Skip to main content
Log in

Phosphorus incorporation activates the basal plane of tungsten disulfide for efficient hydrogen evolution catalysis

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The basal planes of transition metal dichalcogenides are basically inert for catalysis due to the absence of adsorption and activation sites, which substantially limit their catalytic application. Herein, a facile strategy to activate the basal plane of WS2 for hydrogen evolution reaction (HER) catalysis by phosphorous-induced electron density modulation is demonstrated. The optimized P doped WS2 (P-WS2) nanowires arrays deliver a low overpotential of 88 mV at 10 mA·cm−2 with a Tafel slope of 62 mV·dec−1 for HER, which is substantially better than the pristine counterpart. X-ray photoelectron spectroscopy confirms the surface electron densities of WS2 have been availably manipulated by P doping. Moreover, density functional theory (DFT) studies further prove P doping can redistribute the density of states (DOS) around EF, which endow the inert basal plane of P-WS2 with edge-like catalytic activity toward hydrogen evolution catalysis. Our work offers a facile and effective approach to modulate the catalytic surface of WS2 toward highly efficient HER catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stamenkovic, V. R.; Strmcnik, D.; Lopes, P. P.; Markovic, N. M. Energy and fuels from electrochemical interfaces. Nat. Mater.2017, 16, 57–69.

    Article  CAS  Google Scholar 

  2. Wüstenhagen, R.; Bilharz, M. Green energy market development in Germany: Effective public policy and emerging customer demand. Energy Policy2006, 34, 1681–1696.

    Article  Google Scholar 

  3. Gao, M. R.; Chan, M. K. Y.; Sun, Y. G. Edge-terminated molybdenum disulfide with a 9.4-Å interlayer spacing for electrochemical hydrogen production. Nat. Commun.2015, 6, 7493.

    Article  Google Scholar 

  4. Zhou, X. W.; Gan, Y. L.; Du, J. J.; Tian, D. N.; Zhang, R. H.; Yang, C. Y.; Dai, Z. X. A review of hollow Pt-based nanocatalysts applied in proton exchange membrane fuel cells. J. Power Sources2013, 232, 310–322.

    Article  CAS  Google Scholar 

  5. Tran, P. D.; Nguyen, M.; Pramana, S. S.; Bhattacharjee, A.; Chiam, S. Y.; Fize, J.; Field, M. J.; Artero, V.; Wong, L. H.; Loo, J. et al. Copper molybdenum sulfide: A new efficient electrocatalyst for hydrogen production from water. Energy Environ. Sci.2012, 5, 8912–8916.

    Article  CAS  Google Scholar 

  6. Jiang, P.; Liu, Q.; Liang, Y. H.; Tian, J. Q.; Asiri, A. M.; Sun, X. P. A cost-effective 3D hydrogen evolution cathode with high catalytic activity: FeP nanowire array as the active phase. Angew. Chem.2014, 126, 13069–13073.

    Article  Google Scholar 

  7. Peng, S. J.; Li, L. L.; Han, X. P.; Sun, W. P.; Srinivasan, M.; Mhaisalkar, S. G.; Cheng, F. Y.; Yan, Q. Y.; Chen, J.; Ramakrishna, S. Cobalt sulfide nanosheet/graphene/carbon nanotube nanocomposites as flexible electrodes for hydrogen evolution. Angew. Chem., Int. Ed.2014, 53, 12594–12599.

    CAS  Google Scholar 

  8. Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol.2012, 7, 699–712.

    Article  CAS  Google Scholar 

  9. Zhang, K.; Zhao, Y.; Zhang, S.; Yu, H. L.; Chen, Y. J.; Gao, P.; Zhu, C. L. MoS2 nanosheet/Mo2C-embedded N-doped carbon nanotubes: Synthesis and electrocatalytic hydrogen evolution performance. J. Mater. Chem. A2014, 2, 18715–18719.

    Article  CAS  Google Scholar 

  10. Zhang, K.; Zhao, Y.; Fu, D. Y.; Chen, Y. J. Molybdenum carbide nanocrystal embedded N-doped carbon nanotubes as electrocatalysts for hydrogen generation. J. Mater. Chem. A2015, 3, 5783–5788.

    Article  CAS  Google Scholar 

  11. Yu, H. L.; Yu, X. B.; Chen, Y. J.; Zhang, S.; Gao, P.; Li, C. Y. A strategy to synergistically increase the number of active edge sites and the conductivity of MoS2 nanosheets for hydrogen evolution. Nanoscale2015, 7, 8731–8738.

