Skip to main content
Log in

Genesis of Pb–Zn-Ag-Sb mineralization in the Tethys Himalaya, China: Early magmatic-hydrothermal Pb–Zn(-Ag) mineralization overprinted by Sb-rich fluids

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

Determining the association of Pb–Zn(-Ag) mineralization with granite is crucial for understanding metallogeny and identifying exploration targets. The genesis of Pb–Zn-Ag-Sb deposits and their genetic association with Sb(-Au) deposits and granite-associated Sn-W deposits in the Tethys Himalaya of southern Tibet, China, remains controversial. Our comprehensive study of in situ element compositions and sulfur isotopes of sulfides, together with in situ quartz oxygen isotopes for the Zhaxikang Pb–Zn-Ag-Sb deposit, sheds light on this issue. LA-ICP-MS analyses of early sulfides in manganosiderite veins, coupled with C-O isotopes of manganosiderite, indicate that the early fluids were enriched in Pb, Zn, Ag, Sb, Sn, and Cu, originating from magmatic fluids mixing with meteoric water. The early formed sulfides underwent fluid-mediated remobilization and dissolution, releasing many metallic elements (e.g., Pb, Zn, and Ag) into later As-Sb-rich fluids. These elements reprecipitated as Fe-poor sphalerite, As-rich pyrite, and abundant Sb-Pb sulfosalts with minor Ag-bearing minerals. Oxygen isotopes of quartz indicate that the later fluids were derived from pulsed releases of magmatic fluids mixing with meteoric water. In situ sulfur isotopes of three generations of pyrite indicate that early Pb–Zn(-Ag) sulfide precipitation was linked to magmatic sulfur, whereas precipitation of the later sulfosalts and stibnite involved external sulfur with relatively lower sulfur isotopes compared with early mineralization. We argue that Pb–Zn-Ag-Sb deposits in the Tethys Himalaya resulted from two distinct mineralization pulses. The early Pb–Zn(-Ag) mineralization was associated with crustal magmatic rocks (e.g., leucogranite), followed by the overprinting of later Sb-rich magmatic fluids. Notably, the later magmatic fluids responsible for Zhaxikang Pb–Zn-Ag-Sb mineralization were also associated with the regional Sb(-Au) deposits in the Tethys Himalaya.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aoya M, Wallis SR, Terada K, Lee J, Kawakami T, Wang Y, Heizler M (2005) North-south extension in the Tibetan crust triggered by granite emplacement. Geology 33:853–856

    Article  Google Scholar 

  • Armijo R, Tapponnier P, Mercier JL, Han TL (1986) Quaternary extension in southern Tibet: field observations and tectonic implications. J Geophys Res 91:13803–13872

    Article  Google Scholar 

  • Audétat A (2019) The metal content of magmatic-hydrothermal fluids and its relationship to mineralization potential. Econ Geol 114:1033–1056

    Article  Google Scholar 

  • Ávila JN, Ireland TR, Holden P, Lanc P, Latimore A, Schram N, Foster J, Williams IS, Loiselle L, Fu B (2020) High-precision, high-accuracy oxygen isotope measurements of zircon reference materials with the SHRIMP-SI. Geostand Geoanal Res 44:85–102

    Article  Google Scholar 

  • Blanchard M, Alfredsson M, Brodholt J, Wright K, Catlow CRA (2007) Arsenic incorporation into FeS2 pyrite and its influence on dissolution: A DFT study. Geochim Cosmochim Acta 71:624–630

    Article  CAS  Google Scholar 

  • Blisniuk PM, Hacker BR, Glodny J, Ratschbacher L, Bi SW, Wu ZH, McWilliams MO, Calvert A (2001) Normal faulting in central Tibet since at least 13.5 Myr ago. Nature 412:628–632

    Article  CAS  Google Scholar 

  • Brookfield ME (1993) The Himalayan passive margin from Precambrian to Cretaceous times. Sediment Geol 84:1–35

    Article  Google Scholar 

  • Cao HW, Zou H, Bagas L, Zhang LK, Zhang Z, Li ZQ (2019) The Laqiong Sb-Au deposit: Implications for polymetallic mineral systems in the Tethys-Himalayan zone of southern Tibet, China. Gondwana Res 72:83–96

