Skip to main content
Log in

Animal cellulases with a focus on aquatic invertebrates

  • Review Article
  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

Cellulose is utilized as a nutritional source by various organisms. For a long time it was believed that only protozoa, bacteria, and fungi, in addition to plants and photosynthetic bacteria, are able to synthesize cellulases encoded by their own genes. However, the widespread distribution of cellulases throughout the animal kingdom has recently been recognized. Conventionally, animals digest cellulose utilizing cellulases derived from symbiotic bacteria in the digestive organs. However, recent molecular biological studies have shown that some cellulase genes are actually encoded on animal chromosomes. In addition, the homologous primary structure of cellulases obtained from various invertebrate phyla indicates the possible vertical transfer of the cellulase gene from ancient organisms that are now extinct. The results of studies on cellulases with unique enzymatic properties are expected to be applied to bioethanol production and aquaculture. In the present review, we describe cellulases, focusing primarily on aquatic invertebrates in which both endogenous and exogenous cellulases are involved in the breakdown of cellulose in the digestive organs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Watanabe H, Tokuda G (2001) Animal cellulases. Cell Mol Life Sci 58:1167–1178

    Article  PubMed  CAS  Google Scholar 

  2. Watanabe H, Tokuda G (2010) Cellulolytic systems in insects. Annu Rev Entomol Annu Rev 55:609–632

    Article  CAS  Google Scholar 

  3. Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Bio 6:850–861

    Article  CAS  Google Scholar 

  4. Henrissat B, Claeyssens M, Tomme P, Lemesle L, Mornon JP (1989) Cellulase families revealed by hydrophobic cluster-analysis. Gene 81:83–95

    Article  PubMed  CAS  Google Scholar 

  5. Karrer P, Schubert P, Wehrli W (1925) Polysaccharides XXXIII. On the enzymatic breakdown of artificial silk and native cellulose. Helv Chim Acta 8:797–810

    Google Scholar 

  6. Lenski RE (2003) Life’s solution: inevitable humans in a lonely universe. Nature 425:767–768

    Article  CAS  Google Scholar 

  7. Watanabe H, Noda H, Tokuda G, Lo N (1998) A cellulase gene of termite origin. Nature 394:330–331

    Article  PubMed  CAS  Google Scholar 

  8. Martin MM (1991) The evolution of cellulose digestion in insects. Philos Trans R Soc B 333:281–288

    Article  Google Scholar 

  9. Sugimura M, Watanabe H, Lo N, Saito H (2003) Purification, characterization, cDNA cloning and nucleotide sequencing of a cellulase from the yellow-spotted longicorn beetle, Psacothea hilaris. Eur J Biochem 270:3455–3460

    Article  PubMed  CAS  Google Scholar 

  10. Nishida Y, Suzuki K, Kumagai Y, Tanaka H, Inoue A, Ojima T (2007) Isolation and primary structure of a cellulase from the Japanese sea urchin Strongylocentrotus nudus. Biochimie 89:1002–1011

    Article  PubMed  CAS  Google Scholar 

  11. Smant G, Stokkermans J, Yan YT, de Boer JM, Baum TJ, Wang XH, Hussey RS, Gommers FJ, Henrissat B, Davis EL, Helder J, Schots A, Bakker J (1998) Endogenous cellulases in animals: isolation of beta-1,4-endoglucanase genes from two species of plant-parasitic cyst nematodes. Proc Natl Acad Sci USA 95:4906–4911

    Article  PubMed  CAS  Google Scholar 

  12. Sakamoto K, Touhata K, Yamashita M, Kasai A, Toyohara H (2007) Cellulose digestion by common Japanese freshwater clam Corbicula japonica. Fish Sci 73:675–683

    Article  CAS  Google Scholar 

  13. Imjongjirak C, Amparyup P, Sittipraneed S (2008) Cloning, genomic organization and expression of two glycosyl hydrolase family 10 (GHF10) genes from golden apple snail (Pomacea canaliculata). DNA Seq 19:224–236

