Skip to main content
Log in

Petrogenesis of granitic unit of Naqadeh complex, Sanandaj–Sirjan Zone, NW Iran

النشأة الصخرية للوحدة الجرانيتية لمعقدة نقده ، بمنطقة سننداج - سرجان شمال غرب إيران

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The granitic unit is a component of the Naqadeh plutonic complex, NW of Sanandaj–Sirjan Zone (NW Iran). This unit is composed of high-K calc-alkaline, slightly peraluminous (ASI = 1.12–1.17) evolved monzogranites. These monzogranites have 41.85 ± 0.81 Ma (zircon U–Pb sensitive, high-resolution ion microprobe (SHRIMP) age) with two inherited zircon ages of 98.5 ± 1.7 and 586.6 ± 13.1 Ma, respectively. The only enclave type consists of quartz-amphibolite enclaves indicating residual parental rocks. Chemical and isotopic (87Sr/86Sr40Ma = 0.708638; εNd40Ma = −4.26) characteristics of monzogranites suggest that they could be derived by partial melting of crustal mafic rocks followed by some assimilation of metasedimentary rocks. With regards to inherited zircon age and quartz-amphibolite composition of Naqadeh granite, the old mafic rocks of this complex (Naqadeh dioritic rocks with ~100 Ma) can be considered as parental rocks, and their partial melting under high water content, and assimilation of produced melt by metasedimentary rocks, would lead to the generation of a Naqadeh granitic unit.

الملخص العربي

تعتبر هذه الوحدة الجرانيتية جزء من معقدة نقده الجوفية بمنطقة سننداج –سيرجان من شمال غرب إيران . وتتكون هذه الوحدة من مونزوجرانيت عالى الكالسى قلوية البوتاسية وقليل الألوماتية. عمر هذه المونزوالجرانيتات حوالى 41.85±0.81 مليون سنة مع عمرين للزيركون 98. 5±1.7 و 586.6±13.1 مليون سنة.يتكون النوع الجيبى الوحيد من جيوب كوارتز- أمفيبوليت مما يدل على بقايا صخور أبوية أصلية. وتدل الخواص الكيميائية والنظائرية للمونزوجرانيت على أن هذه الصخور نتجت من انصهار جزئي لصخور القشرة القاعدية أتبعها بعض امتصاص من صخور رسوبية متحولة. بالنسبة لعمر الزيركون وتركيب كوارتز- أمفيبوليت لجرانيت نقدة، فإن الصخور القاعدية القديمة لهذه المعقدة هى الصخور الأصلية التى أدى الإنصهار الجزئى تحت محتوى مائى عالى وامتصاص الصهير المنتج بواسطة الصخور الرسوبية المتحولة إلى تكوين وحدة نقدة الجرانيتية.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmadi Khalaji A, Esmaeily D, Valizadeh MV, Rahimpour-Bonab H (2007) Petrology and geochemistry of the granitoid complex of Boroujerd, Sanandaj-Sirjan Zone, Western Iran. J Asian Earth Sci 29:859–877

    Article  Google Scholar 

  • Alavi M (1994) Tectonics of the Zagros Orogenic belt of Iran: new data and interpretations. Tectonophysics 229:211–238

    Article  Google Scholar 

  • Alavi M (2004) Regional stratigraphy of the Zagros fold-thrust belt of Iran and its proforeland evolution. Am J Sci 304:1–20

    Article  Google Scholar 

  • Altherr R, Holl A, Hegner E, Langer C, Kreuzer H (2000) Highpotassium, calc-alkaline plutonism in the European Variscides: northern Vosges (France) and northern Schwarzwald (Germany). Lithos 50:51–73

    Article  Google Scholar 

  • Barbarin B (2005) Mafic magmatic enclaves and mafic rocks associated with some granitoids of the central Sierra Nevada batholith, California: nature, origin, and relations with the hosts. Lithos 80:155–177

    Article  Google Scholar 

  • Berberian M, King GCP (1981) Towards a paleogeography and tectonic evolution of Iran. Can J Earth Sci 18:210–265