    Article  CAS  Google Scholar 

  • Cao HW, Li GM, Zhang RQ, Zhang YH, Zhang LK, Dai ZW, Zhang Z, Liang W, Dong SL, Xia XB (2021) Genesis of the Cuonadong tin polymetallic deposit in the Tethyan Himalaya: Evidence from geology, geochronology, fluid inclusions and multiple isotopes. Gondwana Res 92:72–101

    Article  CAS  Google Scholar 

  • Cao HW, Pei QM, Santosh M, Li GM, Zhang LK, Zhang XF, Zhang YH, Zou H, Dai ZW, Lin B, Tang L, Yu X (2022) Himalayan leucogranites: A review of geochemical and isotopic characteristics, timing of formation, genesis, and rare metal mineralization. Earth-Sci Rev 234:104229

    Article  CAS  Google Scholar 

  • Catchpole H, Kouzmanov K, Putlitz B, Seo JH, Fontbote L (2015) Zoned base metal mineralization in a porphyry system: Origin and evolution of mineralizing fluids in the Morococha district, Peru. Econ Geol 110:39–71

    Article  Google Scholar 

  • Chelle-Michou C, Rottier B, Caricchi L, Simpson G (2017) Tempo of magma degassing and the genesis of porphyry copper deposits. Sci Rep 7:40566

    Article  CAS  Google Scholar 

  • Chen SY, Zhang B, Zhang JJ, Wang Y, Li XR, Zhang L, Yan Y, Cai FL, Yue YH (2022) Tectonic transformation from orogen-perpendicular to orogen-parallel extension in the north Himalayan gneiss domes: Evidence from a structural, kinematic, and geochronological investigation of the Ramba gneiss dome. J Struc Geol 155:104527

    Article  Google Scholar 

  • Chou IM, Wang R, Fang J (2021) In situ redox control and raman spectroscopic characterisation of solutions below 300°C. Geochem Perspect Let 20:1–5

    Google Scholar 

  • Cook NJ, Ciobanu CL, Mao J (2009) Textural control on gold distribution in As-free pyrite from the Dongping, Huangtuliang and Hougou gold deposits, north China Craton (Hebei Province, China). Chem Geol 264:101–121

    Article  CAS  Google Scholar 

  • Cook NJ, Ciobanu CL, Brugger J, Etschmann B, Howard DL, Jonge MDD, Ryan C, Paterson D (2012) Determination of the oxidation state of Cu in substituted Cu-In-Fe-bearing sphalerite via μ-XANES spectroscopy. Am Mineral 97:476–479

    Article  CAS  Google Scholar 

  • Deditius AP, Utsunomiya S, Renock D, Ewing RC, Ramana CV, Becker U, Kesler SE (2008) A proposed new type of arsenian pyrite: Composition, nanostructure and geological significance. Geochim Cosmochim Acta 72:2919–2933

    Article  CAS  Google Scholar 

  • Deditius AP, Utsunomiya S, Ewing RC, Chryssoulis SL, Venter D, Kesler SE (2009) Decoupled geochemical behavior of As and Cu in hydrothermal systems. Geology 37:707–710

    Article  CAS  Google Scholar 

  • Deng J, Wang Q, Li G, Santosh M (2014a) Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region, southwestern China. Earth-Sci Rev 138:268–299

    Article  CAS  Google Scholar 

  • Deng J, Wang QF, Li GJ, Li CS, Wang CM (2014b) Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region, SW China. Gondwana Res 26:419–437

    Article  Google Scholar 

  • Deng J, Wang QF, Sun X, Yang L, Groves DI, Shu QH, Gao L, Yang LQ, Qiu KF, Wang CM, Dong CY (2022) Tibetan ore deposits: A conjunction of accretionary orogeny and continental collision. Earth-Sci Rev 104245

  • Di Benedetto F, Bernardini GP, Costagliola P, Plant D, Vaughan DJ (2005) Compositional zoning in sphalerite crystals. Am Mineral 90:1384–1392