    Article  PubMed  CAS  Google Scholar 

  14. Kostanjsek R, Milatovic M, Srus J (2010) Endogenous origin of endo-beta-1,4-glucanase in common woodlouse Porcellio scaber (Crustacea, Isopoda). J Comp Physiol B 180:1143–1153

    Article  PubMed  CAS  Google Scholar 

  15. Lo N, Watanabe H, Sugimura M (2003) Evidence for the presence of a cellulase gene in the last common ancestor of bilaterian animals. Proc R Soc Lond B Bio 270:S69–S72

    Article  CAS  Google Scholar 

  16. Davison A, Blaxter M (2005) Ancient origin of glycosyl hydrolase family 9 cellulase genes. Mol Biol Evol 22:1273–1284

    Article  PubMed  CAS  Google Scholar 

  17. Hungate RE (1946) The cellulose-decomposing bacteria in the rumen of cattle. J Bacteriol 51:589

    PubMed  CAS  Google Scholar 

  18. Wood TM, Wilson CA, Stewart CS (1982) Preparation of the cellulase from the cellulolytic anaerobic rumen bacterium Ruminococcus albus and its release from the bacterial-cell wall. Biochem J 205:129–137

    PubMed  CAS  Google Scholar 

  19. Coleman GS (1986) The distribution of carboxymethylcellulase between fractions taken from the rumens of sheep containing no protozoa or one of 5 different protozoal populations. J Agric Sci 106:121–127

    Article  CAS  Google Scholar 

  20. Bernalier A, Fonty G, Bonnemoy F, Gouet P (1992) Degradation and fermentation of cellulose by the rumen anaerobic fungi in axenic cultures or in association with cellulolytic bacteria. Curr Microbiol 25:143–148

    Article  CAS  Google Scholar 

  21. Varel VH, Fryda SJ, Robinson IM (1984) Cellulolytic bacteria from pig large-intestine. Appl Environ Microbiol 47:219–221

    PubMed  CAS  Google Scholar 

  22. Cleveland LR (1924) The physiological and symbiotic relationships between the intestinal protozoa of termites and their host, with special reference to Reticulitermes flavipes Kollar. Biol Bull US 46:178–201

    Article  Google Scholar 

  23. Trager W (1932) A cellulase from the symbiotic intestinal flagellates of termites and of the roach, Cryptocercus punctulatus. Biochem J 26:1762–1771

    PubMed  CAS  Google Scholar 

  24. Delalibera I, Handelsman J, Raffa KF (2005) Contrasts in cellulolytic activities of gut microorganisms between the wood borer, Saperda vestita (Coleoptera: Cerambycidae), and the bark beetles, Ips pini and Dendroctonus frontalis (Coleoptera: Curculionidae). Environ Entomol 34:541–547

    Article  Google Scholar 

  25. Wenzel M, Schonig I, Berchtold M, Kampfer P, Konig H (2002) Aerobic and facultatively anaerobic cellulolytic bacteria from the gut of the termite Zootermopsis angusticollis. J Appl Microbiol 92:32–40

    Article  PubMed  CAS  Google Scholar 

  26. Watanabe H, Takase A, Tokuda G, Yamada A, Lo N (2006) Symbiotic “archaezoa” of the primitive termite Mastotermes darwiniensis still play a role in cellulase production. Eukaryot Cell 5:1571–1576

    Article  PubMed  CAS  Google Scholar 

  27. Martin MM, Martin JS (1978) Cellulose digestion in midgut of fungus-growing termite Macrotermes natalensis—role of acquired digestive enzymes. Science 199:1453–1455

    Article  PubMed  CAS  Google Scholar 

  28. Rouland C, Civas A, Renoux J, Petek F (1988) Purification and properties of cellulases from the termite Macrotermes mulleri (Termitidae, Macrotermitinae) and its symbiotic fungus Termitomyces sp. Comp Biochem Phys B 91:449–458

  29. Popham JD, Dickson MR (1973) Bacterial associations in the teredo Bankia australis (Lamellibranchia: Mollusca). Mar Biol 19:338–340

    Article  Google Scholar 

  30. Waterbury JB, Calloway CB, Turner RD (1983) A cellulolytic nitrogen-fixing bacterium cultured from the gland of Deshayes in shipworms (Bivalvia: Teredinidae). Science 221:1401–1403

