Skip to main content
Log in

Function of meiobenthos and microorganisms in cellulose breakdown in sediments of wetlands with different origins in Hokkaido

  • Original Article
  • Chemistry and Biochemistry
  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

To validate the mechanism of cellulose breakdown in cold climate wetlands, we investigated cellulase activity in sediments collected from 17 wetland sites in Hokkaido, the northern area of Japan. We evaluated cellulase activity by quantitative analysis of glucose released from carboxymethyl cellulose and found that sediments from peat fens demonstrated high activity, followed by sediments from lagoons and estuaries. Sediments from peat fens also contained greater amounts of organic matter, followed by lagoons and estuaries, thereby suggesting a strong positive correlation between organic matter content and cellulase activity. Evaluation of cellulase activity by qualitative cellulose zymographic analysis showed that various cellulases with different molecular sizes were implicated in cellulose breakdown in wetlands. Among them, cellulose breakdown in Meguma Pond (peat fen), Notsuke Gulf (peat fen), and Lake Utonai (lagoon) was potentially due to microorganism cellulase, while that in Lake Chobushi (lagoon) was ascribed to meiobenthos (Oligochaeta species) cellulase. The findings presented herein suggest that the origin and activity level of cellulase vary depending on the type of cold climate wetland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Beukema JJ (1979) Biomass and species richness of the macrobenthic animals living on a tidal flat area in the Dutch Wadden Sea—effects of a severe winter. Neth J Sea Res 13:203–223

    Article  Google Scholar 

  2. Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6:850–861

    Article  PubMed  CAS  Google Scholar 

  3. Vries RP, Visser J (2001) Aspergillus enzymes involved in breakdown of plant cell wall polysaccharides. Microbiol Rev 65:497–522

    Google Scholar 

  4. Watanabe H, Tokuda G (2010) Cellulolytic systems in insects. Annu Rev Entomol 55:609–632

    Article  PubMed  CAS  Google Scholar 

  5. Olson DG, Tripathi SA, Giannone RJ, Lo J, Caiazza NC, Hogsett DA, Hettich RL, Guss AM, Dubrovsky G, Lynd LR (2010) Deletion of the Cel48S cellulase from Clostridium thermocellum. Proc Natl Acad Sci 107:17727–17732

    Article  PubMed  CAS  Google Scholar 

  6. Trinci APJ, Davies DR, Gull K, Lawrence MI, Nielsen BB, Rickers A, Theodorou MK (1994) Anaerobic fungi in herbivorous animals. Mycol Res 98:129–152

    Article  Google Scholar 

  7. Chow CM, Yague E, Raguz S, Wood DA, Thurston CF (1994) The cel3 gene of Agaricus bisporus codes for a modular cellulase and is transcriptionally regulated by the carbon source. Appl Environ Microbiol 60:2779–2785

    PubMed  CAS  Google Scholar 

  8. Ronsness PA (1968) Cellulolytic enzymes during morphogenesis in Dictyostelium discoideum. J Bacterial 96:639–645

    Google Scholar 

  9. Bera-Maillet C, Devillard E, Cezette M, Jouany JP, Forano E (2005) Xylanases and carboxymethylcellulases of the rumen protozoa Polyplastron multivesiculatum, Eudiplodinium maggii and Entodinium sp. FEMS Microbiol Let 244:149–156

    Article  CAS  Google Scholar 

  10. Watanabe H, Noda H, Tokuda G, Lo N (1998) A cellulase gene of termite origin. Nature 394:330–331

    Article  PubMed  CAS  Google Scholar 

  11. Smant G, Stokkermans PWGJ, Yan Y, de Boer MJ, Baum JT, Wang XH, Hussey RS, Gommers FJ, Henrissat B, Davis EL, Helder J, Schots A, Bakker J (1998) Endogenous cellulases in animals: isolation of β-1,4-endoglucanase genes from two species of plant-parasitic cyst nematodes. Proc Natl Acad Sci USA 95:4905–4911

    Article  Google Scholar 

  12. Kikuchi T, Shibuya H, Jones TJ (2005) Molecular and biochemical characterization of an endo-β-1,3-glucanase from the pinewood nematode Bursaphelenchus xylophilus acquired by horizontal gene transfer from bacteria. Biochem J 389:117–125

    Article  PubMed  CAS  Google Scholar 

  13. Xu BZ, Janson JC, Sellos D (2001) Cloning and sequencing of a molluscan endo-beta-1,4-glucanase gene from the blue mussel, Mytilus edulis. Eur J Biochem 268:3718–3727

    Article  PubMed  CAS  Google Scholar 

  14. Suzuki K, Ojima T, Nishita K (2003) Purification and cDNA cloning of a cellulase from abalone Haliotis discus hannai. Eur J Biochem 270:771–778

