Commun 460(3):799–805. doi:10.1016/j.bbrc.2015.03.109

    Article  CAS  PubMed  Google Scholar 

  • Tsang WWN (2013) Tai Chi training is effective in reducing balance impairments and falls in patients with Parkinson’s disease. J Physiother 59, art. 55

    Article  Google Scholar 

  • Tuon T, Valvassori SS, Dal Pont GC, Paganini CS, Pozzi BG, Luciano TF, Souza PS, Quevedo J, Souza CT, Pinho RA (2014) Physical training prevents depressive symptoms and a decrease in brain-derived neurotrophic factor in Parkinson’s disease. Brain Res Bull 108:106–112. doi:10.1016/j.brainresbull.2014.09.006

    Article  CAS  PubMed  Google Scholar 

  • Tyagi SC, Joshua IG (2014) Exercise and nutrition in myocardial matrix metabolism, remodeling, regeneration, epigenetics, microcirculation, and muscle. Can J Physiol Pharmacol 92(7):521–523. doi:10.1139/cjpp-2014-0197

    Article  CAS  Google Scholar 

  • Uhrbrand A, Stenager E, Pedersen MS, Dalgas U (2015) Parkinson’s disease and intensive exercise therapy—a systematic review and meta-analysis of randomized controlled trials. J Neurol Sci 353(1–2):9–19. doi:10.1016/j.jns.2015.04.004

    Article  PubMed  Google Scholar 

  • Vines A, Delattre AM, Lima MMS, Rodrigues LS, Suchecki D, Machado RB, Tufik S, Pereira SI, Zanata SM, Ferraz AC (2012) The role of 5-HT1A receptors in the fish oil-mediated incressed BDNF expression in the rat hippocampus and cortex: a possible antidepressant mechanism. Neuropharmacology 62:184–191. doi:10.1016/j.neuropharm.2011.06.017

    Article  CAS  Google Scholar 

  • Voisin S, Eynon N, Yan X, Bishop DJ (2015) Exercise training and DNA methylation in humans. Acta Physiol (Oxf) 213(1):39–59. doi:10.1111/apha.12414

    Article  CAS  Google Scholar 

  • Winter B, Breitenstein C, Mooren FC, Voelker K, Fobker M, Lechtermann A, Krueger K, Fromme A, Korsukewitz C, Floel A, Knecht S (2007) High impact running improves learning. Neurobiol Learn Mem 87(4):597–609

    Article  Google Scholar 

  • Wong-Yu Is IS, Mak M (2013) Effects of a context-specific physiotherapy exercise programme on enhancing balance performance and balance confidence in people with Parkinson’s disease—a randomized controlled trial. Hong Kong Physiother J 31, 100.101

    Article  Google Scholar 

  • Wu T, Wang J, Wang C, Hallett M, Zang Y, Wu X, Chan P (2012) Basal ganglia circuits changes in Parkinson’s disease patients. Neurosci Lett 524(1):55–59. doi:10.1016/j.neulet.2012.07.012

    Article  CAS  Google Scholar 

  • Xiao D, Cassin JJ, Healy B, Burdett TC, Chen JF, Fredholm BB, Schwarzschild MA (2011) Deletion of adenosine A1 or A(2A) receptors reduces L-3,4-dihydroxyphenylalanine-induced dyskinesia in a model of Parkinson’s disease. Brain Res 1367:310–318. doi:10.1016/j.brainres.2010.08.099

    Article  CAS  PubMed  Google Scholar 

  • Yadav S, Gupta SP, Srivastava G, Srivastava PK, Singh MP (2012) Mucuna pruriens seed extract reduces oxidative stress in nigrostriatal tissue and improves neurobehavioral activity in paraquat-induced Parkinsonian mouse model. Neurochem Int 62(8):1039–1047. doi:10.1016/j.neuint.2013.03.015

    Article  CAS  Google Scholar 

  • Yakunin E, Loeb V, Kisos H, Biala Y, Yehuda S, Yaari Y, Selkoe DJ, Sharon R (2012) Α-synuclein neuropathology is controlled by nuclear hormone receptors and enhanced by docosahexaenoic acid in a mouse model for Parkinson’s disease. Brain Pathol 22(3):280–294. doi:10.1111/j.1750-3639.2011.00530.x

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Trolle Lagerros Y, Bellocco R, Adami HO, Fang F, Pedersen NL, Wirdefeldt K (2015) Physical activity and risk of Parkinson’s disease in the Swedish National March Cohort. Brain. 138(Pt 2):269–275. doi:10.1093/brain/awu323

    Article  PubMed  Google Scholar 

  • Yang ML, Hasadsri L, Woods WS, George JM (2010) Dynamic transport and localization of alpha-synuclein in primary hippocampal neurons. Mol Neurodegener 5(1):9. doi:10.1186/1750-1326-5-9

    Article  Google Scholar 

  • Ye Q, Ye L, Xu X, Huang B, Zhang X, Zhu Y, Chen X (2012) Epigallocatechin-3-gallate suppresses 1-methyl-4-phenyl-pyridine-induced oxidative stress in PC12 cells via the SIRT1/PGC-1α signaling pathway. BMC Complement Altern Med 12:82. doi:10.1186/1472-6882-12-82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon MC, Shin MS, Kim TS, Kim BK, Ko IG, Sung YH, Kim SE, Lee HH, Kim YP, Kim CJ (2007) Treadmill exercise suppresses nigrostriatal dopaminergic neuronal loss in 6-hydroxydopamine-induced Parkinson’s rats. Neurosci Lett 423(1):12–17

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trevor Archer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Archer, T., Kostrzewa, R.M. (2015). Exercise and Nutritional Benefits in PD: Rodent Models and Clinical Settings. In: Kostrzewa, R.M., Archer, T. (eds) Neurotoxin Modeling of Brain Disorders—Life-long Outcomes in Behavioral Teratology. Current Topics in Behavioral Neurosciences, vol 29. Springer, Cham. https://doi.org/10.1007/7854_2015_409

Download citation

Publish with us

Policies and ethics