    Google Scholar 

  31. Distel DL, DeLong EF, Waterbury JB (1991) Phylogenetic characterization and in situ localization of the bacterial symbiont of shipworms (Teredinidae: Bivalvia) by using 16S rRNA sequence analysis and oligodeoxynucleotide probe hybridization. AEM 57:2376–2382

    CAS  Google Scholar 

  32. Distel DL, Morrill W, Maclaren-Toussaint N, Franks D, Waterbury J (2002) Teredinibacter turnerae gen. nov., sp. nov., a dinitrogen-fixing, cellulolytic, endosymbiotic g-proteobacterium isolated from the gills of wood-boring molluscs (Bivalvia: Teredinidae). IJSEM 52:2261–2269

    PubMed  CAS  Google Scholar 

  33. Distel DL, Roberts SJ (1997) Bacterial endosymbionts in the gills of the deep-sea wood-boring bivalves Xylophaga atlantica and Xylophaga washingtona. Biol Bull 192:253–261

    Article  PubMed  CAS  Google Scholar 

  34. Duperron S, Laurent MCZ, Gaill F, Gros O (2008) Sulphur-oxidizing extracellular bacteria in the gills of Mytilidae associated with wood falls. FEMS Microbiol Ecol 63:338–349

    Article  PubMed  CAS  Google Scholar 

  35. Zbinden M, Pailleret M, Ravaux J, Gaudron SM, Hoyoux C, Lambourdiere J, Waren A, Lorion J, Halary S, Duperron S (2010) Bacterial communities associated with the wood-feeding gastropod Pectinodonta sp. (Patellogastropoda, Mollusca). FEMS Microbiol Ecol 74:450–463

    Article  PubMed  CAS  Google Scholar 

  36. Cary SC (1994) Vertical transmission of a chemoautotrophic symbiont in the protobranch bivalve, Solemya reidi. Mol Mar Biol Biotech 3:121–130

    CAS  Google Scholar 

  37. Sipe AR, Wilbur AE, Cary SC (2000) Bacterial symbiont transmission in the wood-boring shipworm Bankia setacea (Bivalvia: Teredinidae). Environ Microbiol 66:1685–1691

    Article  CAS  Google Scholar 

  38. Boyle JP (1978) Absence of microorganism in crustacean digestive tracts. Science 200:1157–1159

    Article  PubMed  CAS  Google Scholar 

  39. King AJ (2010) Molecular insight into lignocelluloses digestion by a marine isopod in the absence of gut microbes. Proc Natl Acad Sci USA 107:5345–5350

    Article  PubMed  CAS  Google Scholar 

  40. Nakashima K, Watanabe H, Saitoh H, Tokuda G, Azuma JI (2000) Dual cellulose-digesting system of the wood-feeding termite, Coptotermes formosanus Shiraki. Insect Biochem Mol Biol 32:777–784

    Article  Google Scholar 

  41. Lo N, Tokuda G, Watanabe H, Rose H, Slaytor M, Maekawa K, Bandi C, Noda H (2000) Evidence from multiple gene sequences indicates that termites evolved from wood-feeding cockroaches. Curr Biol 10:801–804

    Article  PubMed  CAS  Google Scholar 

  42. Willis JD, Oppert B, Oppert C, Klingeman WE, Jurat-Fuentes JL (2011) Identification, cloning, and expression of a GHF9 cellulase from Tribolium castaneum (Coleoptera: Tenebrionidae). J Insect Physiol 57:300–306

    Article  PubMed  CAS  Google Scholar 

  43. Gao BL, Allen R, Maier T, McDermott JP, Davis EL, Baum TJ, Hussey RS (2002) Characterisation and developmental expression of a chitinase gene in Heterodera glycines. Int J Parasitol 32:1293–1300

    Article  PubMed  CAS  Google Scholar 

  44. Yan YT, Smant G, Stokkermans J, Qin L, Helder J, Baum T, Schots A, Davis E (1998) Genomic organization of four beta-1,4-endoglucanase genes in plant-parasitic cyst nematodes and its evolutionary implications. Gene 220:61–70