    Article  Google Scholar 

  • Ding L, Kapp P, Cai FL, Garzione CN, Xiong ZY, Wang H, Wang C (2022) Timing and mechanisms of Tibetan Plateau uplift. Nat Rev Earth Env 3:652–667

    Article  Google Scholar 

  • Du ZZ, Gu XX, Li GQ, Zhang YM, Cheng WB, Jing LB, Zhang XG (2011) Sulfur, lead isotope composition characteristics and the relevant instructive significance of the Lamuyouta Sb(Au) deposit, South Tibet. Geoscience 25:853–860

    CAS  Google Scholar 

  • Duan JL, Tang JX, Lin B (2016) Zinc and lead isotope signatures of the Zhaxikang Pb-Zn deposit, south Tibet: Implications for the source of the ore-forming metals. Ore Geol Rev 78:58–68

    Article  Google Scholar 

  • Duc-Tin Q, Audetat A, Keppler H (2007) Solubility of tin in (Cl, F)-bearing aqueous fluids at 700 degrees C, 140 MPa: A LA-ICP-MS study on synthetic fluid inclusions. Geochim Cosmochim Acta 71:3323–3335

    Article  CAS  Google Scholar 

  • Fekete S, Weis P, Driesner T, Bouvier AS, Baumgartner L, Heinrich CA (2016) Contrasting hydrological processes of meteoric water incursion during magmatic-hydrothermal ore deposition: an oxygen isotope study by ion microprobe. Earth Planet Sci Lett 451:263–271

    Article  CAS  Google Scholar 

  • Godin L, Grujic D, Law RD, Searle MP (2006) Channel flow, ductile extrusion and exhumation in continental collision zones: an introduction. Geo Soc London Special Pub 268:1–23

    Article  CAS  Google Scholar 

  • Harrison TM, Copeland P, Kidd WSF, Lovera OM (1995) Activation of the Nyainqentanghla shear zone—implications for uplift of the Southern Tibetan Plateau. Tectonics 14:658–676

    Article  Google Scholar 

  • He CT, Qin KZ, Zhao JX, Evans NJ, Li JX, Zhou QF, Li GM (2022) Multiple skarn generations related to composite leucogranites in the Cuonadong Sn-W-Be deposit. Himalaya Ore Geol Rev 150:105161

    Article  Google Scholar 

  • Hedenquist JW, Lowenstern JB (1994) The role of magmas in the formation of hydrothermal ore deposits. Nature 370:519–527

    Article  CAS  Google Scholar 

  • Hodges KV (2000) Tectonics of the Himalaya and southern Tibet from two perspectives. Geol Soc Am Bull 112:324–350

    Article  CAS  Google Scholar 

  • Hou ZQ, Zheng YC, Zeng LS, Gao LE, Huang KX, Li W, Li QY, Fu Q, Liang W, Sun QZ (2012) Eocene-Oligocene granitoids in southern Tibet: Constraints on crustal anatexis and tectonic evolution of the Himalayan orogen. Earth Planet Sci Lett 349:38–52

    Article  Google Scholar 

  • Huston DL, Sie SH, Suter GF, Cooke DR, Both RA (1995) Trace elements in sulfide minerals from eastern Australian volcanic-hosted massive sulfide deposits: Part I, proton microprobe analyses of pyrite, chalcopyrite, and sphalerite, and Part II, selenium levels in pyrite: comparison with δ34S values and implications for the source of sulfur in volcanogenic hydrothermal systems. Econ Geol 90:1167–1196

    Article  CAS  Google Scholar 

  • Ji WQ, Wu FY, Liu XC, Liu ZC, Zhang C, Liu T, Wang JG, Paterson SR (2020) Pervasive Miocene melting of thickened crust from the Lhasa terrane to Himalaya, southern Tibet and its constraint on generation of Himalayan leucogranite. Geochim Cosmochim Acta 278:137–156

    Article  CAS  Google Scholar 

  • Jiang X, Wang X, Li G, Jiao Y, Min G, Kong F, Zhang XC, Cai P (2021) Three-dimensional structural characteristics of the Zhaxikang ore-concentration area based on multiple attribute constraints. In IOP Conference Series: Earth Environ Sci 660(1):012107 (IOP Publishing)