    Article  Google Scholar 

  • Black LP, Kamo SL, Allen CM, Aleinikoff JA, Davis DW, Korsch RJ, Foudoolis C (2003) TEMORA 1: a new zircon standard for Phanerozoic U-Pb geochronology. Chem Geol 200:155–170

    Article  Google Scholar 

  • Bonin B (2007) A-type granites and related rocks: evolution of a concept, problems and prospects. Lithos 97:1–29

    Article  Google Scholar 

  • Chappell BW (1996) Magma mixing and production of compositional variation within granite suites: evidence from the granites of southern Australia. J Petrol 37:449–470

    Article  Google Scholar 

  • Chappell BW, White AJR (1992) I- and S- type granite in Lachlan Fold Belt. Trans R Soc Edinb Earth Sci 83:1–26

    Google Scholar 

  • Chappell BW, White AJR (2001) Two contrasting granite types: 25 years later. Aust J Earth Sci 48:489–499

    Article  Google Scholar 

  • Chappell BW, White AJR, Wyborn D (1987) the importance of residual source material (restite) in granite petrogenesis. J Petrol 28:1111–1138

    Google Scholar 

  • Didier J (1973) Granites and their enclaves. Elsevier, Amsterdam, p 393

    Google Scholar 

  • Didier J, Barbarin B (1991) Enclaves and granite petrology. Elsevier, Amsterdam, p 625

    Google Scholar 

  • Gagnevin D, Daly JS, Poli G (2004) Petrographic, geochemical and isotopic constraints on magma dynamics and mixing in the Miocene Monte Capanne monzogranite (Elba Island, Italy). Lithos 78:157–195

    Article  Google Scholar 

  • Ghalamghash J, Nédélec A, Bellon H, Vousoughi Abedini M, Bouchez JL (2009) The Urumieh plutonic complex (MW Iran): A record of the geodynamic evolution of the Sanandaj–Sirjan zone during Cretaceous times—Part I: Petrogenesis and K/Ar dating. J Asian Earth Sci 35:401–415

    Article  Google Scholar 

  • Ghasemi A, Talbot CJ (2006) A new tectonic scenario for the Sanandaj–Sirjan Zone (Iran). J Asian Earth Scis 26:683–693

    Article  Google Scholar 

  • Govindaraju K, Potts PJ, Webb PC, Watson JS (1994) Report on Whin Sill Dolerite WS-E from England and Pitscurrie Micrograbbro PM-S from Scotland: assessment by one hundred and four international laboratories. Geostand Newsl 18:211–300

    Article  Google Scholar 

  • Inger S, Harris NBW (1993) Geochemical constraints on leucogranite magmatism in the Langtang Valley, Nepal Himalaya. J Petrol 34:345–368

    Google Scholar 

  • King PL, White AJR, Chappel BW, Allen CM (1997) Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, Southeastern Australia. J Petrol 38:371–391

    Article  Google Scholar 

  • Ludwig KR (2002) SQUID 1.03, A user's manual. Berkeley Geochronology Center. Special Publication, 2

  • Martin RF (2006) A-type granites of crustal origin ultimately result from open-system fenitization-type reactions in an extensional environment. Lithos 91:125–136

    Article  Google Scholar 

  • Mazhari SA (2008) Petrogenesis of Naqadeh- Sardasht plutons. Ph.D thesis, Tarbiat Moallem University, p 216

  • Mazhari SA, Bea F, Amini S, Ghalamghash J, Molina JF, Pillar M, Scarrow JH, Williams S (2009) The Eocene bimodal Piranshahr massif of the Sanandaj-Sirjan Zone, NW Iran. A marker of the end of the collision in the Zagros Orogen. J Geol Soc 166:53–69

    Article  Google Scholar 

  • Mohajjel M, Fergusson CL (2000) Dextral transpression in Late Cretaceous continental collision, Sanandaj-Sirjan Zone, western Iran. J Struct Geol 22:1125–1139

    Article  Google Scholar 

  • Mohajjel M, Fergusson CL, Sahandi MR (2003) Cretaceous-Tertiary convergence and continental collision, Sanandaj–Sirjan Zone, western Iran. J Asian Earth Sci 21:397–412