    Article  PubMed  CAS  Google Scholar 

  45. Jones JT, Furlanetto C, Kikuchi T (2005) Horizontal gene transfer from bacteria and fungi as a driving force in the evolution of plant parasitism in nematodes. Nematology 7:641–646

    Article  CAS  Google Scholar 

  46. Kikuchi T, Jones JT, Aikawa T, Kosaka H, Ogura N (2004) A family of glycosyl hydrolase family 45 cellulases from the pine wood nematode Bursaphelenchus xylophilus. FEBS Lett 572:201–205

    Article  PubMed  CAS  Google Scholar 

  47. Byrne KA, Lehnert SA, Johnson SE, Moore SS (1999) Isolation of a cDNA encoding a putative cellulase in the red claw crayfish Cherax quadricarinatus. Gene 239:317–324

    Article  PubMed  CAS  Google Scholar 

  48. Suzuki K, Ojima T, Nishita K (2003) Purification and cDNA cloning of a cellulase from abalone Haliotis discus hannai. Eur J Biochem 270:771–778

    Google Scholar 

  49. Nikapitiya C, Oh C, De Zoysa M, Whang I, Kang DH, Lee SR, Kim SJ, Lee J (2010) Characterization of beta-1,4-endoglucanase as a polysaccharide-degrading digestive enzyme from disk abalone, Haliotis discus discus. Aquac Int 18:1061–1078

    Article  CAS  Google Scholar 

  50. Li YH, Yin QY, Ding M, Zhao FK (2009) Purification, characterization and molecular cloning of a novel endo-beta-1,4-glucanase AC-EG65 from the mollusc Ampullaria crossean. Comp Biochem Phys B 153:149–156

    Article  Google Scholar 

  51. Xu BZ, Janson JC, Sellos D (2001) Cloning and sequencing of a molluscan endo-beta-1,4-glucanase gene from the blue mussel, Mytilus edulis. Eur J Biochem 268:3718–3727

    Article  PubMed  CAS  Google Scholar 

  52. Sakamoto K, Toyohara H (2009) Molecular cloning of glycoside hydrolase family 45 cellulase genes from brackish water clam Corbicula japonica. Comp Biochem Phys B 152:390–396

    Article  Google Scholar 

  53. Guo R, Ding M, Zhang SL, Xu GJ, Zhao FK (2008) Molecular cloning and characterization of two novel cellulase genes from the mollusc Ampullaria crossean. J Comp Physiol B 178:209–215

    Article  PubMed  CAS  Google Scholar 

  54. Won NI, Kawamura T, Takami H, Hoshikawa H, Watanabe Y (2011) Comparison of abalone (Haliotis discus hannai) catches in natural habitats affected by different current systems: implication of climate effects on abalone fishery. Fish Res 110:84–91

    Article  Google Scholar 

  55. Xing RL, Wang CH, Cao XB, Chang YQ (2008) Settlement, growth and survival of abalone, Haliotis discus hannai, in response to eight monospecific benthic diatoms. J Appl Phycol 20:47–53

    Article  Google Scholar 

  56. Hawkins AJS, Navarro E, Iglesias JIP (1990) Comparative allometries of gut-passage time, gut content and metabolic fecal loss in Mytilus edulis and Cerastoderma edule. Mar Biol 105:197–204

    Article  Google Scholar 

  57. Antonio ES, Kasai A, Ueno M, Kurikawa Y, Tsuchiya K, Toyohara H, Ishihi Y, Yokoyama H, Yamashita Y (2010) Consumption of terrestrial organic matter by estuarine molluscs determined by analysis of their stable isotopes and cellulase activity. Estuar Coast Shelf Sci 86:401–407

    Article  CAS  Google Scholar 

  58. Kasai A, Nakata A (2005) Utilization of terrestrial organic matter by the bivalve Corbicula japonica estimated from stable isotope analysis. Fish Sci 71:151–158

    Article  CAS  Google Scholar 

  59. Qiu JW, Chan MT, Kwong KL, Sun J (2011) Consumption, survival and growth in the invasive freshwater snail Pomacea Canaliculata: does food freshness matter? J Mollus Stud 77:189–195