    Google Scholar 

  • Jiao YJ, Huang XR, Liang SX, Zhang Z, Li GM (2021) Deep structure and prospecting significance of the Cuonadong dome, Tethys Himalaya, China: Geophysical constraints. Geol J 56(1):253–264

    Article  Google Scholar 

  • Kellett DA, Cottle JM, Larson KP (2019) The south Tibetan detachment system: History, advances, definition and future directions. Geo Soc London Special Pub 483:377–400

    Article  Google Scholar 

  • Kelly JL, Fu B, Kita NT, Valley JW (2007) Optically continuous silcrete quartz cements of the St. Peter Sandstone: High precision oxygen isotope analysis by ion microprobe. Geochim Cosmochim Acta 71:3812–3832

    Article  CAS  Google Scholar 

  • LaFlamme C, Martin L, Jeon H, Reddy SM, Selvaraja V, Caruso S, Thi Hao B, Roberts MP, Voute F, Hagemann S, Wacey D, Littman S, Wing B, Fiorentini M, Kilburn MR (2016) In situ multiple sulfur isotope analysis by SIMS of pyrite, chalcopyrite, pyrrhotite, and pentlandite to refine magmatic ore genetic models. Chem Geol 444:1–15

    Article  CAS  Google Scholar 

  • Lang JR, Eastoe CJ (1988) Relationships between a porphyry Cu-Mo deposit, base and precious metal veins and Laramide intrusions, Mineral Park, Arizona. Econ Geol 83:551–567

    Article  CAS  Google Scholar 

  • Large RR, Danyushevsky L, Hollit C, Maslennikov V, Meffre S, Gilbert S, Bull S, Scott R, Emsbo P, Thomas H, Singh B, Foster J (2009) Gold and trace element zonation in pyrite using a laser imaging technique: implications for the timing of gold in orogenic and Carlin-style sediment-hosted deposits. Econ Geol 104:635–668

    Article  CAS  Google Scholar 

  • Lee J, Hacker B, Wang Y (2004) Evolution of north Himalayan gneiss domes: structural and metamorphic studies in Mabja dome, southern Tibet. J Struc Geol 26:2297–2316

    Article  Google Scholar 

  • Lehmann B (1982) Metallogeny of tin: Magmatic differentiation versus geochemical heritage. Econ Geol 77:50–59

    Article  CAS  Google Scholar 

  • Lehmann B (2021) Formation of tin ore deposits: A reassessment. Lithos 402–403:105756

    Article  Google Scholar 

  • Leloup PH, Maheo G, Arnaud N, Kali E, Boutonnet E, Liu D, Liu X, Li H (2010) The South Tibet detachment shear zone in the Dinggye area: Time constraints on extrusion models of the Himalayas. Earth Planet Sci Lett 292:1–16

    Article  CAS  Google Scholar 

  • Li GM, Zhang LK, Jiao YJ, Xia XB, Dong SL, Fu JG, Liang W, Zhang Z, Wu JY, Dong L, Huang Y (2017) First discovery and implications of Cuonadong superlarge Be-W-Sn polymetallic deposit in Himalayan metallogenic belt, southern Tibet. Mineral Deposits 36(4):1003–1008 (in Chinese with English abstract)

    Google Scholar 

  • Li Y, Li XH, Selby D, Li JW (2018) Pulsed magmatic fluid release for the formation of porphyry deposits: Tracing fluid evolution in absolute time from the Tibetan Qulong Cu-Mo deposit. Geology 46(1):7–10

    Article  Google Scholar 

  • Li RY, Sun X, Mou NN, Li C, Wan XQ, Yu M (2020) Isotopic (Sr, Nd, and Os) compositions of Zhaxikang diabases, southern Tibet: Records of mantle-plume activity and implications for Zhaxikang Sb-Pb-Zn-Ag mineralization. Geol J 55:6765–6778

    Article  CAS  Google Scholar 

  • Liu Y, Chen Z, Yang Z, Sun X, Zhu Z, Zhang Q (2015) Mineralogical and geochemical studies of brecciated ores in the Dalucao REE deposit, Sichuan Province, southwestern China. Ore Geol Rev 70:613–636