    Article  CAS  Google Scholar 

  12. Zang, Y. P.; Niu, S. W.; Wu, Y. S.; Zheng, X. S.; Cai, J. Y.; Ye, J.; Xie, Y. F.; Liu, Y.; Zhou, J. B.; Zhu, J. F. et al. Tuning orbital orientation endows molybdenum disulfide with exceptional alkaline hydrogen evolution capability. Nat. Commun.2019, 10, 1217.

    Article  Google Scholar 

  13. Xie, H. P.; Lan, C.; Chen, B.; Wang, F. H.; Liu, T. Noble-metal-free catalyst with enhanced hydrogen evolution reaction activity based on granulated Co-doped Ni-Mo phosphide nanorod arrays. Nano Res.2020, 13, 3321–3329.

    Article  CAS  Google Scholar 

  14. Niu, S. W.; Cai, J. Y.; Wang, G. M. Two-dimensional MoS2 for hydrogen evolution reaction catalysis: The electronic structure regulation. Nano Res.2021, 14, 1985–2002.

    Article  CAS  Google Scholar 

  15. Zhu, J. H.; Chen, Z.; Jia, L.; Lu, Y. Q.; Wei, X. R.; Wang, X. N.; Wu, W. D.; Han, N.; Li, Y. G.; Wu, Z. X. Solvent-free nanocasting toward universal synthesis of ordered mesoporous transition metal sulfide@N-doped carbon composites for electrochemical applications. Nano Res.2019, 12, 2250–2258.

    Article  CAS  Google Scholar 

  16. Chen, M. H.; Liu, J. L.; Zhou, W. J.; Lin, J. Y.; Shen, Z. X. Nitrogen-doped graphene-supported transition-metals carbide electrocatalysts for oxygen reduction reaction. Sci. Rep.2015, 5, 10389.

    Article  Google Scholar 

  17. Chen, M. H.; Qi, M. L.; Yin, J. H.; Chen, Q. G. Embedding sulfur into N-doped carbon nanospheres as enhanced cathode for highperformance lithium-sulfur batteries. Mater. Res. Bull.2017, 96, 335–339.

    Article  CAS  Google Scholar 

  18. Li, Y.; Chen, M. H.; Liu, B.; Zhang, Y.; Liang, X. Q.; Xia, X. H. Heteroatom doping: An effective way to boost sodium ion storage. Adv. Energy Mater.2020, 10, 2000927.

    Article  CAS  Google Scholar 

  19. Wu, Y. S.; Liu, X. J.; Han, D. D.; Song, X. Y.; Shi, L.; Song, Y.; Niu, S. W.; Xie, Y. F.; Cai, J. Y.; Wu, S. Y. et al. Electron density modulation of NiCo2S4 nanowires by nitrogen incorporation for highly efficient hydrogen evolution catalysis. Nat. Commun.2018, 9, 1425.

    Article  Google Scholar 

  20. Wang, S. Q.; Xia, L.; Yu, L.; Zhang, L.; Wang, H. H.; Lou, X. W. Free-standing nitrogen-doped carbon nanofiber films: Integrated electrodes for sodium-ion batteries with ultralong cycle life and superior rate capability. Adv. Energy Mater.2016, 6, 1502217.

    Article  Google Scholar 

  21. Shi, Z. P.; Nie, K. Q.; Shao, Z. J.; Gao, B. X.; Lin, H. L.; Zhang, H. B.; Liu, B. L.; Wang, Y. X.; Zhang, Y. H.; Sun, X. H. et al. Phosphorus-Mo2C@ carbon nanowires toward efficient electrochemical hydrogen evolution: Composition, structural and electronic regulation. Energy Environ. Sci.2017, 10, 1262–1271.

    Article  CAS  Google Scholar 

  22. Kibsgaard, J.; Jaramillo, T. F. Molybdenum phosphosulfide: An active, acid-stable, earth-abundant catalyst for the hydrogen evolution reaction. Angew. Chem., Int. Ed.2014, 53, 14433–14437.

    Article  CAS  Google Scholar 

  23. Zhang, X.; Liang, Y. Y. Nickel hydr(oxy)oxide nanoparticles on metallic MoS2 nanosheets: A synergistic electrocatalyst for hydrogen evolution reaction. Adv. Sci.2018, 5, 1700644.