    Article  Google Scholar 

  60. Kanaya G, Suzuki T, Kikuchi E (2011) Spatio-temporal variations in macrozoobenthic assemblage structures in a river-affected lagoon (Idoura Lagoon, Sendai Bay, Japan): influences of freshwater inflow. Estuar Coast Shelf Sci 92:169–179

    Article  Google Scholar 

  61. Kanaya G, Takagi S, Kikuchi E (2008) Spatial dietary variations in Laternula marilina (Bivalva) and Hediste spp. (Polychaeta) along environmental gradients in two brackish lagoons. Mar Ecol Prog Ser 359:133–144

    Article  CAS  Google Scholar 

  62. Sakamoto K, Uji S, Kurokawa T, Toyohara H (2009) Molecular cloning of endogenous beta-glucosidase from common Japanese brackish water clam Corbicula japonica. Gene 435:72–79

    Article  PubMed  CAS  Google Scholar 

  63. Sakamoto K, Uji S, Kurokawa T, Toyohara H (2008) Immunohistochemical, in situ hybridization and biochemical studies on endogenous cellulase of Corbicula japonica. Comp Biochem Phys B 150:216–221

    Article  Google Scholar 

  64. Sakamoto K, Toyohara H (2009) Putative endogenous xylanase from brackish-water clam Corbicula japonica. Comp Biochem Phys B 154:85–92

    Article  Google Scholar 

  65. Sakamoto K, Toyohara H (2009) A comparative study of cellulase and hemicellulose activities of brackish water clam Corbicula japonica with those of other marine Veneroida bivalves. J Exp Biol 212:2812–2818

    Article  PubMed  CAS  Google Scholar 

  66. Ootsuka S, Saga N, Suzuki K, Inoue A, Ojima T (2006) Isolation and cloning of an endo-beta-1,4-mannanase from Pacific abalone Haliotis discus hannai. J Biotechnol 125:269–280

    Article  PubMed  CAS  Google Scholar 

  67. Shimizu E, Ojima T, Nishita K (2003) cDNA cloning of an alginate lyase from abalone, Haliotis discus hannai. Carbohydr Res 338:2841–2852

    Article  PubMed  CAS  Google Scholar 

  68. Kumagai Y, Ojima T (2009) Enzymatic properties and the primary structure of a beta-1,3-glucanase from the digestive fluid of the Pacific abalone Haliotis discus hannai. Comp Biochem Phys B 154:113–120

    Article  Google Scholar 

  69. Xu BZ, Hagglund P, Stalbrand H, Janson JC (2002) Endo-beta-1,4-mannanases from blue mussel, Mytilus edulis: purification, characterization, and mode of action. J Biotechnol 92:267–277

    Article  PubMed  CAS  Google Scholar 

  70. Zahura UA, Rahman MM, Inoue A, Tanaka H, Ojima T (2011) cDNA cloning and bacterial expression of an endo-beta-1,4-mannanase, AkMan, from Aplysia kurodai. Comp Biochem Phys B 159:227–235

    Article  Google Scholar 

  71. Kumagai Y, Ojima T (2010) Isolation and characterization of two types of beta-1,3-glucanases from the common sea hare Aplysia kurodai. Comp Biochem Phys B 155:138–144

    Article  Google Scholar 

  72. Niiyama T, Toyohara H (2011) Widespread distribution of cellulase and hemicellulose activities among aquatic invertebrates. Fish Sci 77:649–655

    Article  CAS  Google Scholar 

  73. Toyohara H, Park Y, Tsuchiya K, Liu W (2012) Cellulase activity in meiobenthos in wetlands. Fish Sci 78:133–137

    Article  CAS  Google Scholar 

  74. Yamada K, Toyohara H (2012) Functions of meiobenthos and microorganisms in cellulose breakdown in sediments of wetlands with different origins in Hokkaido. Fish Sci 78:699–706