    Article  Google Scholar 

  • Liang W, Zheng YC (2019) The Jisong Pb-Zn deposit in South Tibet: Ar-Ar age of hydrothermal sericite and its geological implication. Geology in China 46(1):126–139 (in Chinese with English abstract)

    CAS  Google Scholar 

  • Liang SQ (2017) Underground structure and metallogenic model study of Zhaxikang ore concentration area, South Tibet. Dissertation, Chengdu University of Technology

  • Lin B, Tang JX, Zheng WB, Wang YY, Gao YM, Lin X, Yang HH, Leng QF, Li XT, Tang XQ, Fu YG (2016) A preliminary study of geological features and metallogenic epoch in Keyue Zn-polymetallic deposit. Tibet Mineral Deposits 35:33–50 (in Chinese with English Abstract)

    CAS  Google Scholar 

  • Liu G, Einsele G (1994) Sedimentary history of the Tethyan basin in the Tibetan Himalayas. Geol Rundsch 83:32–61

    Article  Google Scholar 

  • Liu Z, Tian XB, Yuan XH, Liang XF, Chen Y, Zhu GH, Zhang HS, Li W, Tan P, Zuo SC, Wu CL, Nie ST, Wang GC, Yu GP, Zhou BB (2020) Complex structure of upper mantle beneath the YadongGulu rift in Tibet revealed by S-to-P converted waves. Earth Planet Sci Lett 531:115954

    Article  CAS  Google Scholar 

  • Longerich HP, Simon EJ, Detlef G (1996) Inter-laboratory note. Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation. J Anal Atom Spectrom 11:899–904

    Article  CAS  Google Scholar 

  • Mao JW, Ouyang HG, Song SW, Santosh M, Yuan S, Zhou ZH, Zheng W, Liu H, Liu P, Cheng Y, Chen MH (2019) Geology and metallogeny of tungsten and tin deposits in China. Soc Econ Geol Spec Pub 22:441–482

    Google Scholar 

  • Matsuhisa Y, Goldsmith JR, Clayto RN (1979) Oxygen isotopic fractionation in the system quartz-albite-anorthite-water. Geochim Cosmochim Acta 43:1131–1140

    Article  CAS  Google Scholar 

  • Meng XJ, Yang ZS, Qi XX, Hou ZQ, Li ZQ (2008) Silicon-oxygen-hydrogen isotopic compositions of Zhaxikang antimony polymetallic deposit in southern Tibet and its responses to the ore-controlling structure. Acta Petrol Sin 24:1649–1655

    CAS  Google Scholar 

  • Migdisov AA, Williams-Jones AE (2005) An experimental study of cassiterite solubility in HCl-bearing water vapour at temperatures up to 350 degrees C. Implications for tin ore formation. Chem Geol 217:29–40

    Article  CAS  Google Scholar 

  • Mitsuishi M, Wallis SR, Aoya M, Lee J, Wang Y (2012) E-W extension at 19 Ma in the Kung Co area, S. Tibet: Evidence for contemporaneous E-W and N-S extension in the Himalayan orogen. Earth Planet Sci Lett 325:10–20

    Article  Google Scholar 

  • Mumin AH, Fleet ME, Longstaffe FJ (1996) Evolution of hydrothermal fluids in the Ashanti gold belt, Ghana: Stable isotope geochemistry of carbonates, graphite, and quartz. Econ Geol Bull Soc Econ Geol 91:135–148

    Article  CAS  Google Scholar 

  • Ohmoto H, Goldhaber M (1997) Sulfur and carbon isotopes. In: Barnes HD (ed) Geochemistry of hydrothermal ore deposits, 3rd edn. John Wiley and Sons, New York, pp 517–611

    Google Scholar 

  • Palero-Fernandez FJ, Martin-Izard A (2005) Trace element contents in galena and sphalerite from ore deposits of the Alcudia Valley mineral field (Eastern Sierra Morena, Spain). J Geochem Explor 86:1–25

    Article  CAS  Google Scholar 

  • Pan GT, Wang LQ, Li RS, Yuan SH, Ji WH, Yin FG, Zhang WP, Wang BD (2012) Tectonic evolution of the Qinghai-Tibet Plateau. J Asian Earth Sci 53:3–14