    Article  Google Scholar 

  24. Wang, H. Q.; Zhang, W. J.; Zhang, X. W.; Hu, S. X.; Zhang, Z. C.; Zhou, W. J.; Liu, H. Multi-interface collaboration of graphene cross-linked NiS-NiS2-Ni3S4 polymorph foam towards robust hydrogen evolution in alkaline electrolyte. Nano Res., in press, https://doi.org/10.1007/s12274-021-3445-5.

  25. Kang, X.; Liu, J. C.; Tian, C. G.; Wang, D. X.; Li, Y. R.; Zhang, H. Y.; Cheng, X. S.; Wu, A. P.; Fu, H. G. Surface curvature-confined strategy to ultrasmall nickel-molybdenum sulfide nanoflakes for highly efficient deep hydrodesulfurization. Nano Res.2020, 13, 882–890.

    Article  CAS  Google Scholar 

  26. Wang, F.; Li, Y.; Xia, X. H.; Cai, W.; Chen, Q. G.; Chen, M. H. Metal-CO2 electrochemistry: From CO2 recycling to energy storage. Adv. Energy Mater.2021, 11, 2100667.

    Article  CAS  Google Scholar 

  27. Li, P. H.; Yang, Y.; Gong, S.; Lv, F.; Wang, W.; Li, Y. J.; Luo, M. C.; Xing, Y.; Wang, Q.; Guo, S. J. Co-doped 1T-MoS2 nanosheets embedded in N, S-doped carbon nanobowls for high-rate and ultrastable sodium-ion batteries. Nano Res.2019, 12, 2218–2223.

    Article  CAS  Google Scholar 

  28. Lu, C. H.; Hon, M. H.; Kuan, C. Y.; Leu, I. C. Preparation of WO3 nanorods by a hydrothermal method for electrochromic device. J. Appl. Phys.2014, 53, 06JG08.

    Article  CAS  Google Scholar 

  29. Bai, S. L.; Zhang, K. W.; Luo, R. X.; Li, D. Q.; Chen, A. F.; Liu, C. C. Low-temperature hydrothermal synthesis of WO3 nanorods and their sensing properties for NO2. J. Mater. Chem.2012, 22, 12643–12650.

    Article  CAS  Google Scholar 

  30. Han, D. D.; Liu, X. J.; Cai, J. Y.; Xie, Y. F.; Niu, S. W.; Wu, Y. S.; Zang, Y. P; Fang, Y. Y.; Zhao, F. Q.; Qu, W. G. et al. Superior surface electron energy level endows WP2 nanowire arrays with N2 fixation functions. J. Energy Chem.2021, 59, 55–62.

    Article  Google Scholar 

  31. Wang, X. D.; Xu, Y. F.; Rao, H. S.; Xu, W. J.; Chen, H. Y.; Zhang, W. X.; Kuang, D. B.; Su, C. Y. Novel porous molybdenum tungsten phosphide hybrid nanosheets on carbon cloth for efficient hydrogen evolution. Energy Environ. Sci.2016, 9, 1468–1475.

    Article  CAS  Google Scholar 

  32. Zhang, X.; Zhou, F.; Pan, W. Y.; Liang, Y. Y.; Wang, R. H. General construction of molybdenum-based nanowire arrays for pH-universal hydrogen evolution electrocatalysis. Adv. Funct. Mater.2018, 28, 1804600.

    Article  Google Scholar 

  33. Ouyang, C. B.; Wang, X.; Wang, S. Y. Phosphorus-doped CoS2 nanosheet arrays as ultra-efficient electrocatalysts for the hydrogen evolution reaction. Chem. Commun.2015, 51, 14160–14163.

    Article  CAS  Google Scholar 

  34. Wang, Z. Q.; Liu, P.; Ito, Y.; Ning, S. C.; Tan, Y. W.; Fujita, T.; Hirata, A.; Chen, M. W. Chemical vapor deposition of monolayer Mo1−xWxS2 crystals with tunable band gaps. Sci. Rep.2016, 6, 21536.

    Article  CAS  Google Scholar 

  35. Li, Y. H.; Liu, P. F.; Pan, L. F.; Wang, H. F.; Yang, Z. Z.; Zheng, L. R.; Hu, P.; Zhao, H. J.; Gu, L.; Yang, H. G. Local atomic structure modulations activate metal oxide as electrocatalyst for hydrogen evolution in acidic water. Nat. Commun.2015, 6, 8064.