    Article  CAS  Google Scholar 

  75. Liu W, Toyohara H (2012) Sediment-complex-binding cellulose breakdown in wetlands of rivers. Fish Sci 78:661–665

    Article  CAS  Google Scholar 

  76. Dehal P, Satou Y, Campbell RK, Chapman J et al (2002) The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science 298:2157–2167

    Article  PubMed  CAS  Google Scholar 

  77. Nakashima K, Yamada L, Satou Y, Azuma J, Satoh N (2004) The evolutionary origin of animal cellulose synthase. Dev Genes Evol 214:81–88

    Article  PubMed  CAS  Google Scholar 

  78. Bhat MK (2000) Cellulases and related enzymes in biotechnology. Biotechnol Adv 18:355–383

    Article  PubMed  CAS  Google Scholar 

  79. Murad HA, Azzaz HH (2010) Cellulase and dairy animal feeding. Biotechnology 9:1–19

    Article  Google Scholar 

  80. Demirbas A (2007) Progress and recent trends in biofuels. Prog Energy Combust 33:1–18

    Article  CAS  Google Scholar 

  81. Demain AL (2009) Biosolutions to the energy problem. J Ind Microbiol Biol 36:319–332

    Article  CAS  Google Scholar 

  82. Yin QY, Teng YG, Li YH, Ding M, Zhao FK (2011) Expression and characterization of full-length Ampullaria crossean endoglucanase EG65s and their two functional modules. Biosci Biotech Biochem 75:240–246

    Google Scholar 

  83. Yanagisawa M, Ojima T, Nakasaki K (2011) Bioethanol from sea lettuce with the use of crude enzymes derived from waste. J Mater Cycl Waste Manag 13:321–326

    Article  CAS  Google Scholar 

  84. Ohkuma M (2003) Termite symbiotic systems: efficient bio-recycling of lignocellulose. Appl Microbiol Biotechnol 61:1–9

    PubMed  CAS  Google Scholar 

  85. Silina AV, Zhukova NV (2007) Growth variability and feeding of scallop Patinopecten yessoensis on different bottom sediments: evidence from fatty acid analysis. J Exp Mar Biol Ecol 348:46–59

    Article  CAS  Google Scholar 

  86. Inoue A, Mashino C, Kodama T, Ojima T (2011) Protoplast preparation from Laminaria japonica with recombinant alginate lyase and cellulase. Mar Biotechnol 13:256–263

    Article  PubMed  CAS  Google Scholar 

  87. Zhao FY, Lin JF, Zeng XL, Guo LQ, Wang YH, You LR (2010) Improvement in fruiting body yield by introduction of the Ampullaria crossean multi-functional cellulase gene into Volvariella volvacea. Bioresour Technol 101:6482–6486

    Article  PubMed  CAS  Google Scholar 

  88. Nozaki M, Miura C, Tozawa Y, Miura T (2009) The contribution of endogenous cellulase to the cellulose digestion in the gut of earthworm (Pheretima hilgendorfi: Megascolecidae). Soil Biol Biochem 41:762–769

    Article  CAS  Google Scholar 

  89. Shimada K, Maekawa K (2008) Correlation between social structure and nymphal wood-digestion ability in the xylophagous cockroaches Salgallea esakii and Panesthia angustipennis (Blaberidae: Panesthiinae). Sociobiology 52:417–427

    Google Scholar 

  90. Tokuda G, Lo N, Watanabe H, Slaytor M, Matsumoto T, Noda H (1999) Metazoan cellulase genes from termites: intron/exon structures and site of expression. BBA Struct Expr 1447:146–159

    Article  CAS  Google Scholar 

  91. Tokuda G, Lo N, Watanabe H, Arakawa G, Matsumoto T, Noda H (2004) Major alternation of the expression site of endogenous cellulases in members of an apical termite linage. Mol Ecol 13:3219–3228

    Article  PubMed  CAS  Google Scholar 

  92. Zhang DH, Lax AR, Bland JM, Allen AB (2011) Characterization of a new endogenous endo-beta-1,4-glucanase of Formosan subterranean termite (Coptotermes formosanus). Insect Biochem Mol Biol 41:211–218