    Article  Google Scholar 

  • Pan G, Ding J, Yao D (2004) Geological map of Qinghai–Xizang (Tibet) plateau and adjacent areas (1:1500000). Chengdu Cartographic Publishing House, Chengdu

  • Reich M, Deditius A, Chryssoulis S, Li J-W, Ma C, Angel Parada M, Barra F, Mittermayr F (2013) Pyrite as a record of hydrothermal fluid evolution in a porphyry copper system: A SIMS/EMPA trace element study. Geochim Cosmochim Acta 104:42–62

    Article  CAS  Google Scholar 

  • Schmidt C (2018) Formation of hydrothermal tin deposits: Raman spectroscopic evidence for an important role of aqueous Sn(IV) species. Geochim Cosmochim Acta 220:499–511

    Article  CAS  Google Scholar 

  • Searle MP, Godin L (2003) The south Tibetan detachment and the Manaslu leucogranite: A structural reinterpretation and restoration of the Annapurna-Manaslu Himalaya. Nepal J Geol 111:505–523

    Article  Google Scholar 

  • Shimazaki H, Shimizu M, Nakano T (1986) Carbon and oxygen isotopes of calcites from Japanese skarn deposits. Geochem J 20:297–310

    Article  CAS  Google Scholar 

  • Sial AN, Bettencourt JS, De Campos CP, Ferreira VP (2011) Granite-related ore deposits: an introduction. Geo Soc London Special Pub 350:1–5

    Article  Google Scholar 

  • Sillitoe RH (2010) Porphyry Copper Systems. Econ Geol 105:3–41

    Article  CAS  Google Scholar 

  • Sun X, Zheng YY, Wang CM, Zhao ZY, Geng XB (2016a) Identifying geochemical anomalies associated with Sb-Au-Pb-Zn-Ag mineralization in North Himalaya, southern Tibet. Ore Geol Rev 73:1–12

    Article  Google Scholar 

  • Sun XM, Wei HX, Zhai W, Shi GY, Liang YH, Mo RH, Han MX, Yi JZ, Zhang XG (2016b) Fluid inclusion geochemistry and Ar-Ar geochronology of the Cenozoic Bangbu orogenic gold deposit, southern Tibet, China. Ore Geol Rev 74:196–210

    Article  Google Scholar 

  • Sun X, Zheng YY, Pirajno F, McCuaig TC, Yu M, Xia SL, Song QJ, Chang HF (2018) Geology, S-Pb isotopes, and 40Ar/39Ar geochronology of the Zhaxikang Sb-Pb-Zn-Ag deposit in Southern Tibet: implications for multiple mineralization events at Zhaxikang. Miner Deposita 53:435–458

    Article  CAS  Google Scholar 

  • Sun X, Deng J, White NC, Zheng X, Wang Q, Fu B (2024a) Genesis of volcanic-hosted Cu vein deposits in the foreland fold-thrust belt, southeastern Tibetan Plateau: insights from ore geology, C-O-S-Pb-Cu isotopes, and fluid inclusions at Wenyu. Geol Soc Am Bull 136:1309–1328

    Google Scholar 

  • Sun X, Li RY, Si XB, Xiao K, Deng J (2024b) Timing and mechanism of ore precipitation in porphyry Cu systems: insight from LA-ICP-MS analysis of fluid inclusions and in-situ oxygen isotope analysis of hydrothermal quartz at Zhunuo porphyry Cu deposit, China. Econ Geol. https://doi.org/10.5382/econgeo.5064

    Article  Google Scholar 

  • Syverson DD, Ono S, Shanks WC, Seyfried WE Jr (2015) Multiple sulfur isotope fractionation and mass transfer processes during pyrite precipitation and recrystallization: An experimental study at 300 and 350 degrees C. Geochim Cosmochim Acta 165:418–434

    Article  CAS  Google Scholar 

  • Taylor H (1997) Oxygen and hydrogen isotope relationships in hydrothermal mineral deposits. In: Barnes H (ed) Geochemistry of Hydrothermal Ore Deposits. John Wiley & Sons Inc, New York, pp 229–302