    Article  Google Scholar 

  • Montel JM, Vielzeuf D (2001) Partial melting of metagreywackes. Part II. Compositions of minerals and melts. Contrib Mineral Petrol 128:176–196

    Article  Google Scholar 

  • Montero P, Bea F (1998) Accurate determination of 87Rb/86Sr and 143Sm/144Nd ratios by inductively-coupled-plasma mass spectrometry in isotope geoscience: an alternative to isotope dilution analysis. Anal Chim Acta 358:227–233

    Article  Google Scholar 

  • Numan NMS (2001) Discussion on “Dextral transpression in Late Cretaceous continental collision, Sanandaj–Sirjan Zone, western Iran” [J Struct Geol 22(8) (2000) 1125–1139]. J Struct Geol 23(12):2033–2034

    Google Scholar 

  • Omrani J, Agard P, Whitechurch H, Benoit M, Prouteau G, Jolivet L (2008) Arc magmatism and subduction history beneath the Zagros Mountains, Iran: a new report of adakites and geodynamic consequences. Lithos 106:380–398

    Article  Google Scholar 

  • Ratajeski K, Sisson TW, Glazner AF (2005) Experimental and geochemical evidence for derivation of the El Capitan Granite, California, by partial melting of hydrous gabbroic lower crust. Contrib Mineral Petrol 149:713–734

    Article  Google Scholar 

  • Sepahi Garow A (1999) Petrology of Alvand pluton assemblage, Ph.D. thesis, Tarbiat Moallem University (in Persian), p 302

  • Sisson TW, Ratajeski K, Hankins WB, Glazner AF (2005) Voluminous granitic magmas from common basaltic sources. Contrib Mineral Petrol 148:635–661

    Article  Google Scholar 

  • Slaby E, Martin AH (2008) Mafic and felsic magma interaction in granites: the Hercynian Karkonosze pluton (Sudetes, Bohemian Massif). J Petrol 49(2):353–391

    Article  Google Scholar 

  • Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:207–221

    Article  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of the oceanic basalts: implications for mantle composition and processes. In: Saunder AD, Norry MJ (eds) Magmatism in the oceanic basalts. Geological Society of London, London, pp 313–345

    Google Scholar 

  • Sylvester PJ (1998) Postcollisional strongly peraluminous granites. Lithos 45:29–44

    Article  Google Scholar 

  • Waight TE, Weaver SD, Muir RJ, Maas R, Eby GN (1998) The Hohonu batholith of north Westland, New Zeland: granitoids compositions controlled by source H2O contents and generated during tectonic transition. Contrib Mineral Petrol 130:225–239

    Article  Google Scholar 

  • Whalen JB, Currie KL, Chappell BW (1987) A-type granites: geochemical characteristics, discrimination and petrogenesis. Contrib Mineral Petrol 95:407–419

    Article  Google Scholar 

  • Wiebe RA (1996) Mafic-silicic layered intrusions: the role of basaltic injections on magmatic processes and the evolution of silicic magma chambers. Trans R Soc Edinb Earth Sci 87:233–242

    Google Scholar 

  • Williams IS, Claesson S (1987) Isotopic evidence for the Precambrian provenance and Caledonian metamorphism of high grade paragneisses from the Seve Nappes. Scandinavian Caledonides. II: Ion microprobe zircon U–Th–Pb. Contrib Mineral Petrol 97:205–217

    Article  Google Scholar 

  • Wolf MB, Wyllie PJ (1994) dehydration melting of amphibolite at 10 kbar: the effects of temperature and time. Contrib Mineral Petrol 115:369–383

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to two anonymous referees for helpful revision of the manuscript and the staff of the Department of Mineralogy and Petrology, University of Granada, for their help in the analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Ali Mazhari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazhari, S.A., Amini, S., Ghalamghash, J. et al. Petrogenesis of granitic unit of Naqadeh complex, Sanandaj–Sirjan Zone, NW Iran. Arab J Geosci 4, 59–67 (2011). https://doi.org/10.1007/s12517-009-0077-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12517-009-0077-6

Keywords

Navigation