    Article  CAS  Google Scholar 

  36. Shifa, T. A.; Wang, F. M.; Liu, K. L.; Cheng, Z. Z.; Xu, K.; Wang, Z. X.; Zhan, X. Y.; Jiang, C.; He, J. Efficient catalysis of hydrogen evolution reaction from WS2(1−x)P2x nanoribbons. Small2017, 13, 1603706.

    Article  Google Scholar 

  37. McEnaney, J. M.; Crompton, J. C.; Callejas, J. F.; Popczun, E. J.; Read, C. G.; Lewis, N. S.; Schaak, R. E. Electrocatalytic hydrogen evolution using amorphous tungsten phosphide nanoparticles. Chem. Commun.2014, 50, 11026–11028.

    Article  CAS  Google Scholar 

  38. Han, N.; Yang, K. R.; Lu, Z. Y.; Li, Y. J.; Xu, W. W.; Gao, T. F.; Cai, Z.; Zhang, Y.; Batista, V. S.; Liu, W. et al. Nitrogen-doped tungsten carbide nanoarray as an efficient bifunctional electrocatalyst for water splitting in acid. Nat. Commun.2018, 9, 924.

    Article  Google Scholar 

  39. Wang, Y. Q.; Xie, Y.; Zhao, L.; Sui, X. L.; Gu, D. M.; Wang, Z. B. Hierarchical heterostructured Mo2C/Mo3Co3C bouquet-like nanowire arrays: An efficient electrocatalyst for hydrogen evolution reaction. ACS Sustainable Chem. Eng.2019, 7, 7294–7303.

    Article  CAS  Google Scholar 

  40. Zhang, Y. Q.; Ouyang, B.; Xu, J.; Chen, S.; Rawat, R. S.; Fan, H. J. 3D porous hierarchical nickel-molybdenum nitrides synthesized by RF plasma as highly active and stable hydrogen-evolution-reaction electrocatalysts. Adv. Energy Mater.2016, 6, 1600221.

    Article  Google Scholar 

  41. Zhang, Y. Q.; Xia, X. H.; Cao, X.; Zhang, B. W.; Tiep, N. H.; He, H. Y.; Chen, S.; Huang, Y. Z.; Fan, H. J. Ultrafine metal nanoparticles/N-doped porous carbon hybrids coated on carbon fibers as flexible and binder-free water splitting catalysts. Adv. Energy Mater.2017, 7, 1700220.

    Article  Google Scholar 

  42. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B1994, 50, 17953.

    Article  Google Scholar 

  43. Deng, S. J.; Zhong, Y.; Zeng, Y. X.; Wang, Y. D.; Yao, Z. J.; Yang, F.; Lin, S. W.; Wang, X. L.; Lu, X. H.; Xia, X. H. et al. Directional construction of vertical nitrogen-doped 1T-2H MoSe2/graphene shell/core nanoflake arrays for efficient hydrogen evolution reaction. Adv. Mater.2017, 29, 1700748.

    Article  Google Scholar 

  44. Niu, S. W.; Fang, Y. Y.; Zhou, J. B.; Cai, J. Y.; Zang, Y. P.; Wu, Y. S.; Ye, J.; Xie, Y. F.; Liu, Y.; Zheng, X. S. et al. Manipulating the water dissociation kinetics of Ni3N nanosheets via in situ interfacial engineering. J. Mater. Chem. A2019, 7, 10924–10929.

    Article  CAS  Google Scholar 

  45. Ren, H. J.; Pan, Y.; Sorrell, C. C.; Du, H. W. Assessment of electrocatalytic activity through the lens of three surface area normalization techniques. J. Mater. Chem. A2020, 8, 3154–3159.

    Article  CAS  Google Scholar 

  46. Feng, Y. Q.; Wang, X.; Dong, P. P.; Li, J.; Feng, L.; Huang, J. F.; Cao, L. Y.; Feng, L. L.; Kajiyoshi, K.; Wang, C. R. Boosting the activity of Prussian-blue analogue as efficient electrocatalyst for water and urea oxidation. Sci. Rep.2019, 9, 15965.

    Article  Google Scholar 

  47. Liang, X. Q.; Chen, M. H.; Zhu, H. K.; Zhu, H.; Cui, X. H.; Yan, J. X.; Chen, Q. G.; Xia, X. H.; Liu, Q. Unveiling the solid-solution charge storage mechanism in 1T vanadium disulfide nanoarray cathodes. J. Mater. Chem. A2020, 8, 9068–9076.