    Google Scholar 

  • Taylor M, Yin A, Ryerson FJ, Kapp P, Ding L (2003) Conjugate strike-slip faulting along the Bangong-Nujiang suture zone accommodates coeval east-west extension and north-south shortening in the interior of the Tibetan Plateau. Tectonics 22(4):1–20

    Article  Google Scholar 

  • Ulrich T, Long DGF, Kamber BS, Whitehouse MJ (2011) In situ trace element and sulfur isotope analysis of pyrite in a Paleoproterozoic gold placer deposit, Pardo and Clement townships, Ontario, Canada. Econ Geol 106:667–686

    Article  CAS  Google Scholar 

  • Wang D, Sun X, Zheng YY, Wu S, Xia SL, Chang HF, Yu M (2017) Two pulses of mineralization and genesis of the Zhaxikang Sb-Pb-Zn-Ag deposit in southern Tibet: Constraints from Fe-Zn isotopes. Ore Geol Rev 84:347–363

    Article  Google Scholar 

  • Wang D, Zheng Y, Mathur R, Jiang JS, Zhang SK, Zhang JF, Yu M (2019) Multiple mineralization events in the Zhaxikang Sb–Pb–Zn–Ag deposit and their relationship with the geodynamic evolution in the North Himalayan Metallogenic Belt, South Tibet. Ore Geol Rev 105:201–215

    Article  Google Scholar 

  • Wang D, Zheng YY, Mathur R, Ren H (2021) Sulfur isotopic characteristics of the Zhaxikang Sb-Pb-Zn-Ag deposit in southern Tibet. Aus J Earth Sci 68:120–130

    Article  CAS  Google Scholar 

  • Wang D, Mathur R, Zheng YY, Wu HJ, Lv YW, Zhang GY, Ren H, Yu M, Li YJ (2022) Constraints on ore-forming fluid evolution and guidance for ore exploration in the Zhaxikang Sb–Pb–Zn–Ag deposit in southern Tibet: Insights from silver isotope fractionation of galena. Miner Deposita 57(5):701–724

    Article  CAS  Google Scholar 

  • Wu FY, Liu XC, Liu ZC, Wang RC, Xie L, Wang JM, Ji WQ, Yang L, Liu C, Khanal GP, He SX (2020) Highly fractionated Himalayan leucogranites and associated rare-metal mineralization. Lithos 352–353:105319

    Article  Google Scholar 

  • Xie YL, Li LM, Wang BG, Li GM, Liu HF, Li YX, Dong SL, Zhou JJ (2017) Genesis of the Zhaxikang epithermal Pb-Zn-Sb deposit in southern Tibet, China: Evidence for a magmatic link. Ore Geol Rev 80:891–909

    Article  Google Scholar 

  • Yang ZS, Hou ZQ, Meng XJ, Liu YC, Fei HC, Tian SH, Li ZQ, Gao W (2009) Post-collisional Sb and Au mineralization related to the south Tibetan detachment system, Himalayan orogen. Ore Geol Rev 36:194–212

    Article  Google Scholar 

  • Ye L, Cook NJ, Ciobanu CL, Yuping L, Qian Z, Tiegeng L, Wei G, Yulong Y, Danyushevskiy L (2011) Trace and minor elements in sphalerite from base metal deposits in South China: A LA-ICPMS study. Ore Geol Rev 39(4):188–217

    Article  Google Scholar 

  • Yin A (2006) Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth-Sci Rev 79:163–164

    Article  Google Scholar 

  • Zeng L, Gao LE, Xie K, Jing LZ (2011) Mid-Eocene high Sr/Y granites in the northern Himalayan gneiss domes: Melting thickened lower continental crust. Earth Planet Sci Lett 303:251–266

    Article  CAS  Google Scholar 

  • Zhang X, Shi GR, Gong Y (2008) Middle Jurassic trace fossils from the Ridang formation in Sajia county, south Tibet, and their palaeoenvironmental significance. Facies 54:45–60

    Article  Google Scholar 

  • Zhang J, Santosh M, Wang X, Guo L, Yang X, Zhang B (2012) Tectonics of the northern Himalaya since the India-Asia collision. Gondwana Res 21:939–960