    Article  PubMed  CAS  Google Scholar 

  93. Zhang DH, Lax AR, Raina AK, Bland JM (2009) Differential cellulolytic activity of native-form and C-terminal tagged-form cellulase derived from Coptotermes formosanus and expressed in E. coli. Insect Biochem Mol Biol 39:516–522

    Article  PubMed  CAS  Google Scholar 

  94. Li L, Frohich J, Pfeiffer P, Konig H (2003) Termite gut symbiotic archaezoa are becoming living metabolic fossils. Eucaryot Cell 2:1091–1098

    Article  CAS  Google Scholar 

  95. Scharf ME, Wu-Scharf D, Zhou X, Pittendrich BR, Bennett GW (2005) Gene expression profiles among immature and adult reproductive castes of the termite Reticulitermes flavipes. Insect Mol Biol 14:31–44

    Article  PubMed  CAS  Google Scholar 

  96. Itakura S, Masuta T, Tanaka H, Enoki A (2006) Identification of two subterranean termite species (Isoptera: Rhinotermitidae) using cellulase genes. J Econ Entomol 99:123–128

    Article  PubMed  CAS  Google Scholar 

  97. Kim N, Choo YM, Lee KS, Hong SJ, Seol KY, Je YH, Sohn HD, Jin BR (2008) Molecular cloning and characterization of a glycosyl hydrolase family 9 cellulase distributed throughout thr digestive tract of the cricket Teleogryllus emma. Comp Biochem Phys B 150:368–376

    Article  Google Scholar 

  98. Ito K, Nozakli M, Ohta T, Miura C, Tozawa Y, Miura T (2011) Differences of two polychaete species reflected in enzyme activities. Mar Biol 158:1211–1221

    Article  CAS  Google Scholar 

  99. Davison A, Blaxter ML (2005) An expression sequence tag survey of gene expression in the pond snail Lymnaea stagnalis, an intermediate vector of Fasciola hepatica. Parasitology 130:539–552

    Article  PubMed  CAS  Google Scholar 

  100. Clark NL, Gasper J, Sekino M, Springer SA, Aquadro CF, Swanson WJ (2009) Coevolution of interacting fertilization proteins. PLoS Genet 5:e1000570

    Article  PubMed  Google Scholar 

  101. Crawford AC, Kricker JA, Anderson AJ, Richardson NR, Mather PB (2004) Structure and function of a cellulase gene in redclaw crayfish, Cherax quadricarinatus. Gene 340:267–274

    Article  PubMed  CAS  Google Scholar 

  102. Zhu XD, Mahairas G, Illies M, Cameron RA, Davidson EH, Ettensohn CA (2001) A large-scale analysis of mRNAs expressed by primary mesenchyme cells of the sea urchin embryo. Development 128:2615–2627

    PubMed  Google Scholar 

  103. Edvardsen RB, Seo HC, Jensen MF, Mialon A, Mikhaleva J, Bjordal M, Cartry J, Reinhardt R, Weissenbach J, Wincker P, Chourrout D (2005) Remodeling of the homeobox gene complement in the tunicate Oikopleura dioica. Curr Biol 15:R12–R13

    Article  PubMed  CAS  Google Scholar 

  104. Seo HC, Edvardsen RB, Maelnd AD, Bjordal M, Jansen MF, Hansen A, Flaat M, Weissenbach J, Lahrach H, Wincker P, Reinhardt R, Chourrout D (2004) Hox cluster disintegration with persistent anteroposterior order of expression in Oikopleura dioica. Nature 431:67–71

    Article  PubMed  CAS  Google Scholar 

  105. Schloss PD, Delalibera I, Handelsman J, Radda KF (2006) Bacteria associated with the guts of two wood-boring beetles: Anoplophora glabripennis and Saperda vestita (Cerambycidae). Environ Entomol 35:625–629

    Article  Google Scholar 

Download references

Acknowledgments

This study was partly supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (no. 21380131).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haruhiko Toyohara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanimura, A., Liu, W., Yamada, K. et al. Animal cellulases with a focus on aquatic invertebrates. Fish Sci 79, 1–13 (2013). https://doi.org/10.1007/s12562-012-0559-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12562-012-0559-4

Keywords

Navigation