    Article  CAS  Google Scholar 

  48. Chen, M. H.; Fan, H.; Zhang, Y.; Liang, X. Q.; Chen, Q. G.; Xia, X. H. Coupling PEDOT on mesoporous vanadium nitride arrays for advanced flexible all-solid-state supercapacitors. Small2020, 16, 2003434.

    Article  CAS  Google Scholar 

  49. Sokolikova, M. S.; Sherrell, P. C.; Palczynski, P.; Bemmer, V. L.; Mattevi, C. Direct solution-phase synthesis of 1T’ WSe2 nanosheets. Nat. Commun.2019, 10, 712.

    Article  CAS  Google Scholar 

  50. Zhang, Y. Q.; Ouyang, B.; Xu, K.; Xia, X. H.; Zhang, Z.; Rawat, R. S.; Fan, H. J. Prereduction of metal oxides via carbon plasma treatment for efficient and stable electrocatalytic hydrogen evolution. Small2018, 14, 1800340.

    Article  Google Scholar 

  51. Deng, J.; Li, H. B.; Xiao, J. P.; Tu, Y. C.; Deng, D. H.; Yang, H. X.; Tian, H. F.; Li, J. Q.; Ren, P. J.; Bao, X. H. Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping. Energy Environ. Sci.2015, 8, 1594–1601.

    Article  CAS  Google Scholar 

  52. Gong, M.; Zhou, W.; Tsai, M. C.; Zhou, J. G.; Guan, M. Y.; Lin, M. C.; Zhang, B.; Hu, Y. F.; Wang, D. Y.; Yang, J. et al. Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nat. Commun.2014, 5, 4695.

    Article  CAS  Google Scholar 

  53. Ye, R. Q.; del Angel-Vicente, P.; Liu, Y. Y.; Arellano-Jimenez, M. J.; Peng, Z. W.; Wang, T.; Li, Y. L.; Yakobson, B. I.; Wei, S. H.; Yacaman, M. J. et al. High-performance hydrogen evolution from MoS2(1−x)Px solid solution. Adv. Mater.2016, 28, 1427–1432.

    Article  CAS  Google Scholar 

  54. Gong, Q. F.; Cheng, L.; Liu, C. H.; Zhang, M.; Feng, Q. L.; Ye, H. L.; Zeng, M.; Xie, L. M.; Liu, Z.; Li, Y. G. Ultrathin MoS2(1−x)Se2x alloy nanoflakes for electrocatalytic hydrogen evolution reaction. ACS Catal.2015, 5, 2213–2219.

    Article  CAS  Google Scholar 

  55. Tang, Q.; Jiang, D. E. Mechanism of hydrogen evolution reaction on 1T-MoS2 from first principles. ACS Catal.2016, 6, 4953–4961.

    Article  CAS  Google Scholar 

  56. Liu, Z. Q.; Li, N.; Su, C.; Zhao, H. Y.; Xu, L. L.; Yin, Z. Y.; Li, J.; Du, Y. P. Colloidal synthesis of 1T’ phase dominated WS2 towards endurable electrocatalysis. Nano Energy2018, 50, 176–181.

    Article  CAS  Google Scholar 

  57. Tsai, C.; Chan, K.; Abild-Pedersen, F.; Nørskov, J. K. Active edge sites in MoSe2 and WSe2 catalysts for the hydrogen evolution reaction: A density functional study. Phys. Chem. Chem. Phys.2014, 16, 13156–13164.

    Article  CAS  Google Scholar 

  58. Zhu, Y. H.; Zhang, D. T.; Gong, L. L.; Zhang, L. P.; Xia, Z. H. Catalytic activity origin and design principles of graphitic carbon nitride electrocatalysts for hydrogen evolution. Front. Mater.2019, 6, 16.

    Article  Google Scholar 

  59. Song, F. Z.; Li, W.; Yang, J. Q.; Han, G. Q.; Liao, P. L.; Sun, Y. J. Interfacing nickel nitride and nickel boosts both electrocatalytic hydrogen evolution and oxidation reactions. Nat. Commun.2018, 9, 4531.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 52122702), Natural Science Foundation of Heilongjiang Province of China (No. JQ2021E005), and Fundamental Research Foundation for Universities of Heilongjiang Province (No. LGYC2018JQ006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gongming Wang or Minghua Chen.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Niu, S., Liang, X. et al. Phosphorus incorporation activates the basal plane of tungsten disulfide for efficient hydrogen evolution catalysis. Nano Res. 15, 2855–2861 (2022). https://doi.org/10.1007/s12274-021-3873-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3873-2

Keywords

Navigation