    Article  Google Scholar 

  • Zhang Z, Li GM, Zhang LK, Qing CS, Huang Y, Liang W, Cao HW, Wang YY, Dong S, Lu L, Dai Z (2020) Genesis of the Mingsai Au deposit, southern Tibet: Constraints from geology, fluid inclusions, 40Ar/39Ar geochronology, H-O isotopes, and in situ sulfur isotope compositions of pyrite. Ore Geol Rev 122:103488

    Article  Google Scholar 

  • Zheng YF (1999) Oxygen isotope fractionation in carbonate and sulfate minerals. Geochem J 33:109–126

    Article  CAS  Google Scholar 

  • Zheng YF, Hoefs J (1993) Carbon and oxygen isotopic covariations in hydrothermal calcites: Theoretical modeling on mixing processes and application to Pb-Zn deposits in the Harz Mountains, Germany. Miner Deposita 28:79–89

    Article  CAS  Google Scholar 

  • Zheng YY, Liu MY, Sun X, Yuan EH, Tian LM, Zheng HT, Zhang GY, Zhang LH (2012) Type, discovery process and significance of Zhaxikang antimony polymetallic ore deposit. Tibet Earth Sci J China Univ Geosci 37:1003–1014 (In Chinese with English abstract)

    CAS  Google Scholar 

  • Zhou Q, Li WC, Qing CS, Lai Y, Li YX, Liao WZ, Wu JY, Wang SW, Dong L, Tian EY (2018) Origin and tectonic implications of the Zhaxikang Pb-Zn-Sb-Ag deposit in northern Himalaya: evidence from structures, Re-Os-Pb-S isotopes, and fluid inclusions. Miner Deposita 53:585–600

    Article  CAS  Google Scholar 

  • Zhu DC, Chung SL, Mo XX, Zhao ZD, Niu Y, Song B, Yang YH (2009) The 132 Ma Comei-Bunbury large igneous province: Remnants identified in present-day southeastern Tibet and southwestern Australia. Geology 37:583–586

    Article  CAS  Google Scholar 

  • Zhu DC, Zhao ZD, Niu Y, Mo XX, Chung SL, Hou ZQ, Wang LQ, Wu FY (2011) The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth. Earth Planet Sci Lett 301:241–255

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Lejun Zhang and B. Lehmann for handling and insightful comments, and thank two anonymous reviewers for their constructive comments that have greatly improved the manuscript. Xiang Sun would like to acknowledge the Australian Microscopy and Microanalysis Research Facility, AuScope, the Science and Industry Endowment Fund, and the State Government of Western Australian for contributing to the Ion Probe Facility at the Centre for Microscopy, Characterisation and Analysis at the University of Western Australia, and thank Heejin Jeon for help in SHRIMP analyses of sulfur isotopes. Xu Zheng was thanked for help in analyses of LA-ICP-MS sulfide composition data.

Funding

This study received financial support from the National Key Research and Development Project of China (2022YFC2903304), the National Natural Science Foundation of China (92155305, 92162215), and the 111 Project of the Ministry of Science and Technology (BP0719021).

Author information

Authors and Affiliations

Authors

Contributions

Xiang Sun played a pivotal role in data analyses, conducting fieldwork, preparing and writing the manuscript. Ru-Yue Li and Hao-Yu Sun were instrumental in the plotting of diagrams. Paul H. Olin contributed his expertise in LA-ICP-MS analyses of sulfides. M. Santosh offered valuable comments and engaged in the review process. Bin Fu help SHRIMP analyses of oxygen isotopes, facilitating a deeper understanding of the isotopic compositions. Supervision, discussion and valuable comments were conducted by Jun Deng.

Corresponding authors

Correspondence to Xiang Sun or Jun Deng.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Editorial handling: L. Zhang/B. Lehmann

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 40 KB)

Supplementary file2 (DOCX 984 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Li, RY., Sun, HY. et al. Genesis of Pb–Zn-Ag-Sb mineralization in the Tethys Himalaya, China: Early magmatic-hydrothermal Pb–Zn(-Ag) mineralization overprinted by Sb-rich fluids. Miner Deposita (2024). https://doi.org/10.1007/s00126-024-01264-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00126-024-01264-5

Keywords

Navigation