    Article  PubMed  CAS  Google Scholar 

  15. Nishida Y, Suzuki K, Kumagai Y, Tanaka H, Inoue A, Ojima T (2007) Isolation and primary structure of a cellulase from the Japanese sea urchin Strongylocentrotus nudus. Biochimie 89:1002–1011

    Article  PubMed  CAS  Google Scholar 

  16. Sakamoto K, Touhata K, Yamashita M, Kasai A, Toyohara H (2007) Cellulose digestion by common Japanese freshwater clam Corbicula japonica. Fish Sci 73:675–683

    Article  CAS  Google Scholar 

  17. National Institute for Environmental Studies, Japan (2003) International collaborative research on the management of wetland ecosystem. Report of special research from the National Institute for Environmental Studies, Japan, pp 8–13 (in Japanese)

  18. Toyohara H, Park Y, Tsuchiya K, Liu W (2012) Cellulase activity in meiobenthos in wetlands. Fish Sci 78:133–137

    Article  CAS  Google Scholar 

  19. Robert PH, Hjalmar T (1988) Introduction to the study of meiofauna. Smithsonian Institution Press, Washington, DC, pp 243–354

    Google Scholar 

  20. Nature Convention Bureau in Japanese Ministry of the Environment (2002) Five hundred important wetlands in Japan. Nature Convention Bureau, Tokyo (in Japanese)

  21. Ramsar Convention Secretariat (2011) The list of wetlands of international importance. Ramsar Convention Secretariat, Ramsar, pp 21–22

  22. Wit R, Stal LJ, Lomstein BA, Herbert RA, van Gemerden H, Viaroli P, Cecherelli VU, Rodriguez-Valera F, Bartoli M, Giordani G, Azzoni R, Schaub B, Welsh DT, Donnelly A, Cifuentes A, Anton J, Finster K, Nielsen LB, Pedersen AGU, Neubauer AT, Colangelo MA, Heijs SK (2001) The role of buffering capacities in stabilising coastal lagoon ecosystems. Cont Shelf Res 21:2021–2041

    Article  Google Scholar 

  23. Artz RRE, Anderson IC, Chapman SJ, Hagn A, Schloter M, Potts JM, Campbell CD (2007) Changes in fungal community composition in response to vegetational succession during the natural regeneration of cutover peatlands. Microbiol Ecol 54:508–522

    Article  CAS  Google Scholar 

  24. Soil Microbiological Society (1992) Experimental methods for soil microbiology. Yokendo, Tokyo, pp 370–1 (in Japanese)

  25. Chong KJ, Peter NL (1985) Determination of reducing sugars in the nanomole range with tetrazolium blue. J Biochem Biophys Methods 11:109–115

    Article  Google Scholar 

  26. Joei WM, Gorge ED (2001) An updated classification of the recent crustacean. Natural History Museum of Los Angeles Country, Los Angeles, pp 1–124

    Google Scholar 

  27. Niiyama T, Toyohara H (2011) Widespread distribution of cellulase and hemicellulase activities among aquatic invertebrates. Fish Sci 77:649–655

    Article  CAS  Google Scholar 

  28. Hwang IH, Ouchi Y, Matsuto T (2007) Characteristics of leachate from pyrolysis residue of sewage sludge. Chemosphere 68:1913–1919

    Article  PubMed  CAS  Google Scholar 

  29. Nguyen LM (2000) Organic matter composition, microbial biomass and microbial activity in gravel-bed constructed wetlands treating farm dairy wastewaters. Ecol Eng 16:199–221

    Article  Google Scholar 

  30. Barnet CC, Berka RM, Fowler T (1991) Cloning and amplification of the gene encoding an extracellular bold β-glucosidase from Trichoderma reesei: evidence for improved rates of saccharification of cellulosic substrates. Nat Biotechnol 9:562–567

    Article  Google Scholar 

  31. Liu W, Toyohara H (2012) Sediment-complex-binding cellulose breakdown in wetlands of rivers. Fish Sci. doi:10.1007/s12562-012-0471-y

    Google Scholar 

Download references

Acknowledgments

The authors sincerely thank Dr. Chihiro Tanaka, Graduate School of Agriculture, Kyoto University for his help in culturing fungus. This study was partly supported by a Grant-in-Aid for scientific research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (No. 22255012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haruhiko Toyohara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamada, K., Toyohara, H. Function of meiobenthos and microorganisms in cellulose breakdown in sediments of wetlands with different origins in Hokkaido. Fish Sci 78, 699–706 (2012). https://doi.org/10.1007/s12562-012-0496-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12562-012-0496-2

Keywords

Navigation